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Abstract: Linked data has been widely recognized as an important paradigm for 

representing data and one of the most important aspects of supporting its use is 

discovery of links between datasets. For many datasets, there is a significant amount 

of textual information in the form of labels, descriptions and documentation about 

the elements of the dataset and the fundament of a precise linking is in the application 

of semantic textual similarity to link these datasets. However, most linking tools so 

far rely on only simple string similarity metrics such as Jaccard scores. We present 

an evaluation of some metrics that have performed well in recent semantic textual 

similarity evaluations and apply these to linking existing datasets. 

Keywords: Linked data, link discovery, ontology alignment, semantic textual 

similarity, structural similarity, NLP architectures. 

1. Introduction 

With the increasing amount of big datasets available from a wide variety of sources, 

the problem of integrating heterogeneous datasets is increasingly important for a wide 

variety of commercial and public sector applications. By datasets, we refer to a broad 

class of datasets describing named entities in the real world including lexicons, 

thesauri, ontologies and terminologies. One of the most important steps in this is the 

identification of similar elements between the content or schemas of two datasets, a 

process that is called link discovery. Link discovery can rely on both linguistic 

information in the form of the labels, descriptions and other textual data attached to 

elements of a dataset and structural information in terms of the organization of 

entities in a dataset as well as any semantic information that may be attached to the 

dataset. For the linguistic information, there has been significant research into 

estimating the similarity of two strings and in the context of semantic textual 

similarity, for which the annual SemEval task evaluates systems. Similarly for 

structural similarity, ontology alignment has been defined as a task that aligns two 

highly structured models, and has been supported by the Ontology Alignment 

Evaluation Initiative (OAEI). However, most real world tasks involve a mix of 

linguistic and structural information and the combination of this has not been studied 
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yet. In this paper we present Nearly Automatic Integration of SChemas (NAISC) 

(“Naisc” means “links” in Irish and is pronounced “nashk”), an architecture that 

combines semantic similarity at the structural and textual levels and we show that our 

implementation has competitive performances for both the SemEval STS and OAEI 

benchmarks. We then consider the case of linking WordNet and Wikipedia, a data 

integration task that requires exploiting both the rich linguistic information in each 

resource as well as the structure of both resources and show that we can significantly 

improve the performance on this task by combining both structural and linguistic 

similarity approaches. We find that by applying combinations of state-of-the-art 

semantic textual similarity we can achieve stronger results for link discovery than by 

simple single feature approaches, and furthermore we introduce a simple 

modification to Jaccard index that for some datasets produces the best overall 

performance. We also look into computing using constraints on the mappings and 

show that greedy approaches often seem to outperform more exact solutions to the 

logical constraints. 

2. Related work 

The nature of linking datasets requires understanding the meaning and context of the 

entities in an ontology or similar dataset and it is very rare that this can be done 

without reading the labels and descriptions of the entities in each dataset. As such the 

task of Semantic Textual Similarity (STS) as exemplified by the tasks at SemEval [2] 

should be of critical importance. In these tasks, the goal is to take two texts and 

produce a judgement of the similarity on a scale of 0 to 5. There have been a number 

of attempts to solve this issue using monolingual alignment that is attempting to 

match words between the two sentences and use the quality of this matching to predict 

the alignment. In [25], a monolingual alignment was created based on matching 

named entities and on the use of a database of paraphrases [9] and then the overall 

quality was estimated by the harmonic mean of the matching precisions. More 

recently, the use of deep neural networks, such as the model employed in [26], 

whereby two ‘Siamese’ networks are learnt simultaneously, has produced strong 

results for textual similarity. These have formed the basis of systems that perform 

well at this task, however the use of lexico-semantic resources such as WordNet [4] 

are still very important for this task [24]. 

A survey of link discovery frameworks is given in [19] and we will briefly 

discuss some of the major systems that already exist for this task.  Silk [27] is a tool 

for discovering links between datasets that relies primarily on declarative mapping 

languages called the Silk-Link Specification Language (Silk-LSL). CODI [21] 

similarly provides a mapping methodology, but in this case it is based on Markov 

Logic [23], which is a probabilistic logical framework allowing for soft constraints 

in the reasoning. Rule Miner [22] also employs a rule based approach to matching 

concepts but also uses a semi-supervised approach to learn the rules based on an 

expectation-maximization approach. A notable bottleneck in link discovery is that 

the comparison of every pair of elements can be quite intractable for large datasets as 

this quadratic in size and two systems have focussed on solving this issue. The 
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LIMES system [20] uses the triangle inequality in order to eliminate unnecessary 

pair-wise comparisons, however it is not the case in general that this inequality holds 

for all metrics so its application is limited. LogMap [11] applies a strategy based on 

lexical overlap and as such is very efficient but cannot create links where the labels 

are dissimilar. In general, all these methods support string based similarity measure 

such as Jaccard but none of them explore the combination of multiple metrics or the 

use of techniques from semantic textual similarity. 

