
 124

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 18, No 1

Sofia  2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0011

2L-APD: A Two-Level Plagiarism Detection System for Arabic

Documents

El Moatez Billah Nagoudi1, Ahmed Khorsi2, Hadda Cherroun1, Didier

Schwab3
1Laboratoire d’Informatique et de Mathématique LIM, Amar Telidji University, Laghouat, Algeria
2Al-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia
3Laboratoire d’Informatique de Grenoble LIG-GETALP, Univ. Grenoble Alpes, France

E-mails: e.nagoudi@lagh-univ.dz amakhorsi@imamu.edu.sa h.cherroun@lagh-univ.dz

didier.schwab@imag.fr

Abstract: Measuring the amount of shared information between two documents is a

key to address a number of Natural Language Processing (NLP) challenges such as

Information Retrieval (IR), Semantic Textual Similarity (STS), Sentiment Analysis

(SA) and Plagiarism Detection (PD). In this paper, we report a plagiarism detection

system based on two layers of assessment: 1) Fingerprinting which simply compares

the documents fingerprints to detect the verbatim reproduction; 2) Word embedding

which uses the semantic and syntactic properties of words to detect much more

complicated reproductions. Moreover, Word Alignment (WA), Inverse Document

Frequency (IDF) and Part-of-Speech (POS) weighting are applied on the examined

documents to support the identification of words that are most descriptive in each

textual unit. In the present work, we focused on Arabic documents and we evaluated

the performance of the system on a data-set of holding three types of plagiarism:

1) Simple reproduction (copy and paste); 2) Word and phrase shuffling; 3) Intelligent

plagiarism including synonym substitution, diacritics insertion and paraphrasing.

The results show a recall of 88% and a precision of 86%. Compared to the results

obtained by the systems participating in the Arabic Plagiarism Detection Shared

Task 2015, our system outperforms all of them with a plagiarism detection score

(Plagdet) of 83%.

Keywords: Plagiarism detection, intelligent plagiarism, fingerprinting, word

embedding, Arabic language.

1. Introduction

“Plagiarism is the use of ideas, concepts, words, or structures without appropriately

acknowledging the source to benefit in a setting where originality is expected” [1].

The easy access to the vast amount of information on the net has shown to be an

appealing opportunity for authors of diverse backgrounds to steal and claim others’

mailto:e.nagoudi@lagh-univ.dz
mailto:amakhorsi@imamu.edu.sa
mailto:h.cherroun@lagh-univ.dz

 125

works. In the last few years, the phenomenon has been reported to have spread over

different areas including academia, literature, and media and not to mention the

industry [2]. In academia, for instance, a study conducted by G u i b e r t and

M i c h a u [3], reported that about 35% of the students in Europe have re-used all or

a portion of a document to present it as their own work. M c C a b e [4] who studied

a sample of more than 80,000 students in the USA and Canada between 2002 to 2005

showed that more than 25% of graduate and 38% of undergraduate students have at

least copied or paraphrased sentences without citing the source.

Compared to formal languages (i.e., programs) plagiarism in natural language

is relatively more difficult to identify because of the flexibility of morphology and

syntax [8]. In addition, plagiarists use different ways to bypass the plagiarism

detection systems. A plagiarism detection system task is then to uncover what the

plagiarist did his best to hide using rewording, synonym substitution, paraphrasing,

text manipulation, text translation and idea adoption [5].

From the perspective of the resources used to make the detection, there are two

approaches: (1) Intrinsic, (2) Extrinsic [5]. The first one examines the linguistic

features of a document against itself to spot the catching variations in styles; this

technique is known as stylometry [11]. The extrinsic plagiarism, however, compares

the suspicious document with a source collection of documents [9]. One could say

the first technique tries to find the differences while the second tries to spot

similarities.

The Arabic language is a Semitic language with rich and complex morphology

compared to the Indo-European languages [6]. It is spoken by more than 330 million

people as a native language and it is the fourth most used language on the Internet

(http://www.internetworldstats.com/stats7.htm). Arabic is written from right to

left and it has 28 alphabet letters. In Arabic text, letters are attached and they change

shape in accordance with their position in the word. On the other hand, diacritic marks

may optionally be present; consequently, for a word with k letters, we can have at

least 2k different representations [7]. Another issue is the fact that some letters are

frequently used interchangeably, such as (ى ، ي), (ة ، ه) and (أ ، إ ، آ ، ا) [34].

In this paper, we present a 2-Level Arabic Plagiarism Detection system

(2L-APD), built around the extrinsic plagiarism detection approach. The proposed

2L-APD system is based on two modules (levels), (1) Fingerprinting detection

module, (2) Word embedding detection module. The first one is designed to detect

literal reproduction of texts. The word embedding detection module tries to discover

synonym substitution and paraphrasing if any.

The rest of this paper is organised as follows, in the next section we provide a

quick overview of Arabic plagiarism detection published works. Section 3 introduces

some background on fingerprinting and word embedding models. Section 4 describes

the architecture of our plagiarism detection system 2L-APD. In Section 5, we report

the test results and compare it to the results of similar systems. Finally, our

conclusions and some future research directions are drawn in Section 6.

 126

2. Arabic plagiarism detection systems

While we focus on Arabic language the interested reader may refer to a number of

surveys on the subject of plagiarism detection in general and on other languages

[27, 9, 5, 2]. In the context of Arabic language, several plagiarism detection systems

are proposed. For instance, A l z a h r a n i and S a l i m [28] have introduced a

statement-based plagiarism detection system for Arabic (FS-APD) using Fuzzy-Set

(FS) information retrieval model [18]. The degree of similarity between two

statements is computed and compared to a fixed threshold value to judge whether

they are similar or not. This approach led to perform well on verbatim reproductions.

