
 60 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 17, No 5 

Special issue with selected papers from the workshop  

“Two Years Avitohol: Advanced High Performance Computing Applications 2017” 

Sofia  2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.1515/cait-2017-0055 

 

 

Comparison of RNA-Seq Differential Expression Methods 

Dean Palejev 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria  

E-mail: palejev@math.bas.bg  

Abstract: There are many methods designed to find differentially expressed genes 

using RNA-seq data. Their outputs differ a lot, some genes are determined to be 

differentially expressed by most or all methods, and others – by very few or even by 

just one method. Here we derive a systematic approach to quantifying the proximity 

of such methods, allowing us also to discover patterns and to determine whether 

some of them are significantly different than others.  
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1. Introduction 

The high-throughput sequencing technologies (also known as Next Generation 

Sequencing or NGS) that became available during the last decade allowed 

researchers to produce vast amounts of DNA-seq and RNA-seq data. One of the 

basic questions that could be answered by utilizing RNA-seq data is finding 

differentially expressed genes or transcripts, namely those who have different 

overall expression levels between two groups of interest (e.g., patients and healthy 

controls, or two different strains of species). There are many methods designed to 

find differentially expressed genes, with some of them producing more similar 

results than others. An example of this is shown in Fig. 1, showing a Venn diagram 

of the differentially expressed genes found by four methods: DESeq [1], DESeq2 

[2], edgeR [3] and the limma implementation in the R package voom [4], using the 

same dataset [5] consisting of two groups of mice of different strains. The dataset is 

available from the ReCount online resource [6]. We can see that 570 genes were 

detected as significant by all four methods. At the same time one of them (DESeq) 

detected only nine extra genes, whereas another one (limma) detected extra 641 

differentially expressed genes, including the extra nine detected by DESeq. Overall 

for this dataset, limma finds more than twice as many differentially expressed genes 

as DESeq, which raises the question whether there are significant differences 

between such methods. 
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Fig. 1. Venn diagram showing the differentially expressed genes found by four different 

methods 
 

There are many studies comparing RNA-seq differential expression methods, 

e.g., [7-9]. Often the comparisons are based on empirical considerations: FDR, 

empirical power, ROC curves (true positive rate vs. false positive rate), sensitivity 

and specificity, counts of genes detected as significant by different methods as a 

function of the sample size or sequencing depth, comparison of normalization 

methods, etc. In many cases, the comparison is often based on splitting the outputs 

into two groups – differentially expressed (or significant) genes and the rest. This is 

not optimal, as we would prefer to take into account the level of significance, with 

the most significant genes having the strongest candidates for subsequent biological 

verification and further investigation. At the same time, we are interested in the 

genes that are slightly above the desired significant level, because truly significant 

genes may have somehow larger p-values due to small sample size.  

Because of that there is an added value in splitting the differentially expressed 

genes into several groups with similar p-values within each group, with each group 

considered distinct from the others, effectively creating partially ranked lists. Using 

such classification incorporates most of the useful information from the methods  

p-values, effectively mimicking and enhancing the way these methods are used by 

bioinformaticians.  

2. RNA-seq data simulation 

The R package compcodeR [7] was used in order to generate the in-silico data 

necessary for the study. The simulations were done on the High Performance 

Computing (HPC) complex Avitohol [10].  

The typical RNA-seq dataset is a table of read counts, where each row 

represents a gene or transcript and each column represents a sample. Each entry 

shows how many RNA-seq reads from that particular sample were mapped to that 

particular gene or transcript. 
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Using compcodeR we generate read counts data for two populations, with 

13932 genes, varying the sample sizes (values of 2, 5, 10, 20 for each sample) and 

the proportion of differentially expressed genes (0.01, 0.05, 0.1, 0.2), while keeping 

the other settings to their default values (e.g., the proportion of upregulated genes 

out of all differentially expressed genes is 0.5). The number of genes used here 

(13,932) is equal to the number of non-all-zero rows in the dataset from [5].  

For each pair of parameters (sample size and proportion differentially 

expressed genes), using compcodeR, we generate 10,000 sets of 13,932 genes with 

these parameters of the whole dataset. After that for each of the 10,000 sets we 

apply each of the following methods or combinations of methods (for simplicity, 

further we will call them methods):  

1. DESeq.GLM (DESeq with option GLM)  

2. DESeq.nbinom (DESeq with option nbinom) 

3. DESeq2  

4. DSS [11]  

5. NBPSeq [12]  

6. TCC [13]  

7. edgeR.exact (edgeR with option exact)  

8. edgeR.GLM (edgeR with option GLM) 

9. logcpm.limma (limma after performing a log transformation on the counts 

per million)  

10. sqrtcpm.limma (limma after performing a square root transformation on 

the counts per million)  

11. (ordinary) t-test  

12. voom.limma (applying the voom transformation and then a differential 

expression test with limma)  

13. voom.ttest (applying the voom transformation followed by t-test) 

14.  vst.limma (applying the variance-stabilizing transformation from DESeq 

and the differential expression test with limma)  

15. vst.ttest (applying the variance-stabilizing transformation from DESeq and 

t-test to determine the differentially expressed genes). 