3. Architecture for link discovery 

Our tool (NAISC) is implemented as a Java application that takes two structured 

datasets and returns a proposed linking between these two datasets. In addition, there 

is the functionality to train the model in a supervised manner and to evaluate the 

quality of an alignment relative to a gold standard. The input to NAISC may be in 

several formats; however they are implicitly converted into the NAISC internal 

format which models a dataset as a set of entities. Each of these entities may have the 

following: 

 Labels in one or more languages 

 Descriptions, that is short sentences describing the entity in one or more 

languages 

 Relations to other entities, which must be from one of a list of supported 

relation types. 

 A type from a short list of choices including both ontological types (Class, 

Property, Individual) as well as lexical types (Noun, Verb, Adjective). 

 
Fig. 1. The architecture of NAISC 

The architecture of the system is shown in Fig. 1 and consists of a pipeline of tools 

controlled by the alignment strategy. A JSON configuration file is used to describe 

the particular pipeline that is used for a single run of the system. These configurations 

have the advantage of declaratively describing an experiment and thus enhance the 

reproducibility of NAISC runs. The configuration describes the language(s) of the 

experiment and then the elements that will be used. The lenses of the experiment are 

used to describe the elements of a pair of entities that should be examined. In the case 

of the example (Fig. 2) below we are looking only at the label and description strings, 

but we could also look at other structural features (see Section 5.1). Then for each 



 112 

lens, we apply a feature extractor, in order to extract a numeric value, for example in 

this case we are using the string similarity features described in Section 4.1. This 

creates a fixed-length vector of features, which in a supervised learning paradigm we 

learn using a classifier, for which currently the only implementation is a wrapper 

around the Weka Toolkit [7]. The lenses, feature extractors and classifier combine to 

find a function that takes two entities in the dataset and produces a score related to 

how likely they are to be linked. The aligner is then tasked with using these scores in 

order to produce an overall linking between the datasets. Note the aligner also decides 

when and if to calculate similarity between entities and whether to apply any blocking 

strategies to reduce the complexity of the alignment (These are not used in the 

experiments reported in this paper, but the system can be configured to match only 

elements that are of the same type or have the same property value). In the example 

in Fig. 2, we see it is configured to use the exhaustive strategy that outputs all links 

that have a similarity over some threshold. In addition, this component is configured 

to use negative sampling when training, which means that it creates a number of 

examples by choosing pairs not found in the gold standard alignment and treats them 

as unaligned values, in this case creating five times as many negative examples as in 

the gold standard. This is necessary as datasets for link discovery typical only contain 

known linking and do not have negative examples. It is generally correct to assume 

that all entities in a dataset alignment are not linked if they are not in the set of known 

linked entities; however the size of this negative set grows quadratically, while the 

positive set tends to only grow linearly, and as such these sets can be very imbalanced. 

Negative sampling is thus a solution that allows us to control the ratio of positive to 

negative examples maintaining effective performance at test time. 

 
{ 

    "languages": ["en"], 

    "lenses": [{ 

        "name": "basic.Label" 

    },{ 

        "name": "basic.Description" 

    }], 

    "featureExtractors": [{ 

        "name": "basic.Basic" 

    }], 

    "similarityClassifier": { 

        "name": "basic.Weka", 

        "path": "test.sim" 

    }, 

    "aligner": { 

      "name": "basic.Exhaustive", 

      "path": "test.align", 

      "params": {  

        "negSampling": 5.0,  

        "threshold": 0.5 

 } 

   } 

} 

 

Fig. 2. An example configuration of NAISC 
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4. Semantic textual similarity 

In order to establish similarity between entities, an essential step in nearly all 

methodologies is to compare the textual labels and descriptions between these 

entities. As such, a major part of NAISC is the development of string similarity 

metrics. 