To address the rewording, they have proposed another system named fuzzy semantic-

based string similarity for extrinsic plagiarism detection (SFS-APD) [30]. This uses

a shingling algorithm, Arabic WordNet lexical database [31] and Jaccard coefficient

for retrieving a list of candidate documents. The suspicious document is then

compared sentence by sentence with the candidate documents to compute the fuzzy

degree of similarity.

M e n a i [6] proposed a plagiarism detection tool for Arabic documents

(Aplag). Aplag is based on heuristics to compare suspect documents at different

hierarchical levels to avoid unnecessary comparisons. In addition, to address the

problem of rewording, Aplag replaces each word’s root by the most frequent

synonym extracted from Arabic WordNet [31].

J a d a l l a and E l n a g a r [32] introduced a plagiarism detection system for

Arabic text-based documents named Iqtebas. It uses a fingerprint search engine to

compute the distance between each sentence in the suspected document and the

closest sentence in the source documents. Iqtebas seems to perform well the Copy-

and-Paste (C&P) plagiarism, but it handles neither word shuffling nor rewording.

Recently, H u s s e i n [33] proposed a new plagiarism detection system for

Arabic documents based on modeling the relation between texts and their n-gram

unique sentences. The system involves several steps, including Part-of-Speech (POS)

tagging, text indexing, stop-words removal, synonyms substitution and heuristic

pairwise phrase matching algorithm to build documents Term Frequency-Inverse

Document Frequency (TF-IDF) model [45]. The Latent Semantic Analysis (LSA)

[46] and Singular Value Decomposition (SVD) [47] are then used to analyze the

hidden associations between text documents.

The Arabic Plagiarism Detection Shared Task 2015 (AraPlagDet)

(http://misc-umc.org/AraPlagDet/) [34] is the first and only shared task that

addresses the evaluation of plagiarism detection methods for Arabic texts. It has two

sub-tasks: extrinsic and intrinsic plagiarism detection. A major advantage of the

AraPlagDet evaluation campaign is enabling the evaluation of different systems on

the same dataset. In AraPlagDet 2015 three systems have participated in the extrinsic

plagiarism detection subtask: M a g o o d a et al. [35], A l z a h r a n i [36] and

Palkovskii (http://plagiarism-detector.com/). Two participants (Magooda and

Alzahrani) among the three submitted working notes describing their systems.

M a g o o d a et al. [35] proposed an extrinsic plagiarism detection system named

RDI_RED. In this system, Lucene search engine [44] is used to select a list of

candidate source documents. The candidate documents are aligned to detect

http://misc-umc.org/AraPlagDet/
http://plagiarism-detector.com/

 127

plagiarised segments (aligned parts). Finally, a set of rules is applied by a filtering

module in order to filter the aligned parts. RDI_RED system can be easily deployed

on-line. Though, it does not address synonyms substitution and paraphrasing.

Alzahrani’s [36] system goes through four main steps: (1) Pre-processing which

includes tokenization and stop-word removal, (2) Retrieve a list of candidate source

documents for each suspicious document using n-gram fingerprinting and Jaccard

coefficient, (3) An in-depth comparison between the suspicious documents and the

associated source candidate documents using k-overlapping approach [30], (4) Post-

processing where consecutive n-grams are joined to form united plagiarised

segments. Table 1 summarizes the Arabic plagiarism detection systems described

above according to the technique used, the comparison level and their efficiency in

detecting different plagiarism types. One conclusion from this review is that there is

a lack of systems addressing the problem of paraphrasing. In addition, word

embedding representation is not investigated for the plagiarism detection task in

Arabic documents.

Table 1. Details of the Arabic plagiarism detection systems

Technique/ Comparison
Level/ Plagiarism Type

System

FS-APD

[28]

SFS-

APD [30]

Aplag

[6]

Iqtebas

[32]

H u s s e i n

[33]

RDI-RED

[35]

A l z a h r a n i

[36]

T
ec

h
n
iq

u
e

Fingerprinting   

Fuzzy-set  

SVD 

LSA 

Search Engine 

Linguistic

Resources
   

Word Embedding

C
o

m
p

ar
is

o
n

L
ev

el
 Sentence       

Paragraph  

P
la

g
ia

ri
sm

 T
y
p

e Document 

C&P       

Reordering       

Synonyms
substitution

   

Paraphrasing

3. Background

Prior to the description of our system, we briefly recall some basics concerning the

fingerprinting and word embedding representation.

3.1. Fingerprinting

Fingerprinting is widely applied in extrinsic plagiarism [29]. The purpose is to reduce

the size of the compared texts and speed up the comparison without missing a

significant match. A document fingerprint is a list of integers resulting from hashing

substrings of the document. The comparison is then performed on the fingerprints

 128

rather than the whole texts [11]. The process of creating a fingerprint involves three

steps:

Chunking: the document is segmented into substrings (called chunks or

minutiae). A chunk might be a sequence of letters, words or even sentences.

Hashing: a hash function is applied to the chunks to generate a list of integers.

Selection: The final fingerprint is a subsequence of the list of hashes.

There are four factors which must be carefully balanced when constructing a

fingerprint: the fingerprint granularity, hash function, selection strategy and

fingerprint resolution [12]:

 Fingerprint Granularity

The size of chunk determines the fingerprint granularity, and they have a

significant impact on the accuracy of fingerprint [11]. Large chunks fingerprint

(coarse granularity), is fast to compute but highly sensitive to changes, whereas small

chunks fingerprint (fine granularity) is less sensitive to such changes, yet they require

significant computational effort and allows a higher rate of false positive.

 Hash Function

A hash function maps the chunks to integers. It is especially important to choose

the hash function in such a way as to minimize the collisions due to mapping different

chunks to the same hash [11].

