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Abstract: Measuring the amount of shared information between two documents is a 

key to address a number of Natural Language Processing (NLP) challenges such as 

Information Retrieval (IR), Semantic Textual Similarity (STS), Sentiment Analysis 

(SA) and Plagiarism Detection (PD). In this paper, we report a plagiarism detection 

system based on two layers of assessment: 1) Fingerprinting which simply compares 

the documents fingerprints to detect the verbatim reproduction; 2) Word embedding 

which uses the semantic and syntactic properties of words to detect much more 

complicated reproductions. Moreover, Word Alignment (WA), Inverse Document 

Frequency (IDF) and Part-of-Speech (POS) weighting are applied on the examined 

documents to support the identification of words that are most descriptive in each 

textual unit. In the present work, we focused on Arabic documents and we evaluated 

the performance of the system on a data-set of holding three types of plagiarism:  

1) Simple reproduction (copy and paste); 2) Word and phrase shuffling; 3) Intelligent 

plagiarism including synonym substitution, diacritics insertion and paraphrasing. 

The results show a recall of 88% and a precision of 86%. Compared to the results 

obtained by the systems participating in the Arabic Plagiarism Detection Shared 

Task 2015, our system outperforms all of them with a plagiarism detection score 

(Plagdet) of 83%.   

Keywords: Plagiarism detection, intelligent plagiarism, fingerprinting, word 

embedding, Arabic language. 

1. Introduction 

“Plagiarism is the use of ideas, concepts, words, or structures without appropriately 

acknowledging the source to benefit in a setting where originality is expected” [1]. 

The easy access to the vast amount of information on the net has shown to be an 

appealing opportunity for authors of diverse backgrounds to steal and claim others’ 
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works.  In the last few years, the phenomenon has been reported to have spread over 

different areas including academia, literature, and media and not to mention the 

industry [2]. In academia, for instance, a study conducted by G u i b e r t  and 

M i c h a u  [3], reported that about 35% of the students in Europe have re-used all or 

a portion of a document to present it as their own work. M c C a b e  [4] who studied 

a sample of more than 80,000 students in the USA and Canada between 2002 to 2005 

showed that more than 25% of graduate and 38% of undergraduate students have at 

least copied or paraphrased sentences without citing the source.  

Compared to formal languages (i.e., programs) plagiarism in natural language 

is relatively more difficult to identify because of the flexibility of morphology and 

syntax [8]. In addition, plagiarists use different ways to bypass the plagiarism 

detection systems. A plagiarism detection system task is then to uncover what the 

plagiarist did his best to hide using rewording, synonym substitution, paraphrasing, 

text manipulation, text translation and idea adoption [5]. 

From the perspective of the resources used to make the detection, there are two 

approaches: (1) Intrinsic, (2) Extrinsic [5]. The first one examines the linguistic 

features of a document against itself to spot the catching variations in styles; this 

technique is known as stylometry [11]. The extrinsic plagiarism, however, compares 

the suspicious document with a source collection of documents [9]. One could say 

the first technique tries to find the differences while the second tries to spot 

similarities. 

The Arabic language is a Semitic language with rich and complex morphology 

compared to the Indo-European languages [6]. It is spoken by more than 330 million 

people as a native language and it is the fourth most used language on the Internet 

(http://www.internetworldstats.com/stats7.htm). Arabic is written from right to 

left and it has 28 alphabet letters. In Arabic text, letters are attached and they change 

shape in accordance with their position in the word. On the other hand, diacritic marks 

may optionally be present; consequently, for a word with k letters, we can have at 

least 2k different representations [7]. Another issue is the fact that some letters are 

frequently used interchangeably, such as (ى ، ي ), (ة ، ه ) and  (أ ، إ ،  آ ، ا  ) [34]. 

In this paper, we present a 2-Level Arabic Plagiarism Detection system  

(2L-APD), built around the extrinsic plagiarism detection approach. The proposed 

2L-APD system is based on two modules (levels), (1) Fingerprinting detection 

module, (2) Word embedding detection module. The first one is designed to detect 

literal reproduction of texts. The word embedding detection module tries to discover 

synonym substitution and paraphrasing if any.  