4.1. String Similarity 

NAISC implements a collection of string similarity metrics as follows: 

 Longest Common Substring: The length in characters of the longest 

substring shared between two strings 

 Jaccard, Dice and Containment: We consider the two strings both as a set 

of words and a set of character n-grams and compute the following functions 

J(A, B) = |A∩B|/|A∪B|, 

D(A, B) = 2|A∩B|/(|A|+|B|), 

C(A, B) = |A∩B|/min(|A|, |B|). 

 Length Ratio: The ratio of the number of tokens in each sentence. For 

symmetry this ratio is defined as ρ(x, y)=min(x, y)/max(x, y). 

 Average Word Length Ratio: The average length of each word in the text 

is also compared as above. 

 Negation: 1 if both texts or neither text contain a negation word (“not”, 

“never”, etc.), 0 otherwise. 

 Number: 1 if all numbers (e.g, 6) in each text are found in the other, 0 

otherwise. 

We have experimented with other string metrics (including edit distance-based 

metrics) but have not found them to be useful in our experiments, so have reduced 

the set of string similarity metrics to those that capture distinct differences in the input 

texts well. 

4.2. Smoothed jaccard 

On the evaluation datasets, we have found that extracting only one feature, namely 

Jaccard, can produce 60-90% of the performance of our overall system; however this 

feature can be very poor on short texts. Our intuition is that the total number of 

matching words is also important, so that matching 1 out of 3 words is less important 

than matching 4 out of 12 words. We model this by applying a nonlinear function to 

the counts as follows: 

 
     

( , ) ,
A B

J A B
A B A B





  


 
 

where σ(x) = 1 – exp(–αx). It can easily be shown that as  α→0 then this value is 

equivalent to the standard Jaccard as in this case σ(x)→x. 

4.3. Word alignment 

The basic idea of many more sophisticated methods for evaluating the similarity of 

words is to first create an alignment between the two input strings and then use this 
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alignment in order to estimate the similarity of the strings. As such we assume that 

we are able to construct a N×M matrix, S, of similarity values in {0, 1}, where N and 

M are the length of the two strings. We use the following methods to extract a single 

similarity score from this matrix, which can produce similar scores regardless of the 

length of the input strings, and thus M and N. This is important as in general the length 

of the two strings we wish to compare varies and most obvious metrics cannot work 

on arbitrarily sized matrices. 

Firstly, we consider the precision of the mapping, in terms of how many words 

are aligned with similarity greater than one half: 

Forward Precision: 
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These two precisions can be combined by a harmonic mean; this method is due 

to S u l t a n, B e t h a r d  and S u m n e r  [25]. 

Harmonized Alignment Mean:  
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We also look at the normalized column/row maximums as a feature. This will 

be larger if we tend to have one value in the similarity matrix that is much larger and 

smaller is all values are approximately equal. 
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Finally, inspired by H u r l e y  and R i c k a r d  [10] on matrix sparsity, we used 
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sparsity metrics to measure the quality of an alignment. Our preliminary experiments 

suggested that the best metric for this would be Gaussian entropy diversity as follows: 

Gaussian Entropy Diversity:  

 2
G

1
log .ij

i j

H s
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4.3.1. Word embeddings 

Word embeddings [17] are a well-established method for estimating word similarity 

and we use these to construct a similarity matrix for the above as follows, where vi 

and vj are the vectors or the i-th and j-th word respectively. 
T

.
i j
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i j

v v
s

v v
  

4.3.2. Monolingual alignment 

Monolingual alignment [25] is a process of finding which words in two similar 

sentences correspond and it has been shown that the proportion of words that can be 

aligned is directly related to the similarity of the sentence. We conduct a monolingual 

alignment based on a simplified method of Sultan’s work as follows: 

1. First align all words that exactly match in the string. 

2. Apply named entity recognition (we use Stanford NER [6]) and align all 

words in these named entity recognition if either one word is an abbreviation of at 

least one word matches in the named entity. To test for abbreviations we take the first 

letter of each word in the named entity and compare the result string to the other form, 

accepting it if 75% of the characters match, e.g., “United States of America” would 

be shortened to “usoa” and match “USA”. 