 Selection Strategy

While hashing all chunks is likely to be the best choice for strict matching,

keeping only a subsequence of the checks has shown to be more efficient and less

sensitive to insignificant changes [11]. A number of chunk selection approaches have

been used so far such as “i-th hash” [15], “0 mod k” [13], first-k [12], first-k-sliding

strategy [12] and winnowing [14].

 Fingerprint Resolution

The number of the selected hashes to represent a document defines the

fingerprint resolution. The processing and the storage requirements increase

proportionally with the fingerprint resolution [14].

3.2. Word embedding

Recently, word embedding representation has received a lot of attention in the NLP

community and has become a core building to many NLP applications, such as

information retrieval, plagiarism detection, machine translation, text classification

and text summarization. Word embedding represents words as vectors in a continuous

high-dimensional space. Indeed, these representations allow capturing the syntactic

and semantic properties of the language [20]. Most word embedding techniques are

relying on the neural network to train the word vectors from a large collection of text

documents. In the literature, several techniques are proposed to build a word

embedding model, among the most famous are: C o l l o b e r t and W e s t o n [21]

model, Hierarchical Log-Bilinear model (HLBL) [22], T u r i a n, R a t i n o v and

B e n g i o [23] model, Recurrent Neural Network (RNN) model [24], Continuous

Bag-Of-Words model (CBOW) [20], Skip-Gram model (Skip-G) [25] and Global

Vectors model (GloVe) [26].

 129

In a comparative study conducted by M i k o l o v et al. [20] all the methods

[21-25] have been evaluated and compared, and they show that CBOW

and Skip-G are significantly faster to train and give better accuracy. For this

reason, we have used the CBOW word representations for Arabic model proposed

by Z a h r a n et al. [19]. To train this model, they have used a large

collection from different sources containing more than 5.8 billion words

(https://sites.google.com/site/mohazahran/data). In this model, each word w is

represented by a vector v of 300-dimension. The similarity between two words wi and

wj is obtained by comparing their vector representations vi and vj respectively [20].

This similarity can be evaluated using the Cosine similarity, Manhattan distance,

Euclidean distance or any other similarity measure functions. For example: let الجامعة

(university), المساء (evening) and الكلية (faculty) be three words. The similarity between

them is measured by computing the cosine similarity between their vectors as

follows:

{
Sim(المساء, (الجامعة = cos (𝑣 (المساء), 𝑣(الجامعة)) = 0.13,

 Sim(الجامعة, (الكلية = cos (𝑣 (الجامعة), 𝑣(الكلية)) = 0.72.

This means that the words الكلية (faculty) and الجامعة (university) are semantically

closer than المساء (evening) and الجامعة (university).

4. Proposed system

In order to detect different types of plagiarism, our proposed 2L-APD system is based

on two modules (levels): Fingerprinting detection module and Word embedding

detection module. The fingerprinting module is designed to detect the literal

plagiarism (lexical level), such as C&P, reordering of words and adding filler words.

However, in the practical plagiarism cases especially in scientific research, several

intelligent plagiarism forms are used, including obfuscations, synonym replacement

and paraphrasing. These techniques often generate a significant change in the

structure of the original text, which can affect considerably the document fingerprint.

This fact makes the fingerprinting module quite weak against textual modification.

To address this issue, we have proposed a word embedding module (semantic level).

If the plagiarism is not detected in the fingerprinting module, the suspect document

is sent to the word embedding module to detect intelligent plagiarism. Fig. 1

illustrates an overview of the 2L-APD system.

Fig. 1

https://sites.google.com/site/mohazahran/data

 130

Let D = {d1, d2, ..., di} be a set of potential source of plagiarism documents and

let dsus denotes a suspicious document. The main task of a plagiarism detector consists

in locating the highly similar pairs of passages (p, p′) from dsus and dsrc (dsrc ∊ D).

These passages could have many levels of similarity, such as p′ is exactly similar to

p, p′ is obtained from p by obfuscation techniques or p′ and p are semantically similar.

In the following, we develop our proposed modules and we provide for each one how

the plagiarism detection is performed.

4.1. Segmentation and Pre-processing

In a first step, each document dsus and dsrc is chunked into sentences. The average

length of Arabic sentence is widely higher than other languages; it is around 35 words

per sentence [38]. Therefore, we have chosen to use (.), (,), (;), (:), (!) and (?)

punctuation marks as a segmentation point, provided that the sentence length should

be between 25 and 35 words. In order to normalize the sentences for detection

modules, a set of preprocessing steps are applied:

 Tokenization: decompose each sentence into a set of tokens (words).

 Remove diacritics and non-letters.

 Stop-words removal.

 Lemmatization: MADAMIRA tool [37] is used only for the fingerprinting

module to reduce words to their lemma, however, in the word embedding module,

we use the normal form of words to capture the semantic properties.

4.2. Fingerprinting detection module

Detecting plagiarism between a suspicious (dsus) and source document (dscr ∊ D) in
the fingerprinting module is carried out in the following two steps.

1. Fingerprinting. We construct for each sentence its fingerprint as follows:

 Chunking. Each sentence is broken into a set of n-grams (character-based).

 Selection. In this step, we propose a new selection strategy based on our

previous work presented in [16]. The key idea of [16] is how to effectively exploit

the uneven distribution of the n-grams frequencies in natural language text, to reduce

the n-gram inverted index size, where we store only the less frequent n-grams. In fact,

we proved that the least frequent n-grams are the most significant. Let us illustrate

this fact by considering the problem of searching the word “dozen” within the

Gutenberg corpus [17]. The sequential search suggests starting either with the first

letter d, or the last one n. If we take the first choice, the text is scanned letter by letter

until a match with d is found. If so, the process compares the remaining letters in the

word one by one with those in the text until a full match is verified or a mismatch is

faced. Since the frequency of the letter d in our case is 387,163. Starting the search

by checking the first letter implies that we will look further nearly 387,163 times at

the letter just next to d to check if it is an o. However, the letter z appears no more

than 4,735 times in the text. So, if the matching starts from the letter z almost 99% of

the fruitless extra comparisons are avoided. In this way, we propose to select only the

n-grams having a frequency smaller than a sampling threshold (Tsmp).

