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Abstract: Although Clustering Algorithm Based on Sparse Feature Vector 

(CABOSFV) and its related algorithms are efficient for high dimensional sparse 

data clustering, there exist several imperfections. Such imperfections as subjective 

parameter designation and order sensibility of clustering process would eventually 

aggravate the time complexity and quality of the algorithm. This paper proposes a 

parameter adjustment method of Bidirectional CABOSFV for optimization purpose. 

By optimizing Parameter Vector (PV) and Parameter Selection Vector (PSV) with 

the objective function of clustering validity, an improved Bidirectional CABOSFV 

algorithm using simulated annealing is proposed, which circumvents the 

requirement of initial parameter determination. The experiments on UCI data sets 

show that the proposed algorithm, which can perform multi-adjustment clustering, 

has a higher accurateness than single adjustment clustering, along with a 

decreased time complexity through iterations.  

Keywords: Data mining, high dimensional sparse data, simulated annealing, 

clustering validity. 

1. Introduction 

Increasing significance has been attached to data mining technologies [1]. With its 

development, the object data are becoming large-scaled and high dimensional [2]. 

In these analyses, the clustering algorithms designed for lower dimensional data can 

no longer meet the requirements, whereas the classic Clustering Algorithm Based 

On Sparse Feature Vector (CABOSFV) [3] is an efficient algorithm for high 

dimensional data clustering. Classic CABOSFV uses Sparse Feature Dissimilarity 

(SFD) to describe the dissimilarity between sets; it uses Sparse Feature Vector 
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(SFV) to extract features of the set, to reduce data scale, and then to implement 

clustering by addition of SFV. Classic CABOSFV is insensitive to noise, it is 

available to cluster both sparse and dense high dimensional data, and has helped 

solving a series of high dimensional data clustering problems [4-9].  

1.1. CABOSFV clustering algorithms 

However, there exist several defects of existing CABOSFV related algorithms: 

Subjective parameter specifying. SFD threshold b is a crucial parameter of 

CABOSFV clustering. An overestimated b increases the risk of objects being 

assigned to wrong clusters. Conversely, underestimating b increases the risk of 

objects being rejected by the suitable cluster. The only existing method is to 

designate this parameter subjectively. S o n g  and X i a o  [10] proposed a method 

to determine the cap of b; Z h u, T u, G a o  et al. [11] proposed an advanced 

algorithm based on self-adaptive threshold. Still, the optimal b changes with the 

clustering task and data set, which makes it difficult to be determined objectively in 

advance. Therefore, a parameter adjustment method of CABOSFV is necessary to 

perform multiple clustering and optimize the parameter according to the clustering 

results through iterations. 

Complexity of unidirectional CABOSFV clustering through iterations. Classic 

CABOSFV is an agglomerative clustering algorithm, its process of clustering is 

unidirectional, that once an object has been assigned to a cluster, it can no longer be 

reassign to more suitable ones. Restricted by the unidirectionality, each adjustment 

needs to start over and cannot make use of the previous results, which considerably 

increases the computational complexity and limits the feasibility of optimization 

through iterations. G a o, Y a n g  and L i  [12] proposed Bidirectional CABOSFV 

by defining Bidirectional Sparse Feature Vector (B-SFV) and addition-subtraction 

of B-SFVs, which improved the performance of clustering through multiple 

adjustments, but gave no method of parameter optimization. 

Limitation on clustering quality of single adjustment CABOSFV. The 

CABOSFV algorithms are sensitive to the clustering order, which is affected by 

both data input order and clustering pattern. On this issue, Zhu, Gao, Wu and others 