3. Finally, for each word we calculate the similarity as: 

sim(wi, wj) = αwordSim(wi, wj) + (1 – α)contextSim(wi, wj), 

where 

 , ,

1
contextSim( , ) wordSim , ,i j i m j n

m W n Wi j i j

w w W W
W W  

    

and Wi is a fixed window of words around wi and wordSim is a word similarity 

function. We then choose the most likely mapping for a given word in a greedy 

manner. 

Once the word alignment has been completed we convert it into a matrix as 

above using 1 for alignments that we have extracted and 0 for all other values. 

4.3.3. WordNet similarity 

In addition, we can also use Princeton WordNet [4] as a basis to construct the 

similarity of two words. A number of methods have been proposed and we have 

implemented and tested the methods of shortest path [15], W u  and P a l m e r  [28], 

L e a c o c k  and C h o d o r o w  [13], and L i and B a n d a r  [14]. 
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4.4. Deep learning  

The use of recurrent neural networks has been shown recently to produce some of the 

strongest results for sentence similarity [1]. We use the method of T a i, S o c h e r  

and M a n n i n g  [26] in which two representations of a sentence, hL and hR, are learnt 

and they are combined to produce a similarity vector as follows: 

ht = hL⚬ hR,  

hp = |hL – hR|, 

hs = σ(Wtht +Wphp + b), 

where σ is the sigmoid function and Wt, Wp and b are parameters to be learnt. In the 

original paper, this is then combined by means of a softmax layer to match the 

observed similarity scores, however this only works if the sentences are graded on an 

integral scale (in this case 1, 2, .., 5). Instead, we assume hs is a one-dimensional 

vector and directly gives a similarity score in [0, 1]. The deeper representations are 

learnt by means of recurrent neural networks or LSTMs. 

5. Structural similarity 

A key part of deducing the similarity of two datasets is the structural similarity of the 

models and we approach this in two manners. Firstly, we define lenses to extract 

similarity between parts of the ontology, on which we can apply the string similarity 

techniques described above. Secondly, we define global constraints and scoring on 

matching between datasets and apply search to find matchings that are valid for the 

constraints and maximized the scoring function. 

5.1. Features for structural similarity 

Our structural similarity methods are principally based on finding lenses that select 

labels around an entity. For example, we use the Superterms lens to extract all labels 

that are labels of a superentity, that is an entity that is linked by means of some 

broader, superclass, superproperty or similar link. We then select a pair of labels, one 

from each entity that has the minimal (character-based) edit distance. NAISC uses its 

own property list, and the mapping from other models, such as OWL or WordNet is 

an implementation detail, that in all cases is straightforward. We use the following 

structural properties: 

 Superterms: Any entity that is transitively broader.  

 Direct Superterms: Any entity that is at most one step broader. 

 Subterms/Direct Subterms: As superterms but using narrower links. 

 Related: Any term that is marked as related using the related link. 

 Range, Domain, Related Class, Properties of Class: The labels of classes that 

give the range or domain of a property (the property is the entity). “Related Class” is 

the combination of labels of ranges and domains and “Properties of Class” is any 

property whose range or domain is the entity. 

Once we have extracted all these labels, we use the string similarity metrics 

defined in Section 4 to extract similarity. 
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5.2. Bipartite matching 

Given that we have constructed a similarity function as described in Section 3, we 

need to find an overall best matching. A simple strategy, which we call exhaustive, is 

to accept all pairs if their similarity is above a fixed threshold; however this gives 

very poor results in general. A stronger assumption is the bipartite assumption that 

states that no entity can be linked to more than one entity in the other dataset. In this 

case, the global optimal solution can be found in polynomial time using the 

Hungarian Algorithm [12] and we implement this for bipartite matching. In addition 

to this exact solution, we have also implemented a greedy solver, which starts with 

no alignment and iteratively adds new alignments unless adding this alignment would 

violate the bipartite assumption. The algorithm continues until no more alignments 

can be added. Finally, we also implemented a system that aims to find a good solution 

quickly, namely a beam search, which searches using a beam (a fixed length array 

that contains only the highest scoring partial solutions). The beam search, as the 

greedy solver, takes each alignment ordered by its similarity score and then for each 

element in the beam adds a new candidate solution including this candidate, thus up 

to doubling the number of partial solutions in the beam. 