 131

 Hashing. The Brian Kernighan and Dennis Ritchie (BKDR) [39] hash

function is applied to the selected n-grams to generate the sentence fingerprint.

2. Plagiarism Detection. measuring the similarity between two documents is

carried out by comparing their sentences fingerprints using the Jaccard similarity.

Then, the similarity is compared to a fixed threshold (Tlex) to judge whether the

existence of a shared text and suggest potential plagiarism. If the similarity is lower

than Tlex, then the suspect sentence is sent to the word embedding module to detect a

potential intelligent plagiarism.

4.3. Word embedding detection module

Plagiarism detection at the semantic level is carried out as follows: let

Ssrc= w1,w2,...,wi and Ssus=w'1,w'2, …, w'j be a source and suspect sentences, their word

vectors in the Arabic CBOW are (v1, v2,…, vi) and (v'1, v'2,…, v'j) respectively. A

simple method to compare two sentences is to sum their word vectors [40]. Then, the

similarity between Ssrc and Ssus is obtained by calculating the cosine similarity between

Vsrc and Vsus, where: 𝑉src = ∑ 𝑣𝑘 ,
𝑗
𝑘=1 𝑉sus = ∑ 𝑣′𝑘

𝑖
𝑘=1 . For example, Ssrc= ذهب يوسف إلى

 Joseph goes quickly to) يمضى يوسف مسرعا للجامعة =and Ssus (Joseph went to college) الكلية

university).

The similarity between Ssrc and Ssus is obtained by calculating the Cosine

similarity Sim(Ssrc, Ssus) = Cos(Vsrc, Vsus) = 0.71, where:

{
𝑉src = 𝑣(ذهب) + 𝑣 (يوسف) + 𝑣 (الكلية) (the stop word إلى is removed),

𝑉sus = 𝑣 (يمضى) + 𝑣 (يوسف) + 𝑣 (مسرعا) + 𝑣 (للجامعة).

In order to improve the similarity results, we have used the word alignment

method presented by S u l t a n, B e t h a r d and S u m n e r [41], with the difference

that we align the words based on their semantic similarity in the word embedding

model. We assume also that the words do not have the same importance for the

meaning of the sentences. For that, we have used two weighting functions (IDF and

POS) proposed by N a g o u d i and S c h w a b [40] to weight the aligned words.

Then, the similarity between Ssrc and Ssus is measured by:

(1) Sim(𝑆src, 𝑆sus) =
1

2
(

∑ WT(𝑤𝑘)∗BM(𝑤𝑘,𝑆sus)𝑤𝑘∈𝑆src

∑ WT(𝑤𝑘)𝑤𝑘∈𝑆src
+

∑ WT(𝑤𝑘)∗BM(𝑤𝑘,𝑆src)𝑤𝑘∈𝑆sus

∑ WT(𝑤𝑘)𝑤𝑘∈𝑆sus
),

where WT(wk) is a mix of both IDF and POS weight of wk , and BM(wk , Sx) is the
Best Match (BM) score between wk and all words in the sentence Sx. The BM
function aligns words based on their semantic similarity, BM is defined as:
(2) BM(𝑤𝑘 , 𝑆𝑘) = Max{Cos(𝑣𝑘 , 𝑣𝑟), 𝑣𝑟 ∈ 𝑆𝑥

}.
Finally, the similarity Sim(Ssrc, Ssus) is compared to a second fixed threshold

(Tsem) to judge whether the existence of a potential plagiarism. Let us continue with

the same example above. The similarity between Ssrc and Ssus is obtained in four steps:

1. POS Tagging. In this step the POS tagger of B r a h a m et al. [42] is used to

estimate the POS of each word wk in Sk,

{
Postag(𝑆src) = verb nounpropnoun,

Postag(𝑆sus) = nounpropverb adj noun.

2. Word Alignment. In this step, we align words that have similar meaning in

both sentences. For that, we compute the similarity between each word in Ssrc and the

 132

semantically closest word in Ssus by using the BM function, e.g., BM(يمضي, Ssrc)=

Max{Cos(يمضي, vk), wk ∊ Ssus }=Cos(v(يمضي),v(ذهب)).

3. IDF & POS Weighting. In order to weight the descriptive aligned words, we

retrieve for each word wk in the Sx its IDF weight idf(wk), we also use the POS weights

proposed in [40]. The weight of each word wk is obtained as follows:

WT(wk) = idf(wk)Pos_weight(wk), where Pos_weight(wk) is the function which

return the weight of POS tagging of wk.

4. Calculate the similarity. The similarity between Ssrc and Ssus is obtained by

using (1), which gives us: Sim(𝑆src, 𝑆sus) = Cos(𝑉src, 𝑉sus) = 0.85.

5. Experiments and results

5.1. Data set

In order to evaluate our system and monitor its performance against other systems

on the same dataset, we have used the “External Arabic Plagiarism Corpus”

(ExAra-2015) (http://misc-umc.org/AraPlagDet/#datasets). This corpus is

released as part of the AraPlagDete Shared Task 2015 [34]. The ExAra-2015 corpus

contains two sets of documents: (1) the source documents, from which passages of

text are extracted; and (2) the suspicious documents, in which the plagiarised

passages are inserted directly or after undergoing obfuscation process. The suspicious

documents contain two kinds of plagiarism cases: artificial (created automatically)

and simulated (created manually). The first one uses two types of obfuscation phrase

shuffling and word shuffling. The manually created plagiarism simulates a real

plagiarism cases by using a manual synonym substitution, diacritics insertion and

paraphrasing. More details about ExAra-2015 and the obfuscation used are given in

Table 2 and 3 respectively.