The rest of this paper is organised as follows, in the next section we provide a 

quick overview of Arabic plagiarism detection published works. Section 3 introduces 

some background on fingerprinting and word embedding models. Section 4 describes 

the architecture of our plagiarism detection system 2L-APD. In Section 5, we report 

the test results and compare it to the results of similar systems. Finally, our 

conclusions and some future research directions are drawn in Section 6. 
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2. Arabic plagiarism detection systems  

While we focus on Arabic language the interested reader may refer to a number of 

surveys on the subject of plagiarism detection in general and on other languages  

[27, 9, 5, 2].  In the context of Arabic language, several plagiarism detection systems 

are proposed. For instance, A l z a h r a n i  and S a l i m  [28] have introduced a 

statement-based plagiarism detection system for Arabic (FS-APD) using Fuzzy-Set 

(FS) information retrieval model [18]. The degree of similarity between two 

statements is computed and compared to a fixed threshold value to judge whether 

they are similar or not. This approach led to perform well on verbatim reproductions. 

To address the rewording, they have proposed another system named fuzzy semantic-

based string similarity for extrinsic plagiarism detection (SFS-APD) [30]. This uses 

a shingling algorithm, Arabic WordNet lexical database [31] and Jaccard coefficient 

for retrieving a list of candidate documents. The suspicious document is then 

compared sentence by sentence with the candidate documents to compute the fuzzy 

degree of similarity. 

M e n a i  [6] proposed a plagiarism detection tool for Arabic documents 

(Aplag). Aplag is based on heuristics to compare suspect documents at different 

hierarchical levels to avoid unnecessary comparisons. In addition, to address the 

problem of rewording, Aplag replaces each word’s root by the most frequent 

synonym extracted from Arabic WordNet [31].  

J a d a l l a  and E l n a g a r  [32] introduced a plagiarism detection system for 

Arabic text-based documents named Iqtebas. It uses a fingerprint search engine to 

compute the distance between each sentence in the suspected document and the 

closest sentence in the source documents. Iqtebas seems to perform well the Copy-

and-Paste (C&P) plagiarism, but it handles neither word shuffling nor rewording. 

Recently, H u s s e i n  [33] proposed a new plagiarism detection system for 

Arabic documents based on modeling the relation between texts and their n-gram 

unique sentences. The system involves several steps, including Part-of-Speech (POS) 

tagging, text indexing, stop-words removal, synonyms substitution and heuristic 

pairwise phrase matching algorithm to build documents Term Frequency-Inverse 

Document Frequency (TF-IDF) model [45]. The Latent Semantic Analysis (LSA) 

[46] and Singular Value Decomposition (SVD) [47] are then used to analyze the 

hidden associations between text documents. 

The Arabic Plagiarism Detection Shared Task 2015 (AraPlagDet)  

(http://misc-umc.org/AraPlagDet/) [34] is the first and only shared task that 

addresses the evaluation of plagiarism detection methods for Arabic texts. It has two 

sub-tasks: extrinsic and intrinsic plagiarism detection. A major advantage of the 

AraPlagDet evaluation campaign is enabling the evaluation of different systems on 

the same dataset. In AraPlagDet 2015 three systems have participated in the extrinsic 

plagiarism detection subtask: M a g o o d a et al. [35], A l z a h r a n i  [36] and 

Palkovskii (http://plagiarism-detector.com/). Two participants (Magooda and 

Alzahrani) among the three submitted working notes describing their systems.  

M a g o o d a  et al. [35] proposed an extrinsic plagiarism detection system named 

RDI_RED. In this system, Lucene search engine [44] is used to select a list of 

candidate source documents. The candidate documents are aligned to detect 

http://misc-umc.org/AraPlagDet/
http://plagiarism-detector.com/
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plagiarised segments (aligned parts). Finally, a set of rules is applied by a filtering 

module in order to filter the aligned parts. RDI_RED system can be easily deployed 

on-line. Though, it does not address synonyms substitution and paraphrasing. 

Alzahrani’s [36] system goes through four main steps: (1) Pre-processing which 

includes tokenization and stop-word removal, (2) Retrieve a list of candidate source 

documents for each suspicious document using n-gram fingerprinting and Jaccard 

coefficient, (3) An in-depth comparison between the suspicious documents and the 

associated source candidate documents using k-overlapping approach [30], (4) Post-

processing where consecutive n-grams are joined to form united plagiarised 

segments. Table 1 summarizes the Arabic plagiarism detection systems described 

above according to the technique used, the comparison level and their efficiency in 

detecting different plagiarism types. One conclusion from this review is that there is 

a lack of systems addressing the problem of paraphrasing. In addition, word 

embedding representation is not investigated for the plagiarism detection task in 

Arabic documents. 