6. Evaluation 

The NAISC system is intended to work across a number of existing tasks and as such 

we evaluate over multiple datasets from different tasks including semantic similarity, 

ontology alignment and link discovery. We will briefly describe the construction of 

our benchmarks, whose size in terms of the number of entities in the two datasets we 

are linking and the total number of gold standard links is given in Table 1. Given our 

broad definition of link discovery there are a large number of datasets available, 

however these datasets have some significant weaknesses. We derive datasets from 

the two major complementary evaluation the Ontology Alignment Evaluation 

Initiative (http://oaei.ontologymatching.org/) and Semantic Textual Similarity task 

at TexEval (http://ixa2.si.ehu.es/stswiki/index.php/Main_Page). These tasks are 

complementary with one focusing on similarity of sentence length texts and the other 

on graph entities with short labels of 1-3 words. In order to provide a more balanced 

evaluation we look at the linking of Princeton WordNet and Wikipedia, both of which 

have a mixture of short text labels and longer descriptions. 

Table 1. Size of datasets used in this work 

Dataset Entities in first dataset Entities in second dataset Links 

STS (Train) 13,597 13,597 13,597 

STS (Test) 1,186 1,186 1,186 

WWIM (Train) 33,188 9.993 7,582 

OAEI Anatomy 1,497 1,509 1,516 

OAEI Conferences 921 921 305 

OAEI Sabine 737 1,129 338 

200 NS 202,680 117,659 173 

 

http://oaei.ontologymatching.org/
http://ixa2.si.ehu.es/stswiki/index.php/Main_Page
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6.1. Datasets 

6.1.1. SemEval STS 

SemEval’s Semantic Textual Similarity (STS) task has occurred in most editions of 

SemEval and as such a significant amount of data has been collected. The goal of this 

task is to estimate the similarity of two sentences such as: 

Sentence 1: What are the bus (coach) connections from Thessaloniki, Greece to 

Tbilisi, Georgia? 

Sentence 2: Is there a bus from Tbilisi, Georgia to Thessaloniki, Greece? 

Similarity: 4/5. 

We view this as a special case of dataset alignment, where we have no structural 

features and each entity has only a single description with no label. Furthermore, we 

have a blocking strategy we can apply that matches each sentence in a one-to-one 

manner, thus removing the need for a structural match. We followed the structure of 

the 2,016 SemEval STS evaluation using the data from tasks before 2,016 as the 

training set and evaluating on the test data from the 2,016 task. 

6.1.2. OAEI 

The Ontology Alignment Evaluation Initiative [3] aims to focus on the alignment of 

two ontologies. This task has often emphasized the use of structural constraints and 

most of the entities in the ontologies used in this task have no labels at all. This can 

be seen as an opposite case to SemEval where we have mostly structural constraints 

and little linguistic information. For this reason, we mostly have to infer the label of 

terms from the URI of the term; this is done by de-camelcasing the fragment or, if 

there is no fragment, the final filename in the path. Further, we map the relations in 

the OWL ontologies to our list of relations. We chose a few datasets from this 

evaluation based on their suitability to a linking and how much linguistic information 

is useful for this task. For one of the datasets (Conferences) the data is split into 

multiple individual ontologies and the NAISC system is aware of this and does not 

consider linking between different subsets of the data. 

6.1.3. WordNet-Wikipedia 

As neither of the major evaluations above contain both linguistic and structural 

information we looked to find a dataset for which we could provide gold standard 

mappings. One of the most obvious candidates is the mapping of WordNet and 

Wikipedia, which has been conducted by a number of authors including as part of 

large resources such as BabelNet [18]. We note that the datasets we have created link 

to Wikipedia URLs, but that these can be quickly aligned to DBpedia or WikiData 

URLs, therefore in this work we do not distinguish between these resources. In 

particular, we used the mapping created by F e r n a n d o  and S t e v e n s o n  [5], 

where 200 synsets were annotated for equivalence to Wikipedia articles (200 NS). 