Table 2. Details on ExAra-2015 corpus [34]

General information

Documents number

Cases number

Source documents

Suspicious documents

1171

1727

48.68%

51.32%

Plagiarism per document

Without plagiarism

With plagiarism

Hardly (1%-20%)

Medium (20%-50%)

Much (50%-80%)

28.12%

71.88%

36.94%

32.95%

2.00%

Length of plagiarism case

Very short (300 chars)

Short (300-1k chars)

Medium (1k-3k chars)

Long (3k-30k chars)

21.25%

42.50%

28.26%

7.99%

Plagiarism type and obfuscation

Artificial

Without obfuscation

Phrase shuffling

Word shuffling

Simulated

Manual synonym substitution.

Manual paraphrasing

88.94%

40.30%

10.42%

38.22%

11.06%

9.79%

1.27%

http://misc-umc.org/AraPlagDet/#datasets

 133

Table 3. Types of plagiarism and obfuscation used in ExAra-2015 corpus

Type

Obfuscation

Description

Manual

Synonym

Substitution

Replaced some words with their synonyms by using the Microsoft Word synonym

checker, Almaany dictionary, Arabic WordNet Browser, and the synonyms provided

by Google translate.

Added and/or

removed

diacritics

Diacritics in Arabic are optional and their exclusion or inclusions are orthographically

acceptable. For example:

≡ القَضِيَّةُ الفِلَسْطِينيِةُّ ≡ القضية الفلسطينية ≡ … القَضيةُّ الفلَِسطينيةُ ≡ القَضيةُّ الفِلَسْطينيِةُّ

Automatically

obfuscation

Phrase shuffling and word shuffling strategy are used to create automatically

obfuscation cases, e.g.
 يشار مصطلح  القضية الفلسطينية مصطلح يشار به للخلاف السياسي والتاريخي
 للخلاف التاريخي والسياسي به الفلسطينية القضية

Manual

Paraphrasing

The passages to be obfuscated are manually selected from the source documents then

paraphrased manually, e.g.

بدءا من عام القضية الفلسطينية مصطلح يشار به للخلاف السياسي و التاريخي و الأزمة الانسانية في فلسطين

١٨٤٠  مما أدى إلى أزمة إنسانية أصبحت بدء الخلاف السياسي في فلسطين منذ أواخر القرن التاسع عشر
 الفلسطينية تعرف بالقضية

5.2. Performance measures

The performance of our 2L-APD system is quantified by the character-based macro

recall and precision, supplemented by two other measures proposed in [43] called

granularity and plagdet. These measures are computed using the two sets: plagiarism

cases annotated in the corpus S (actual cases) and the cases detected by our system

R (detected cases). Let dp be a document that contains plagiarism. A plagiarism case

in dp is a 4-tuple s∊ S, where s=sp, dp, ssr, dsr, sp is a plagiarized passage in dp, and

ssr is its original passage in some source document dsr. Let 𝑟 ∊ 𝑅 denotes a

plagiarism detection for the document dp, where r=rp, dp, rsr, dʹsr, rp is a potential

plagiarized passage in dp, and rsr its source dʹsr. We say that, s is detected by r iff

dsr = dʹsr, rp∩sp ≠ ø and rsr∩dsr ≠ ø [43].
 Recall and Precision: Recall and precision are the fraction of the true

positive part in each actual and detected case, respectively. Their formulas are given

in the next equations:

(3) Recall (𝑆, 𝑅) =
1

|𝑆 |
∑

⋃ (𝑠⊓𝑟)𝑟∈𝑅

|𝑠|𝑠∈𝑆 ;

(4) Precision(𝑆, 𝑅) =
1

|𝑅 |
 ∑

⋃ (𝑠⊓𝑟)𝑠∈𝑆

|𝑟|
 𝑟∈𝑅 ,

where (𝑠 ⊓ 𝑟) = {
𝑠 ∩ 𝑟 if 𝑟 detects 𝑠,
 ∅ otherwise.

Neither recall nor precision accounts for the fact that plagiarism systems may

report multiple or overlapping detections for the same plagiarism case. To address

this issue, also a granularity detector is used [29].

 Granularity: quantifies whether the contiguity between plagiarized text

passages is properly recognized [43]. The granularity is

(5) Granularity(𝑆, 𝑅) =
1

|𝑆𝑅|
∑ |𝑅𝑆|𝑠∈𝑆𝑅 ,

where SR⊆S is the set of the actual cases that have been detected, and Rs⊆R are the
detections of a given s:

 134

𝑆𝑅 = {𝑠 | 𝑠 ∈ 𝑆 ∧ ∃𝑟 ∈ 𝑅 ∶ 𝑟 detects 𝑠}, 𝑅𝑆 = {𝑟 | 𝑟 ∈ 𝑅 ∧ 𝑟 detects 𝑠}.
 Plagdet: the precision, recall, and granularity measures do not allow an

absolute ranking among different system [43], plagdet that combines these measures

in one measure as expressed as

(6) Plagdet(𝑆, 𝑅) =
𝐹1

(1+Granularity(𝑆,𝑅))
,

where F1 is the equally-weighted harmonic mean of recall and precision (α=1).