Table 1. Details of the Arabic plagiarism detection systems 

Technique/ Comparison 
Level/ Plagiarism Type 

System 

FS-APD 

[28] 

SFS- 

APD [30] 

Aplag 

[6] 

Iqtebas 

[32] 

H u s s e i n 

[33] 

RDI-RED 

[35] 

A l z a h r a n i 

[36] 

T
ec

h
n
iq

u
e 

Fingerprinting        

Fuzzy-set        

SVD        

LSA        

Search Engine        

Linguistic 

Resources 
       

Word Embedding        

C
o

m
p

ar
is

o
n

 

L
ev

el
 Sentence        

Paragraph        

P
la

g
ia

ri
sm

 T
y
p

e Document        

C&P        

Reordering        

Synonyms 
substitution 

       

Paraphrasing        

3. Background  

Prior to the description of our system, we briefly recall some basics concerning the 

fingerprinting and word embedding representation. 

3.1. Fingerprinting 

Fingerprinting is widely applied in extrinsic plagiarism [29]. The purpose is to reduce 

the size of the compared texts and speed up the comparison without missing a 

significant match. A document fingerprint is a list of integers resulting from hashing 

substrings of the document. The comparison is then performed on the fingerprints 
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rather than the whole texts [11]. The process of creating a fingerprint involves three 

steps: 

Chunking: the document is segmented into substrings (called chunks or 

minutiae). A chunk might be a sequence of letters, words or even sentences. 

Hashing: a hash function is applied to the chunks to generate a list of integers. 

Selection: The final fingerprint is a subsequence of the list of hashes. 

There are four factors which must be carefully balanced when constructing a 

fingerprint: the fingerprint granularity, hash function, selection strategy and 

fingerprint resolution [12]: 

 Fingerprint Granularity 

The size of chunk determines the fingerprint granularity, and they have a 

significant impact on the accuracy of fingerprint [11]. Large chunks fingerprint 

(coarse granularity), is fast to compute but highly sensitive to changes, whereas small 

chunks fingerprint (fine granularity) is less sensitive to such changes, yet they require 

significant computational effort and allows a higher rate of false positive. 

 Hash Function 

A hash function maps the chunks to integers. It is especially important to choose 

the hash function in such a way as to minimize the collisions due to mapping different 

chunks to the same hash [11]. 

 Selection Strategy 

While hashing all chunks is likely to be the best choice for strict matching, 

keeping only a subsequence of the checks has shown to be more efficient and less 

sensitive to insignificant changes [11]. A number of chunk selection approaches have 

been used so far such as “i-th hash” [15], “0 mod k” [13], first-k [12], first-k-sliding 

strategy [12] and winnowing [14].  

 Fingerprint Resolution 

The number of the selected hashes to represent a document defines the 

fingerprint resolution. The processing and the storage requirements increase 

proportionally with the fingerprint resolution [14]. 

3.2. Word embedding  

Recently, word embedding representation has received a lot of attention in the NLP 

community and has become a core building to many NLP applications, such as 

information retrieval, plagiarism detection, machine translation, text classification 

and text summarization. Word embedding represents words as vectors in a continuous 

high-dimensional space. Indeed, these representations allow capturing the syntactic 

and semantic properties of the language [20]. Most word embedding techniques are 

relying on the neural network to train the word vectors from a large collection of text 

documents. In the literature, several techniques are proposed to build a word 

embedding model, among the most famous are: C o l l o b e r t  and W e s t o n  [21] 

model, Hierarchical Log-Bilinear model (HLBL) [22], T u r i a n, R a t i n o v  and 

B e n g i o  [23] model, Recurrent Neural Network (RNN) model [24], Continuous 

Bag-Of-Words model (CBOW) [20], Skip-Gram model (Skip-G) [25] and Global 

Vectors model (GloVe) [26]. 
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In a comparative study conducted by M i k o l o v et al. [20] all the methods  

[21-25] have been evaluated and compared, and they show that CBOW  

and Skip-G are significantly faster to train and give better accuracy. For this  

reason, we have used the CBOW word representations for Arabic model proposed  

by Z a h r a n et al. [19]. To train this model, they have used a large  

collection from different sources containing more than 5.8 billion words 

(https://sites.google.com/site/mohazahran/data). In this model, each word w is 

represented by a vector v of 300-dimension. The similarity between two words wi and 

wj is obtained by comparing their vector representations vi and vj respectively [20]. 