As a training set we also constructed a manual linking between WordNet and 

Wikipedia called the WordNet-Wikipedia Instance Matching (WWIM) [16]. For 

these resources, we use the article title as the label and the first line of the article as 

the description. 
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6.2. Evaluation 

As the nature of the STS data is different from the OAEI and the WordNet-Wikipedia 

alignment task we use a different metric to analyse the results. In the case of the STS 

data we use the Pearson correlation coefficient between the predicted similarity of 

the entities and the gold standard similarity. Pearson correlation measures the 

accuracy of fitting a linear best-fit line, with +1 representing an exact positive 

correlation, –1 an exact negative correlation and 0 meaning no correlation at all. For 

the other datasets we use the F-measure at α=0.5, which is defined as follows: 
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We use this as it allows us to evaluate mappings such as the exhaustive mapping 

strategy that output very many results. When there were multiple alignments in the 

same dataset, we used a micro-average, i.e., we merged all the alignments as if they 

were in one dataset. If the datasets contained many entities that were not aligned in 

the gold standard, we allowed our system to map to these entities, but did not count 

any mappings from our system where both entities are not in the gold standard. This 

affects our F-Measure in comparison to other authors, however better represents a 

realistic use case, where there are many confounding entities and alignments are 

missing from the gold standard because the alignment is not known.  

We first evaluated the system by comparing the effect of different algorithms 

for finding the mapping as described in Section 5.2. We used only the basic features 

described in Section 4.1 and trained a single system on the WWIM dataset and 

evaluated on the OAEI and 200 NS datasets. The results of this are given in Table 2. 

These results suggested that we could use the greedy approach for our experiments 

with feature extraction. 

Table 2. Comparison of matching strategies 
Strategy Anatomy Conferences Sabine 200 NS 
Exhaustive 0.199 0.265 0.090 0.286 
Exact 0.708 0.305 0.438 0.454 
Greedy 0.747 0.596 0.538 0.607 
Beam 0.746 0.503 0.536 0.607 

As there are a large number of components to NAISC, we wish to evaluate their 

combined performance as such we performed the following experimental settings. 

Unless specified otherwise we used the basic feature set (in Section 4.1) with lenses 

on the label and description and using the bipartite matching (Section 5.2). We thus 

used the following settings: 

1. Longest Common Subsequence as the only feature 

2. Jaccard as the only feature 

3. Length Ratio as the only feature 

4. Average Word Length Ratio as the only feature 
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5. Longest Common Subsequence, Jaccard, Dice, Containment, Length Ratio, 

and Average Word Length Ratio as the only features 

6. All the basic features (this is the default setting) 

7. Using smoothed Jaccard as the only feature with α=1 

8. Using smoothed Jaccard as the only feature with α=2 

9. As 6, using word embeddings and forward precision as an extra feature 

10. As 9 with backward precision (instead of forward precision) 

11. As 9 with harmonized alignment mean 

12. As 9 with column mean p-Max, p=1 

13. As 9 with column mean p-Norm, p=2 

14. As 9 with Gaussian entropy diversity 

15. As 9 using all metrics from Section 4.3 

16. As 15 but using monolingual alignment from Section 4.3.2 

17. As 15 but using shortest path WordNet similarity (Section 4.3.3) 

18. As 15 but using W u  and P a l m e r  [28] WordNet similarity (Section 4.3.3) 

19. As 15 but using L e a c o c k  and C h o d o r o w  [13] WordNet similarity  

(Section 4.3.3) 

20. As 15 but using L i  [14] WordNet similarity (Section 4.3.3) 

21. The combination of all features from 6, 7, 15 and 20 

22. As 6 Using recurrent neural networks as an additional feature (Section 4.4) 

Table 3. Results for matching datasets using various feature configuration. Bold indicates the best 

result; * – this computation did not complete due to cost of applying Stanford NER to all the entities 
Experiment STS Correl Anatomy F-M Conferences F-M Sabine F-M 200NS F-M 
1 0.605 0.763 0.623 0.747 0.558 
2 0.448 0.792 0.622 0.749 0.504 
3 0.113 0.016 0.050 0.014 0.009 
4 0.195 0.021 0.052 0.037 0.034 
5 0.587 0.736 0.581 0.630 0.561 
6 (Default) 0.608 0.747 0.596 0.538 0.607 
7 0.483 0.863 0.655 0.759 0.575 
8 0.341 0.859 0.652 0.751 0.510 
9 0.605 0.673 0.582 0.484 0.604 
10 0.608 0.781 0.616 0.680 0.600 
11 0.606 0.690 0.598 0.559 0.607 
12 0.616 0.705 0.585 0.567 0.570 
13 0.603 0.758 0.603 0.661 0.604 
14 0.614 0.679 0.583 0.535 0.585 
15 0.649 0.686 0.566 0.747 0.598 
16 0.644 0.690 0.299 0.465 * 
17 0.648 0.710 0.291 0.432 0.455 
18 0.611 0.734 0.302 0.432 0.460 
19 0.628 0.720 0.311 0.437 0.437 
20 0.624 0.717 0.306 0.449 0.465 
21 0.621 0.653 0.559 0.733 0.588 
22 0.611 0.693 0.588 0.528 0.601 