The typical workflow of applying each of these methods results in a set of  

p-values, one for each gene, which are ultimately adjusted for multiple comparisons 

using the Benjamini-Hochberg procedure [14]. Genes with adjusted p-values not 

greater than a particular threshold (typically 0.05) are determined to be 

differentially expressed by the method. Therefore in a typical usage setup, all the 

information that such method yields is included in the resulting adjusted p-values. 

We are interested in determining a measure of the proximity of the 15 

differentially expression methods listed above. For a given read count dataset, and 

for each pair of methods, we can calculate a Chebyshev-type distance (such as the 

one defined in [15]) between the respectively adjusted p-values that were produced 

by each of the two methods. The cutoff points used to split the interval [0, 1] into 

subintervals were: 0.0001, 0.001, 0.01, 0.05 and 0.1. Given the standard 

significance cutoff of 0.05, the interval from it to 0.1 represents the tests (genes) for 

which there is some, but not enough, evidence of being significant and we would 
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prefer to distinguish them from the clearly non-significant tests with Benjamini-

Hochberg adjusted p-values. The practice shows that in some cases the significant 

genes determined by one method end up having adjusted p-values in that interval. 

For smaller sample sizes, it is also common for the truly significant genes to have 

adjusted p-values in that interval. As mentioned above, there is an added value in 

splitting the adjusted p-values into several intervals depending on their level of 

significance. 

The set of adjusted p-values produced by each method does not have a uniform 

distribution. In fact, as shown in [16] the distribution of the unadjusted p-values has 

a distribution that is a mix between a distribution skewed towards 0 (corresponding 

to the genes determined significant by the method) and uniform distribution 

(corresponding to the non-significant genes). The distribution of the adjusted  

p-values has a small peak close to 0, another one at 1 and very few values in 

between. Thankfully the right-invariant property described in [15] allows us to use 

the distances between the p-values.  

3. Results 

For each pair of sample size and proportion of differentially expressed genes we 

perform hierarchical clustering using the distance mentioned above. For smaller 

values of both parameters, all methods are relatively close as shown in Fig. 2.  

 
Fig. 2. Hierarchical clustering for sample size = 2 and proportion of differentially expressed 

genes = 0.01 
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This could be because for small sample size all reasonable estimates are close, 

even after different corrections or normalization. When either parameter increases 

we start seeing larger differences between some of the methods, e.g., as shown on 

Fig. 3 (sample size = 20, proportion of differentially expressed genes = 0.2).  

 
Fig. 3. Hierarchical clustering for sample size = 20 and proportion of differentially expressed 

genes = 0.2 

In this case NBPseq differs a lot from the other methods. All methods that 

incorporate limma and t-test cluster are closely together. We can also see that the 

two submethods of DESeq (.nbinom and .GLM) are relatively close to each other, 

however for the smaller values of the parameters they are close to all other methods, 

and for the larger values of the parameters they are somehow further from the 

majority of the other methods. Due to space constrains we cannot show the 

dendrograms for all pairs of parameters. These dendrograms together with other 

plots are shown at the article webpage http://www.math.bas.bg/~palejev/RNA-

seq_comparison. From the extra plots available on that webpage we can see that 

the limma and t-test based methods are generally close to each other. 

Further we investigate whether any of these methods are significantly 

different. We approximate the null distribution described in [15] not by a chi-square 

distribution, but by a Gamma distribution in order to allow some more flexibility by 

having two parameters (although in this particular case both distributions are close 

and the approximation choice does not affect the results). Then for each pair of 

methods and a given set of parameters we compare the empirical distribution of the 

distance between the Benjamini-Hochberg-adjusted p-values produced by these 

methods with the Gamma distribution. One example is shown in Fig. 4. In it we 

first visualise boxplot of the null Gamma distribution and then for each pair of 
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parameters, a boxplot of the distribution of the distances between DESeq.nbinom 

and DESeq2 for that pair of parameters. The x-axis labels for the distribution 

boxplots, except for the Gamma, show the proportion of differentially expressed 

genes and then the sample size.  

 
Fig. 4. Comparison of DESeq.nbinom and DESeq2 for all values of the parameters together with the 

null Gamma distribution 

In this example all of the distances between these two methods are well below 

the null distribution, therefore there is no evidence that these two methods are 

significantly different. A pattern in this case, that appears in many other 

comparisons is that for a given proportion of differentially expressed genes, the 

methods differ the most for sample size of 5. In this case this is true for proportions 

of 0.05, 0.1 and 0.2. 

Due to space constrains we cannot display all of the results here. All of the 

graphs are shown on the article webpage, and they show that that for all pairs of 

methods, and all of the considered parameter values, the distances distributions are 

well below the null distribution. Therefore for all pairs of methods, the differences 

do not appear statistically significant. 

4. Conclusion 

Here different methods are shown for finding differentially expressed genes might 

result in very different outputs for the same dataset. We also show the usefulness of 

defining a distance between such methods on a particular dataset by using the 

Spearman’s distance on partially ranked lists of Benjamini-Hochberg-adjusted  



 66 

p-values. Finally, we demonstrate that for reasonable values of the number of genes, 

the sample sizes and the proportion of differentially expressed genes, although there 

are large differences in outputs of these methods, they do not appear to be 

statistically significant.  
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