This similarity can be evaluated using the Cosine similarity, Manhattan distance, 

Euclidean distance or any other similarity measure functions. For example: let  الجامعة 

(university), المساء (evening) and الكلية (faculty) be three words. The similarity between 

them is measured by computing the cosine similarity between their vectors as 

follows:   

{
Sim(المساء, (الجامعة  = cos (𝑣 (المساء), 𝑣(الجامعة))  =  0.13,

    Sim(الجامعة, (الكلية   = cos (𝑣 (الجامعة), 𝑣(الكلية)) =  0.72.       
   

This means that the words الكلية (faculty) and الجامعة (university) are semantically 

closer than المساء (evening) and الجامعة (university). 

4. Proposed system 

In order to detect different types of plagiarism, our proposed 2L-APD system is based 

on two modules (levels): Fingerprinting detection module and Word embedding 

detection module. The fingerprinting module is designed to detect the literal 

plagiarism (lexical level), such as C&P, reordering of words and adding filler words. 

However, in the practical plagiarism cases especially in scientific research, several 

intelligent plagiarism forms are used, including obfuscations, synonym replacement 

and paraphrasing. These techniques often generate a significant change in the 

structure of the original text, which can affect considerably the document fingerprint. 

This fact makes the fingerprinting module quite weak against textual modification. 

To address this issue, we have proposed a word embedding module (semantic level). 

If the plagiarism is not detected in the fingerprinting module, the suspect document 

is sent to the word embedding module to detect intelligent plagiarism. Fig. 1 

illustrates an overview of the 2L-APD system. 

 
Fig. 1 

https://sites.google.com/site/mohazahran/data
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Let D = {d1, d2, ..., di} be a set of potential source of plagiarism documents and 

let dsus denotes a suspicious document. The main task of a plagiarism detector consists 

in locating the highly similar pairs of passages (p, p′) from dsus and dsrc (dsrc ∊ D). 

These passages could have many levels of similarity, such as p′ is exactly similar to 

p, p′ is obtained from p by obfuscation techniques or p′ and p are semantically similar. 

In the following, we develop our proposed modules and we provide for each one how 

the plagiarism detection is performed.  

4.1. Segmentation and Pre-processing 

In a first step, each document dsus and dsrc is chunked into sentences. The average 

length of Arabic sentence is widely higher than other languages; it is around 35 words 

per sentence [38]. Therefore, we have chosen to use (.), (,), (;), (:), (!) and (?) 

punctuation marks as a segmentation point, provided that the sentence length should 

be between 25 and 35 words. In order to normalize the sentences for detection 

modules, a set of preprocessing steps are applied: 

 Tokenization: decompose each sentence into a set of tokens (words). 

 Remove diacritics and non-letters. 

 Stop-words removal. 

 Lemmatization: MADAMIRA tool [37] is used only for the fingerprinting 

module to reduce words to their lemma, however, in the word embedding module, 

we use the normal form of words to capture the semantic properties. 

4.2. Fingerprinting detection module 

Detecting plagiarism between a suspicious (dsus) and source document (dscr ∊ D) in 
the fingerprinting module is carried out in the following two steps.  

1. Fingerprinting. We construct for each sentence its fingerprint as follows: 

 Chunking. Each sentence is broken into a set of n-grams (character-based). 

 Selection. In this step, we propose a new selection strategy based on our 

previous work presented in [16]. The key idea of [16] is how to effectively exploit 

the uneven distribution of the n-grams frequencies in natural language text, to reduce 

the n-gram inverted index size, where we store only the less frequent n-grams. In fact, 

we proved that the least frequent n-grams are the most significant. Let us illustrate 

this fact by considering the problem of searching the word “dozen” within the 

Gutenberg corpus [17]. The sequential search suggests starting either with the first 

letter d, or the last one n. If we take the first choice, the text is scanned letter by letter 

until a match with d is found. If so, the process compares the remaining letters in the 

word one by one with those in the text until a full match is verified or a mismatch is 

faced. Since the frequency of the letter d in our case is 387,163. Starting the search 

by checking the first letter implies that we will look further nearly 387,163 times at 

the letter just next to d to check if it is an o. However, the letter z appears no more 

than 4,735 times in the text. So, if the matching starts from the letter z almost 99% of 

the fruitless extra comparisons are avoided. In this way, we propose to select only the 

n-grams having a frequency smaller than a sampling threshold (Tsmp). 
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 Hashing. The Brian Kernighan and Dennis Ritchie (BKDR) [39] hash 

function is applied to the selected n-grams to generate the sentence fingerprint.  