5.3. Thresholds

Before presenting the results, we should mention that the sampling (Tsmp), lexical

(Tlex) and semantic (Tsem) thresholds are empirically fixed using the training data of

the AraPlagDet 2015 (Tr-ExAra-2015 corpus) [34]. In Tr-ExAra-2015 each

suspicious document is associated with an XML document that locates the exact

position of the plagiarized passages. Additionally, the suspicious documents are

classified into four sets according to the type of plagiarism used which include:

without plagiarism, C&P plagiarism, artificial plagiarism (phrase shuffling and word

shuffling) and simulated plagiarism (synonym substitution, added diacritics and

paraphrasing). In fact, we have used the C&P and artificial plagiarism cases to

determine the lexical threshold value Tlex and the simulated cases for the semantic

threshold Tlex. Thus, Tlex is set to 15%, which means that two fingerprints describing

two different sentences have an intersection less than 15%, and Tsem is set to 60% to

indicate a potential intelligent plagiarism. Regarding the sampling threshold Tsmp, it

is adjusted according to n-gram size used. As we have chosen to use 3-gram as a unit

of chunk, Tsmp is set to 0.008%, 0.01%, and 0.05% respectively for selecting 10%,

20% and 50% of all 3-grams.

5.4. Results

Several variants of 2L-APD were tested to measure the impact of the fingerprint
resolution and the word embedding level on the detection accuracy. The values of
the precision, recall , granularity and plagdet for different fingerprint resolution:
Fine (F), Medium (M) and Coarse (C) (10%, 20% and 50% of all 3-grams are selected
receptively), with and without the Word Embedding (WE) detection module are
shown in Table 4. The obtained results can be summarized as follows: when the
fingerprint resolution is Fine, the precision is reasonable where 73% of detected cases
are correct, but the recall is very low and equal to about 43%. When applying the
Medium resolution the precision increases slightly to 79%, however, the recall is
greatly enhanced to 62%. This is due to increased number of n-grams selected in the
fingerprint (i.e., more information is encoded and used as indicative of reused text
segments). For the coarse resolution, the rate of increase is not significant compared
to the Medium. This means that the medium resolution is able to encode sufficient
information about the documents to ensure the detection. Interestingly, employing
the word embedding model significantly enhances the recall (with a mean of
+24.3%). This is due to the inability to detect the intelligent plagiarism in the
fingerprint model.

 135

 Table 4. Performance of the 2L-APD on the ExAra-2015 corpus

 Method Precision Recall Granularity Plagdet

FP(F) 0.7315 0.4347 1.055 0.5255

FP(M) 0.7713 0.6251 1.058 0.6631

FP(C) 0.7856 0.6383 1.059 0.6882

FP(F)+WE 0.7521 0.6623 1.057 0.6769

FP(M)+WE 0.8593 0.8781 1.064 0.8308

FP(C)+WE 0.8413 0.8867 1.068 0.8236

5.5. Comparison

We have compared our best method FP(M)+WE to the ones obtained by M a g o o d a
et al. [35] (3 methods), A l z a h r a n i [36], Palkovskii (three methods) and the
baseline [34]. Table 5 shows the overall performances of the plagiarism detectors
methods that were tested on the ExAra-2015 corpus. As expected, in terms of the
recall, plagdet and granularity our method outperforms the baseline. The overall best
performing method is the FP(M)+WE with a gain of +2.89% on plagdet. In term of
recall, FP(M)+WE leads to an overall recall score of 87.81% against 83.10% for
Magooda (2). The low recall of other methods due to their inability to detect some
obfuscation plagiarism cases like manual paraphrasing.

 Table 5. Comparison results

Method Precision Recall Granularity Plagdet

FP(M)+WE 0.859 0.878 1.064 0.831

Magooda (2) 0.852 0.831 1.069 0.802

Magooda (3) 0.854 0.759 1.058 0.772

Magooda (1) 0.805 0.786 1.052 0.767

Palkovskii (1) 0.997 0.542 1.062 0.627

Baseline 0.990 0.535 1.209 0.608

Alzahrani 0.831 0.530 1.186 0.574

Palkovskii (3) 0.658 0.589 1.161 0.560

Palkovskii (2) 0.564 0.589 1.163 0.518

6. Conclusion and future work

In this paper, we have presented an Arabic plagiarism detection system acting at two
layers: fingerprinting and word embedding. At the first layer, the system computes
the fingerprints of all sentences in the source and suspect documents. The comparison
is then performed between fingerprints rather than original texts. Our contribution to
such classical approach of plagiarism detection is the introduction of a novel selection
strategy in which the statistical characteristics of the natural text are used to select
only the less frequent n-grams as a fingerprint.

To push the capabilities of the system further to handle more advanced

plagiarism cases such as obfuscations, synonym substitution and paraphrasing. The

second layer uses the semantic properties of words characterized in the word

embedding combined with word alignment, IDF and POS weighting to support the

identification of the words that are the most descriptive in each textual units.

 136

The performances of our system are confirmed in terms of recall which reached

88% and precision of 86%. Our system outperformed all systems participating in the

Arabic Plagiarism Detection Shared Task 2015 with a plagiarism detection score of

83%. The tests show clearly the ability of the system to handle various types of

plagiarism including literal plagiarism, reordering, rewording, synonym substitution

and paraphrasing.

As our method consists in cutting up the document into sentences, an

improvement would be to use a sentence2vec model instead of a word2vec model.

We would also like to further investigate the plagiarism detection task with more

sophisticated methods, such as Recurrent Neural Network (RNN) and Convolutional

Neural Networks (CNN) trained on a pre-trained word/sentence embedding vectors.

While the investigation has been conducted on one application namely the

plagiarism detection, intuition suggests that an efficient assessment of shared

information is applicable to other applications such as authorship classification,

semantic similarity and sentiment analysis. An obvious elaboration would be to

investigate the performance of the system once adapted to other languages.