(see [13-16]) proposed several data pre-processing methods based on object sorting, 

which can reduce the effects of input order sensibility to some extent. However, 

none can eliminate the effects of input order, and the effects of clustering pattern 

have not been addressed. Bidirectional CABOSFV has the ability of performing 

both decomposing and agglomerative clustering in multiple adjustments; it allows 

separation and re-aggregation to form the previous results, which can further reduce 

the influence of the clustering order on the quality of clustering. However, this 

advantage cannot be presented in single adjustment clustering, in which both 

decomposing and agglomerative clustering are unidirectional, the deviation affected 

by clustering order will be accumulated in the clustering process, reduces the 

quality and stability of clustering. Therefore, to approach the optimal solution of 

times and parameters of the adjustments is a combinatorial optimization problem.  
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1.2. Simulated annealing  

The Simulated Annealing (SA) approach for optimization problems was proposed 

by K i r k p a t r i c k, G e l a t t  and V e c c h i  [17], and has been widely applied in a 

variety of optimization problems due to the simple implementation and 

convergence properties [18], and proved efficient in various fields [19-22].  

As pointed out by P e n g  and C u i  [23], Simulated Annealing is known for 

being a slow method when compared to more recent strategies. However, the 

solution quality is generally better 

Given the high complexity of classic CABOSFV iterations as mentioned 

above, this paper proposed a method to adjust the parameter of Bidirectional 

CABOSFV. Based on that, we use simulated annealing and clustering validity 

indexes to optimize the number and parameters of adjustments, circumvents the 

requirement of initial parameter determination, thereby improves the efficient of 

clustering. 

All clustering data in this paper is binary, as W u  and W e i  [24] have 

proposed a method to transform categorical variables to binary variables. 

2. Bidirectional CABOSFV 

2.1. Bidirectional sparse feature vector 

Definition 1. Sparse Feature Dissimilarity, SFD. Given n objects, X is a set of the 

objects; the number of objects contained is |X|; a denotes the number of attributes 

that values 1 for all the objects in X; e denotes the number of attributes that values 

differently for all the objects in X. Define Sparse Feature Dissimilarity of X as 

(1)   SFD( ) .
| |

e
X

X a



 

Definition 2. Attribute Counting Vector, ACV. Given n objects, each object 

is described by attributes A1, A2,…, Am; X is a set of objects, objects contained are 

x1, x2,…, x|X|; Jij(X) denotes the value of attribute Ai for object xj; C1(X), C2(X), ..., 

Cm(X) denote the times of each attribute valuing 1 for all objects in X, which is 

given by 

(2)    
| |

1
( ) ( ) , {1, 2,..., }.

X

i ijj
C X J X i m


   

Define ACV of X as vector  

(3)           1 2, , . , mT X C X C X C X   

Definition 3. Bidirectional Sparse Feature Vector, BSFV. Given n objects, 

X is a set of the objects, the number of objects contained is |X|; T(X) is the ACV of 

X; S denotes the set of attributes that values 1 for all the objects in X; NS denotes 

the set of attributes that values differently for all the objects in X; SFD(X) is the 

Define SFD of X. Define BSFV of X as 

(4)             BSFV , , , NS , SFD .X X T X S X X X  
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2.2. Addition of BSFV 

Definition 4. Addition of BSFVs. Given n objects, each object is described by 

attributes A1, A2,…, Am; X and Y are two sets of objects that have no intersection, the 

SFVs are 

          

          

SFV , , , NS , SFD ,

S

| |

| |FV , , , NS , SFD .

X X T X S X X X

Y Y T S Y YY Y




 

Define addition of BSFVs as 
(5)        SFV SFV , , , N , ,S SFDY X N T S   

where N=|X|+|Y|; T=T(X)+T(Y); S={Ai, i∈i|Ci=|N|}; NS={Ai, i∈i|0<Ci<|N|}; 

SFD=|NS|/(N× |S|). 

Theorem 1. BSFV Additivity Theorem. Given n objects, X and Y are two 

sets of objects that have no intersection, and: 

          
          

     

SFV , , , NS , SFD ,

SFV , , , NS , SFD

| |

| |

( ) (| |

,

SFV , , , NS , SFD ,

SFV SFV , , , NS, S

( ) ( ) ( ) ( )

F .