2. Plagiarism Detection. measuring the similarity between two documents is 

carried out by comparing their sentences fingerprints using the Jaccard similarity. 

Then, the similarity is compared to a fixed threshold (Tlex) to judge whether the 

existence of a shared text and suggest potential plagiarism. If the similarity is lower 

than Tlex, then the suspect sentence is sent to the word embedding module to detect a 

potential intelligent plagiarism.  

4.3. Word embedding detection module 

Plagiarism detection at the semantic level is carried out as follows: let  

Ssrc= w1,w2,...,wi and Ssus=w'1,w'2, …, w'j   be a source and suspect sentences, their  word  

vectors in the Arabic CBOW are (v1, v2,…, vi) and  (v'1, v'2,…, v'j) respectively. A 

simple method to compare two sentences is to sum their word vectors [40]. Then, the 

similarity between Ssrc and Ssus is obtained by calculating the cosine similarity between 

Vsrc and  Vsus, where:   𝑉src = ∑ 𝑣𝑘    ,   
𝑗
𝑘=1 𝑉sus = ∑ 𝑣′𝑘

𝑖
𝑘=1 . For example, Ssrc= ذهب يوسف إلى

 Joseph goes quickly to) يمضى يوسف مسرعا للجامعة =and Ssus (Joseph went to college) الكلية

university).  

The similarity between Ssrc and Ssus  is obtained by calculating the Cosine 

similarity Sim(Ssrc, Ssus) = Cos(Vsrc, Vsus) = 0.71,  where:    

{ 
𝑉src =  𝑣(ذهب) +  𝑣 (يوسف) +  𝑣 (الكلية)  (the stop word  إلى  is removed),

𝑉sus   =  𝑣 (يمضى) +  𝑣 (يوسف ) +  𝑣 (مسرعا) +  𝑣 (للجامعة).                            
 

In order to improve the similarity results, we have used the word alignment 

method presented by S u l t a n, B e t h a r d  and S u m n e r  [41], with the difference 

that we align the words based on their semantic similarity in the word embedding 

model. We assume also that the words do not have the same importance for the 

meaning of the sentences. For that, we have used two weighting functions (IDF and 

POS) proposed by N a g o u d i  and S c h w a b  [40] to weight the aligned words. 

Then, the similarity between Ssrc and Ssus is measured by: 

(1) Sim(𝑆src, 𝑆sus) =
1

2
(

∑  WT(𝑤𝑘)∗BM(𝑤𝑘,𝑆sus)𝑤𝑘∈𝑆src

∑  WT(𝑤𝑘)𝑤𝑘∈𝑆src  
+

∑  WT(𝑤𝑘)∗BM(𝑤𝑘,𝑆src)𝑤𝑘∈𝑆sus

∑  WT(𝑤𝑘)𝑤𝑘∈𝑆sus  
), 

where WT(wk ) is a mix of both IDF and POS weight of wk , and BM(wk ,  Sx) is the 
Best Match (BM) score between wk and all words in the sentence Sx. The BM 
function aligns words based on their semantic similarity, BM  is defined as: 
(2)          BM(𝑤𝑘 ,  𝑆𝑘) = Max{Cos(𝑣𝑘 , 𝑣𝑟),  𝑣𝑟 ∈ 𝑆𝑥       

}. 
Finally, the similarity Sim(Ssrc, Ssus) is compared to a second fixed threshold 

(Tsem) to judge whether the existence of a potential plagiarism. Let us continue with 

the same example above. The similarity between Ssrc and Ssus is obtained in four steps: 

1. POS Tagging. In this step the POS tagger of B r a h a m  et al. [42] is used to 

estimate the POS of each word wk in Sk,  

{ 
Postag(𝑆src) =  verb nounpropnoun,                 

Postag(𝑆sus) = nounpropverb adj noun.          
     

2. Word Alignment. In this step, we align words that have similar meaning in 

both sentences. For that, we compute the similarity between each word in Ssrc and the 
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semantically closest word in Ssus by using the BM function, e.g., BM(يمضي, Ssrc)= 

Max{Cos(يمضي, vk),   wk ∊ Ssus }=Cos(v(يمضي),v(ذهب)). 