R e f e r e n c e s

1. F i s h m a n, T. “We Know It When We See It” Is Not Good Enough: Toward a Standard Definition

of Plagiarism That Transcends Theft, Fraud, and Copyright. 2009.

2. G i p p, B. Citation-Based Plagiarism Detection. – In: Citation-Based Plagiarism Detection. Springer,

2014, pp. 57-88.

3. G u i b e r t, P., C. M i c h a u t. Le Plagiat Etudiant. – Education et Sociétés, 2011, No 2,

pp. 149-163.

4. M c C a b e, D. L. Cheating Among College and University Students: A North American Perspective.

– International Journal for Educational Integrity, Vol. 1, 2005, No 1.

5. B i n-H a b t o o r, A. S., M. A. Z a h e r. A Survey on Plagiarism Detection Systems. – International

Journal of Computer Theory and Engineering, Vol. 4, 2012, No 2, p. 185.

6. M e n a i, M. E l B. Detection of Plagiarism in Arabic Documents. – International Journal of

Information Technology and Computer Science (IJITCS), Vol. 4, 2012, No 10, p. 80.

7. F a r g h a l y, A., K. S h a a l a n. Arabic Natural Language Processing: Challenges and Solutions. –

ACM Transactions on Asian Language Information Processing (TALIP), Vol. 8, 2009, No 4,

p. 14.

8. L i u, C., C. C h e n, J. H a n, P. S. Y u. Gplag: Detection of Software Plagiarism by Program

Dependence Graph Analysis. – In: Proc. of 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2006, pp. 872-881.

9. A l z a h r a n i, S. M., N. S a l i m, A. A b r a h a m. Understanding Plagiarism Linguistic Patterns,

Textual Features, and Detection Methods. – IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), Vol. 42, 2012, No 2, pp. 133-149.

10. P o t t h a s t, M., M. H a g e n, T. G o l l u b, M. T i p p m a n n, J. K i e s e l, P. R o s s o,

E. S t a m a t a t o s, B. S t e i n. Overview of the 5th International Competition on Plagiarism

Detection. – In: CLEF Conference on Multilingual and Multimodal Information Access

Evaluation, CELCT, 2013, pp. 301-331.

11. S t e i n, B., S. M e y e r, Z. E i s s e n. Near Similarity Search and Plagiarism Analysis. – In: From

Data and Information Analysis to Knowledge Engineering, Springer, 2006, pp. 430-437.

12. H o a d, T. C., J. Z o b e l. Methods for Identifying Versioned and Plagiarized Documents. – Journal

of the Association for Information Science and Technology, Vol. 54, 2003, No 3, pp. 203-215.

13. U d i, M. Finding Similar Files in a Large File System. – In: Proc. of USENIX, Winter 1994

Technical Conference, 1994.

 137

14. S c h l e i m e r, S., D. S. W i l k e r s o n, A. A i k e n. Winnowing: Local Algorithms for Document

Fingerprinting. – In: Proc. of 2003 ACM SIGMOD International Conference on Management

of Data, ACM, 2003, pp. 76-85.

15. K a r p, R. M., M. O. R a b i n. Efficient Randomized Pattern-Matching Algorithms. – IBM Journal

of Research and Development, Vol. 31, 1987, No 2, pp. 249-260.

16. N a g o u d i, E. M. B., A. K h o r s i, H. C h e r r o u n. Efficient Inverted Index with n-Gram

Sampling for String Matching in Arabic Documents. – In: 13th IEEE/ACS International

Conference on Computer Systems and Applications, Agadir, Morocco, 2016, pp. 1-7.

17. L e b e r t, M. Project Gutenberg (1971-2008). Project Gutenberg, 2008.

18. O g a w a, Y., T. M o r i t a, K. K o b a y a s h i. A Fuzzy Document Retrieval System

Using the Keyword Connection Matrix and a Learning Method. – Fuzzy Sets and Systems,

Vol. 39, 1991, No 2, pp. 163-179.

19. Z a h r a n, M. A., A. M a g o o d a, A. Y. M a h g o u b, H. R a a f a t, M. R a s h w a n, A. A t y i a.

Word Representations in Vector Space and their Applications for Arabic. – In: International

Conference on Intelligent Text Processing and Computational Linguistics, Springer, 2015,

pp. 430-443.

20. M i k o l o v, T., K. C h e n, G. C o r r a d o, J. D e a n. Efficient Estimation of Word Representations

in Vector Space. – In: Proc. of International Conference on Learning Representations ICLR,

Workshop Track, 2013, pp. 1301-3781.

21. C o l l o b e r t, R., J. W e s t o n. A Unified Architecture for Natural Language Processing: Deep

Neural Networks with Multitask Learning. – In: Proc. of 25th International Conference on

Machine Learning, ACM, 2008, pp. 160-167.

22. M n i h, A., G. E. H i n t o n. A Scalable Hierarchical Distributed Language Model. – In: Advances

in Neural Information Processing Systems, 2009, pp. 1081-1088.

23. T u r i a n, J., L. R a t i n o v, Y. B e n g i o. Word Representations: A Simple and General Method

for Semi-Supervised Learning. – In: Proc. of 48th Annual Meeting of the Association for

Computational Linguistics, Association for Computational Linguistics, 2010, pp. 384-394.

24. M i k o l o v, T., W e n-T a u Y i h, G. Z w e i g. Linguistic Regularities in Continuous Space Word

Representations. – In: Hlt-naacl, Vol. 13, 2013, pp. 746-751.

25. M i k o l o v, T., I. S u t s k e v e r, K. C h e n, G. S. C o r r a d o, J. D e a n. Distributed

Representations of Words and Phrases and Their Compositionality. – In: Advances in Neural

Information Processing Systems, 2013, pp. 3111-3119.