The results of these experiments are given in Table 3. In general we found that 

the combination of multiple features seems to help, as shown by multi-feature 

configurations 6 and 21 providing good results. However the usage of a single strong 

feature, namely the smoothed Jaccard ratio produced very strong results. We believe 

that this is partially due to the fact that we were training on a different dataset to those 

that we were testing on. As such, the issue of transferring learning from one dataset 
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to another is quite challenging. This explains why we see that multiple combinations 

of features is better on the 200 NS dataset, which is closer to the WWIM dataset used 

in training as these are both alignments between WordNet and Wikipedia. We also 

see that while the use of monolingual alignment is helpful for the task of semantic 

similarity, it is less useful for the case of the OAEI datasets, as these mostly only had 

labels, which are considerably shorter than the texts in the STS dataset. We found 

that conventional WordNet similarity metrics do not seem to be useful for this task. 

Finally, we attempted to use deep learning methods in experiment 22, however we 

found disappointing results and this was due to the nature of deep learning, where 

hyperparameters have to be carefully tuned in order to avoid overfitting. We 

experimented with various settings and methods such as dropout [8], however we 

found that we obtained very high training set correlations and comparatively poor test 

set correlations, with various settings. 

We provide a more detailed analysis of some of the errors made by the system. 

These results are from configuration 7 run on the 200 NS dataset. A common source 

of errors is that the wrong part-of-speech is mapped to, in this case that system 

predicts mapping to the noun, but the gold standard (likely erroneously) maps to a 

verb synset (Table 4). 

Table 4 
Wikipedia Tickling 
WordNet Predicted tickled, tickling, titillation (i36171, Noun) 
WordNet Gold titillate, tickle, velicate (i32357, Verb) 

Many mappings are missed due to there not being an overlapping lemma and 

even small differences in spelling can cause obvious pairs to be missed such as in 

Table 5. 

Table 5 
Wikipedia Cicindela 
WordNet Gold  family Cicindelidae, Cicindelidae (i46843) 

Finally, the large number of candidates in Wikipedia and WordNet can lead to 

spurious mappings, in this case the word “purple” has many subtle shades of meaning 

in WordNet related to the colour as a noun, verb, adjective and other related meanings 

“purple” as royal). In contrast, Wikipedia has only one concept related to the colour 

but several related to “Purple” as names for songs, albums or even stage name of 

artists. The system matched the primary sense of “purple” in Wikipedia to the 

adjective “purple” (i2123) instead of the noun (i63106), and then generates many 

spurious links for specific concepts (Table 6). 

Table 6 
Wikipedia Purple 
WordNet Predicted purple, violet, purplish (i2123) 
Wikipedia Purple (Baroness album) 
WordNet Predicted purple (i112846) 
Wikipedia Purple (song) 
WordNet Predicted purple, empurpled, over-embellished (i11052) 
Wikipedia Purple.com 
WordNet Predicted purple, royal, imperial, majestic, regal (i8715) 
Wikipedia Babyshambles [from Purple (rapper)] 
WordNet Predicted empurple, purpurate, purple (i23142) 
Wikipedia Purple (album) 
WordNet Predicted purple, purpleness (i63106) 
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7. Conclusion 

We have considered the task of linking datasets and have considered the use of state-

of-the-art methods from the NLP task of semantic textual similarity and how to 

combine them with structural similarity of ontology alignment. Our results show that 

combining these features is of great value, however the task of training these models 

is still very tricky and they are prone to overfitting. However, we do see a correlation 

between the quality of the semantic textual similarity scores and the quality of linking 

between datasets, suggesting that with better semantic similarity we could obtain 

much higher alignment scores. In the case of dataset linking the labels of concepts 

are much shorter than the sentences used in semantic textual similarity and much less 

linguistically complex. As such, we believe that further work to develop specialized 

features for term equivalence would be of great benefit to this task. Finally, we notice 

that a significant obstacle to the task of link discovery is the diversity of the datasets, 

in terms of the nature of texts, the existence of additional information useful for 

linking, such as properties, descriptions, etc., and the ability to transfer learning from 

one task to another is still a significant challenge. 
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