3. IDF & POS Weighting. In order to weight the descriptive aligned words, we 

retrieve for each word wk in the Sx its IDF weight idf(wk ), we also use the POS weights 

proposed in [40]. The weight of each word wk is obtained as follows:  

WT(wk) = idf(wk)Pos_weight(wk), where Pos_weight(wk) is the function which 

return the weight of POS tagging of wk.  

4. Calculate the similarity. The similarity between Ssrc and Ssus is obtained by 

using (1), which gives us:  Sim(𝑆src, 𝑆sus) = Cos(𝑉src, 𝑉sus)  =  0.85. 

5. Experiments and results 

5.1. Data set  

In order to evaluate our system and monitor its performance against other systems  

on the same dataset, we have used the “External Arabic Plagiarism Corpus”  

(ExAra-2015) (http://misc-umc.org/AraPlagDet/#datasets). This corpus is 

released as part of the AraPlagDete Shared Task 2015 [34]. The ExAra-2015 corpus 

contains two sets of documents: (1) the source documents, from which passages of 

text are extracted; and (2) the suspicious documents, in which the plagiarised 

passages are inserted directly or after undergoing obfuscation process. The suspicious 

documents contain two kinds of plagiarism cases: artificial (created automatically) 

and simulated (created manually). The first one uses two types of obfuscation phrase 

shuffling and word shuffling. The manually created plagiarism simulates a real 

plagiarism cases by using a manual synonym substitution, diacritics insertion and 

paraphrasing. More details about ExAra-2015 and the obfuscation used are given in 

Table 2 and 3 respectively. 
 

Table 2. Details on ExAra-2015 corpus [34] 

General information 

Documents number 

Cases number 

Source documents 

Suspicious documents 

1171 

1727 

48.68% 

51.32% 

Plagiarism per document 

Without plagiarism 

With plagiarism 

Hardly      (1%-20%) 

Medium   (20%-50%) 

Much        (50%-80%) 

28.12% 

71.88% 

36.94% 

32.95% 

2.00% 

Length of plagiarism case 

Very short (300 chars) 

Short (300-1k chars) 

Medium (1k-3k chars) 

Long (3k-30k chars) 

21.25% 

42.50% 

28.26% 

7.99% 

Plagiarism type and obfuscation 

Artificial 

Without obfuscation  

Phrase shuffling  

Word shuffling 

Simulated 

Manual synonym substitution. 

Manual paraphrasing 

88.94% 

40.30% 

10.42% 

38.22% 

11.06% 

9.79% 

1.27% 

http://misc-umc.org/AraPlagDet/#datasets
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Table 3. Types of plagiarism and obfuscation used in ExAra-2015 corpus  

Type 

Obfuscation 

Description 

Manual        

Synonym 

Substitution 

Replaced some words with their synonyms by using the Microsoft Word synonym 

checker, Almaany dictionary, Arabic WordNet Browser, and the synonyms provided 

by Google translate. 

Added and/or 

removed 

diacritics 

Diacritics in Arabic are optional and their exclusion or inclusions are orthographically 

acceptable. For example: 

≡ القَضِيَّةُ الفِلَسْطِينيِةُّ  ≡ القضية الفلسطينية  ≡   …   القَضيةُّ الفلَِسطينيةُ  ≡ القَضيةُّ الفِلَسْطينيِةُّ   

Automatically 

obfuscation 

Phrase shuffling and word shuffling strategy are used to create automatically 

obfuscation cases, e.g. 
   يشار مصطلح    القضية الفلسطينية مصطلح يشار به للخلاف السياسي والتاريخي
 للخلاف التاريخي والسياسي به الفلسطينية القضية    
 

   
 

 
Manual  

Paraphrasing 

The passages to be obfuscated are manually selected from the source documents then 

paraphrased manually, e.g. 