)

D

X X T X S X X X

Y Y T Y S Y Y Y

X Y X Y T X Y S X Y X Y X Y

X Y N T S





      

 

 

Then 

(6)     SFV SFV S) .( FVX Y X Y    

P r o o f:  

Since X and Yare two sets of objects that have no intersection, numbers of 

objects are |Y| and |X|, then the union set X∪Y contains |X|+|Y| objects, so  

| | | | .| |N X Y X Y     

Let X={x1, x2, ..., x|X|}, Y={y1, y2, ..., y|Y|}, each object is described by attributes 

A1, A2,…, Am. Jij(X) denotes the value of attribute Ai for object xj, Jij(Y) denotes the 

value of attribute Ai for object yj. C1(X), C2(X), ..., Cm(X) denote the times of each 

attribute valuing 1 for all objects in X, C1(Y), C2(Y), ..., Cm(Y) denote the times of 

each attribute valuing 1 for all objects in Y. By Definition 2 (ACV): 
| | | | | | | |

1 1 2 2

1 1 1 1

| | | |

1 1

( ) ( ) ( ( ) ( ), ( ) ( ),

..., ( ) ( )).

X Y X Y

j j j j

j j j j

X Y

mj mj

j j

T X T Y J X J Y J X J Y

J X J Y

   

 

   



   

 

 

Since X and Y have no intersection, then 
| | | |

1 1

(X Y) ( ) ( ) , {1, 2,..., }.
X Y

i ij ij

j j

C J X J Y i m
 

     

So     1 2( ( ) ( ) ( ), ,  .), mT X T Y C X Y C X Y C X Y T        

Using Reduction to Absurdity, assume ∃Ai*∈S is subject to Ci*(N)≠|N|. By 

Definition 3 (BSFV): 
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*1 *2 *| |( ) ( ) ... ( ) 1.i i i NJ X J X J X     

By Definition 2 (ACV)  
| |

* *

1

(N) ( ) | | 1 | |,
N

i i j

j

C J N N N


   
 

which is contradictory to the assumption, so: 

, |{ | ;}i iS A i i C N    

similarly,  

NS , 0 | .{ |}i iA i i C N     

By Definition 1 (SFD) 

 SFD NS / | | .N S   

Q.E.D. 

2.3. Subtraction of BSFV 

Definition 5. Subtraction of BSFVs. Given n objects, each object is described by 

attributes A1, A2,…, Am; X is a set of objects, Y is a proper subset of X, the SFVs are: 

          
          

SFV , , , NS , SFD ,

S

| |

| |FV , , , NS , SFD .

X X T X S X X X

Y Y T Y S Y Y Y




 

Define Subtraction of BSFVs as 
(7)       SFV SFV ,  ,  ,  NS,  SFD ,Y X N T S   

where N=|X| – |Y|; T=T(X) – T(Y); S={Ai, i∈i |Ci=|N|}; NS={Ai, i∈i|0<Ci<|N|}; 

SFD=|NS|/(N×|S|). 

Theorem 2. BSFV Subtractivity Theorem. Given n objects, X is a set of 

objects, Y is a proper subset of X, and: 

          
          
          
     

SFV , , , NS , SFD ,

SFV , , , NS , SFD ,

SFV , , , NS , SFD ,

SFV SFV , , , NS, S

| |

D

|

F

|

.

|

|

X X T X S X X X

Y Y T Y S Y Y Y

X Y X Y T X Y S X Y X Y X Y

X Y N T S





      

 

 

Then  

(8)       SFV SF SFV .VX Y X Y    

P r o o f:  

Since Y is a proper subset of X, numbers of objects are |Y| and |X|, then the 

difference set X-Y contains |X|-|Y| objects, so N=|X-Y|=|X|-|Y|. 