26. P e n n i n g t o n, J., R. S o c h e r, C. D. M a n n i n g. Glove: Global Vectors for Word

Representation. – In: EMNLP, Vol. 14, 2014, pp. 1532-1543.

27. M a u r e r, H. A. F. K a p p e, B. Z a k a. Plagiarism a Survey. – J. UCS, Vol. 12, 2006, No 8,

pp. 1050-1084.

28. A l z a h r a n i, S. M., N. S a l i m. Plagiarism Detection in Arabic Scripts Using Fuzzy Information

Retrieval. – In: Student Conf., Johor Bahru, Malaysia, 2008, pp. 281-285.

29. P o t t h a s t, M., M. H a g e n, T. G o l l u b, M. T i p p m a n n, J. K i e s e l, P. R o s s o,

E. S t a m a t a t o s, B. S t e i n. Overview of the 5th International Competition on Plagiarism

Detection. – In: CLEF Conference on Multilingual and Multimodal Information Access

Evaluation, CELCT, 2013, pp. 301-331.

30. A l z a h r a n i, S., N. S a l i m. Fuzzy Semantic-Based String Similarity for Extrinsic Plagiarism

Detection: Lab Report for PAN at CLEF’10. – In: Proc. of 4th Int. Workshop PAN-10, Padua,

Italy, 2010.

31. B l a c k, W., S. E l k a t e b, H. R o d r i g u e z, M. A l k h a l i f a, P. V o s s e n, A. P e a s e,

C. F e l l b a u m. Introducing the Arabic Wordnet Project. – In: Proc. of 3rd International

Word-Net Conference, 2006, pp. 295-300.

32. J a d a l l a, A., A. E l n a g a r. A Plagiarism Detection System for Arabic Text-Based Documents. –

In: Pacific-Asia Workshop on Intelligence and Security Informatics, Springer, 2012,

pp. 145-153.

33. H u s s e i n, A. S. A Plagiarism Detection System for Arabic Documents. – In: Intelligent Systems,

2014. Springer International Publishing, 2015, pp. 541-552.

34. B e n s a l e m, I., I. B o u k h a l f a, P. R o s s o, L. A b o u e n o u r, K. D a r w i s h, S. C h i k h i.

Overview of the Araplagdet pan@ Fire2015 Shared Task on Arabic Plagiarism Detection. –

In: FIRE Workshops, 2015, pp. 111-122.

 138

35. M a g o o d a, A., A. Y. M a h g o u b, M. R a s h w a n, M. B. F a y e k, H. M. R a a f a t. Rdi System

for Extrinsic Plagiarism Detection (Rdi Red), Working Notes for Panaraplagdet at Fire 2015.

– In: FIRE Workshops, 2015, pp. 126-128.

36. A l z a h r a n i, S. Arabic Plagiarism Detection Using Word Correlation in n-Grams with

k-Overlapping Approach, Working Notes for Panaraplagdet at Fire 2015. – In: FIRE

Workshops, 2015, pp. 123-125.

37. P a s h a, A., M. A l-B a d r a s h i n y, M. T. D i a b, A. E l K h o l y, R. E s k a n d e r, N. H a b a s h,

M. P o o l e e r y, O. R a m b o w, R. R o t h. Madamira: A Fast, Comprehensive Tool for

Morphological Analysis and Disambiguation of Arabic. – In: LREC, Vol. 14, 2014,

pp. 1094-1101.

38. M c D o n a l d, R., K. L e r m a n, F. P e r e i r a. Multilingual Dependency Analysis with a Two-

Stage Discriminative Parser. – In: Proc. of 10th Conference on Computational Natural

Language Learning, Association for Computational Linguistics, 2006, pp. 216-220.

39. R i t c h i e, D. M., B. W. K e r n i g h a n, M. E. L e s k. The C Programming Language. – Prentice

Hall Englewood Cliffs, 1988, ISBN:0131103709.

40. N a g o u d i, E. M. B., D. S c h w a b. Semantic Similarity of Arabic Sentences with Word

Embeddings. – In: Proc. of Third Arabic Natural Language Processing Workshop (WANLP),

Association for Computational Linguistics, 2017, pp. 18-24.

41. S u l t a n, M. A., S. B e t h a r d, T. S u m n e r. Dls@ cu: Sentence Similarity from Word Alignment

and Semantic Vector Composition. – In: Proc. of 9th International Workshop on Semantic

Evaluation, 2015, pp. 148-153.

42. G a h b i c h e-B r a h a m, S., H. B o n n e a u-M a y n a r d, T. L a v e r g n e, F. Y v o n. Joint

Segmentation and Pos Tagging for Arabic Using a crf-Based Classifier. – In: LREC, 2012,

pp. 2107-2113.

43. P o t t h a s t, M., B. S t e i n, A. B a r r ó n-C e d e ñ o, P. R o s s o. An Evaluation Framework for

Plagiarism Detection. – In: Proc. of 23rd International Conference on Computational

Linguistics: Association for Computational Linguistics, 2010, pp. 997-1005.

44. M c C a n d l e s s, M., E. H a t c h e r, O. G o s p o d n e t i c. Lucene in Action: Covers Apache

Lucene 3.0. Manning Publications Co., 2010.

45. S a l t o n, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of

Information by Computer. Boston, Addison-Wesley, 1989.

46. S i m m o n s, S., Z. E s t e s. Using Latent Semantic Analysis to Estimate Similarity. – In: Proc. of

Cognitive Science Society, 2006, pp. 2169-2173.

47. C e s k a, Z. Plagiarism Detection Based on Singular Value Decomposition. – In: Advances in

Natural language Processing. Springer, 2008, pp. 108-119.

Received 02.07.2017; Second Version 23.10.2017; Accepted 25.11.2017