بدءا من عام  القضية الفلسطينية مصطلح يشار به للخلاف السياسي و التاريخي و الأزمة الانسانية في فلسطين   

١٨٤٠    مما أدى إلى أزمة إنسانية أصبحت بدء الخلاف السياسي في فلسطين منذ أواخر القرن التاسع عشر
     الفلسطينية تعرف بالقضية

5.2. Performance measures 

The performance of our 2L-APD system is quantified by the character-based macro 

recall and precision, supplemented by two other measures proposed in [43] called 

granularity and plagdet. These measures are computed using the two sets: plagiarism 

cases annotated in the corpus S (actual cases) and the cases detected by our system 

R (detected cases). Let dp be a document that contains plagiarism.  A plagiarism case 

in dp is a 4-tuple s∊ S, where s=sp, dp, ssr, dsr, sp is a plagiarized passage in dp, and 

ssr is its original passage in some source document dsr. Let 𝑟 ∊  𝑅  denotes a 

plagiarism detection for the document dp, where r=rp, dp, rsr, dʹsr, rp is a potential 

plagiarized passage in dp, and rsr its source dʹsr. We say that, s is detected by r iff 

dsr = dʹsr, rp∩sp ≠ ø and rsr∩dsr ≠ ø [43]. 
 Recall and Precision: Recall and precision are the fraction of the true 

positive part in each actual and detected case, respectively. Their formulas are given 

in the next equations: 

(3)  Recall (𝑆, 𝑅) =
1

|𝑆 |
∑

⋃ (𝑠⊓𝑟)𝑟∈𝑅

|𝑠|𝑠∈𝑆 ;   

(4)   Precision(𝑆, 𝑅) =
1

|𝑅 |
     ∑

⋃ (𝑠⊓𝑟)𝑠∈𝑆

|𝑟|
 𝑟∈𝑅 , 

where (𝑠 ⊓ 𝑟) =   {
𝑠 ∩ 𝑟       if  𝑟 detects 𝑠,      
 ∅            otherwise.           

 

Neither recall nor precision accounts for the fact that plagiarism systems may 

report multiple or overlapping detections for the same plagiarism case. To address 

this issue, also a granularity detector is used [29].  

 Granularity: quantifies whether the contiguity between plagiarized text 

passages is properly recognized [43]. The granularity is  

(5)   Granularity(𝑆, 𝑅) =
1

|𝑆𝑅|
∑ |𝑅𝑆|𝑠∈𝑆𝑅 , 

where SR⊆S is the set of the actual cases that have been detected, and Rs⊆R are the 
detections of a given s: 
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𝑆𝑅 = {𝑠 | 𝑠 ∈  𝑆 ∧  ∃𝑟 ∈  𝑅 ∶  𝑟 detects 𝑠},   𝑅𝑆 = {𝑟 | 𝑟 ∈  𝑅 ∧  𝑟 detects 𝑠}. 
 Plagdet: the precision, recall, and granularity measures do not allow an 

absolute ranking among different system [43], plagdet that combines these measures 

in one measure as expressed as 

(6)   Plagdet(𝑆, 𝑅) =
𝐹1

(1+Granularity(𝑆,𝑅))
, 

where F1  is the equally-weighted harmonic mean of recall and precision (α=1). 

5.3. Thresholds  

Before presenting the results, we should mention that the sampling (Tsmp), lexical 

(Tlex) and semantic (Tsem) thresholds are empirically fixed using the training data of 

the AraPlagDet 2015 (Tr-ExAra-2015 corpus) [34]. In Tr-ExAra-2015 each 

suspicious document is associated with an XML document that locates the exact 

position of the plagiarized passages. Additionally, the suspicious documents are 

classified into four sets according to the type of plagiarism used which include: 

without plagiarism, C&P plagiarism, artificial plagiarism (phrase shuffling and word 

shuffling) and simulated plagiarism (synonym substitution, added diacritics and 

paraphrasing). In fact, we have used the C&P and artificial plagiarism cases to 

determine the lexical threshold value Tlex and the simulated cases for the semantic 

threshold Tlex. Thus, Tlex is set to 15%, which means that two fingerprints describing 

two different sentences have an intersection less than 15%, and Tsem is set to 60% to 

indicate a potential intelligent plagiarism. Regarding the sampling threshold Tsmp, it 

is adjusted according to n-gram size used. As we have chosen to use 3-gram as a unit 

of chunk, Tsmp is set to 0.008%, 0.01%, and 0.05% respectively for selecting 10%, 

20% and 50% of all 3-grams. 

5.4. Results 

Several variants of 2L-APD were tested to measure the impact of the fingerprint 
resolution and the word embedding level on the detection accuracy. The values of  
the precision, recall , granularity and plagdet for different fingerprint resolution: 
Fine (F), Medium (M) and Coarse (C) (10%, 20% and 50% of all 3-grams are selected 
receptively), with and without the Word Embedding (WE) detection module are 
shown in Table 4.  The obtained results can be summarized as follows: when the 
fingerprint resolution is Fine, the precision is reasonable where 73% of detected cases 
are correct, but the recall is very low and equal to about 43%. When applying the 
Medium resolution the precision increases slightly to 79%, however, the recall is 
greatly enhanced to 62%. This is due to increased number of n-grams selected in the 
fingerprint (i.e., more information is encoded and used as indicative of reused text 
segments).  For the coarse resolution, the rate of increase is not significant compared 
to the Medium. This means that the medium resolution is able to encode sufficient 
information about the documents to ensure the detection. Interestingly, employing 
the word embedding model significantly enhances the recall (with a mean of 
+24.3%). This is due to the inability to detect the intelligent plagiarism in the 
fingerprint model.  
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                          Table 4.  Performance of the 2L-APD on the ExAra-2015 corpus 

    Method Precision Recall Granularity Plagdet 

FP(F) 0.7315 0.4347 1.055 0.5255 

FP(M) 0.7713 0.6251 1.058 0.6631 

FP(C) 0.7856 0.6383 1.059 0.6882 

FP(F)+WE 0.7521 0.6623 1.057 0.6769 

FP(M)+WE 0.8593 0.8781 1.064 0.8308 

FP(C)+WE 0.8413 0.8867 1.068 0.8236 

5.5. Comparison    

We have compared our best method FP(M)+WE to the ones obtained by M a g o o d a 
et al. [35] (3 methods), A l z a h r a n i [36], Palkovskii (three methods) and the 
baseline [34]. Table 5 shows the overall performances of the plagiarism detectors 
methods that were tested on the ExAra-2015 corpus. As expected, in terms of the 
recall, plagdet and granularity our method outperforms the baseline. The overall best 
performing method is the FP(M)+WE with a gain of +2.89% on plagdet. In term of 
recall, FP(M)+WE leads to an overall recall score of 87.81% against 83.10% for 
Magooda (2). The low recall of other methods due to their inability to detect some 
obfuscation plagiarism cases like manual paraphrasing. 

                          Table 5. Comparison results 

Method Precision Recall Granularity Plagdet 

FP(M)+WE 0.859  0.878 1.064 0.831 

Magooda (2) 0.852 0.831 1.069 0.802 

Magooda (3) 0.854 0.759 1.058 0.772 

Magooda (1) 0.805 0.786 1.052 0.767 

Palkovskii (1) 0.997 0.542 1.062 0.627 

Baseline 0.990 0.535 1.209 0.608 

Alzahrani 0.831 0.530 1.186 0.574 

Palkovskii (3) 0.658 0.589 1.161 0.560 

Palkovskii (2) 0.564 0.589 1.163 0.518 

6. Conclusion and future work 

In this paper, we have presented an Arabic plagiarism detection system acting at two 
layers: fingerprinting and word embedding. At the first layer, the system computes 
the fingerprints of all sentences in the source and suspect documents. The comparison 
is then performed between fingerprints rather than original texts. Our contribution to 
such classical approach of plagiarism detection is the introduction of a novel selection 
strategy in which the statistical characteristics of the natural text are used to select 
only the less frequent n-grams as a fingerprint. 

To push the capabilities of the system further to handle more advanced 

plagiarism cases such as obfuscations, synonym substitution and paraphrasing. The 

second layer uses the semantic properties of words characterized in the word 

embedding combined with word alignment, IDF and POS weighting to support the 

identification of the words that are the most descriptive in each textual units. 
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The performances of our system are confirmed in terms of recall which reached 

88% and precision of 86%. Our system outperformed all systems participating in the 

Arabic Plagiarism Detection Shared Task 2015 with a plagiarism detection score of 

83%. The tests show clearly the ability of the system to handle various types of 

plagiarism including literal plagiarism, reordering, rewording, synonym substitution 

and paraphrasing. 

As our method consists in cutting up the document into sentences, an 

improvement would be to use a sentence2vec model instead of a word2vec model. 

We would also like to further investigate the plagiarism detection task with more 

sophisticated methods, such as Recurrent Neural Network (RNN) and Convolutional 

Neural Networks (CNN) trained on a pre-trained word/sentence embedding vectors. 

While the investigation has been conducted on one application namely the 

plagiarism detection, intuition suggests that an efficient assessment of shared 

information is applicable to other applications such as authorship classification, 

semantic similarity and sentiment analysis. An obvious elaboration would be to 

investigate the performance of the system once adapted to other languages. 
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