Let X={x1, x2, ..., x|X|}, Y={y1, y2, ..., y|Y|}, each object is described by attributes 

A1, A2,…, Am; Jij(X) denotes the value of attribute Ai for object xj; Jij(Y) denotes the 

value of attribute Ai for object yj; C1(X), C2(X), ..., Cm(X) denote the times of each 

attribute valuing 1 for all objects in X; C1(Y), C2(Y), ..., Cm(Y) denote the times of 

each attribute valuing 1 for all objects in Y. By Definition 2 (ACV): 
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| | | |

1 1

1 1

| | | | | | | |

2 2

1 1 1 1

( ) ( ) ( ( ) ( ),

( ) ( ),..., ( ) ( )).

X Y

j j

j j

X Y X Y

j j mj mj

j j j j

T X T Y J X J Y

J X J Y J X J Y

 

   

  

 

 

   
 

Since Y is a proper subset of X, then 
| | | |

1 1

(X Y) ( ) ( ) , {1, 2,..., }.
X Y

i ij ij

j j

C J X J Y i m
 

      

So           1 2, ,  , .mT X T Y C X Y C X Y C X Y T        

The rest is the same as in the proof of Theorem 1 (BSFV Additivity Theorem). 

Q.E.D. 

2.4. Parameter adjustment of bidirectional CABOSFV 

SFD threshold b is the predetermined parameter of CABOSFV clustering. In order 

to take advantage of the reversibility of Bidirectional CABOSFV, the clustering 

process with parameter adjustment is proposed, which will further reduce the 

influence of clustering order on clustering quality during the separation and re-

aggregation of objects and clusters. 

Definition 6. Adjustment of SFD threshold b. Given n result clusters and the 

parameter SFD threshold b form previous clustering, bʹ is the new parameter, bʹ≠b. 

Taking the n result clusters as initial sets to perform the clustering with the 

parameter bʹ is defined as an adjustment of SFD threshold b.  

2.5. Steps and example of B-CABOSFV clustering 

Classic CABOSFV clustering needs to start over for each adjustment, whereas  

B-CABOSFV makes use of the previous results, since it is a bidirectional clustering 

algorithm. 

2.5.1. Three-layered structure 

The procedures of B-CABOSFV clustering can be described with a three-layered 

structure (Fig. 1). In the t-th adjustment, St,1
(0), St,2

(0), ..., St,k
(0) are the result sets from 

previous adjustment with a SFD threshold of b(t-1) (upper layer). St,1
(1), St,2

(1), ..., 

St,k+1
(1) are new sets-to-cluster, which are generated by subtraction of BSFV after 

SFD threshold decreased to bt (mid layer). St,1
(2), St,2

(2), ..., St,k
(2) are present result 

sets merged by applying addition of BSFV to new sets-to-cluster (lower layer). 

Specifically, when the SFD threshold decreased from bt–1 to bt, check the SFD 

of each previous result sets successively. If SFD(St,1
(0))>bt, cull off the last  

object (Xn) of St,1
(0); if the SFD is still greater than bt, continue to cull off objects  

(Xn–1, Xn–2,…) of the set until it drop below bt. Then regard S't,1(0)
 and {Xn}, {Xn–1}, 

{Xn–2}, … , along with others previous result sets as new sets-to-cluster. 
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Fig. 1. Plot of three-layered structure of B-CABOSFV 

2.5.2. Example 

As shown in Table 1, X1, X2,…, X6 are 6 clients, A1, A2,…, A8 are the attributes of 

clients corresponding the orders of 8 kinds of products, values 1 if ordered and 0 if 

not. To cluster these clients by order status is a clustering problem of 6 objects of 8 

attributes. 

Table 1. Client order status 

Client 
Product 

ordered 

Attribute vector 

A1 A2 A3 A4 A5 A6 A7 A8 

X1 2, 4, 6, 8 0 1 0 1 0 1 0 1 

X2 1, 4, 6, 8 1 0 0 1 0 1 0 1 

X3 1, 2, 4, 6, 8 1 1 0 1 0 1 0 1 

X4 3, 5, 6, 7, 8 0 0 1 0 1 1 1 1 

X5 3, 5, 7, 8 0 0 1 0 1 0 1 1 

X6 1, 2, 4, 8 1 1 0 1 0 0 0 1 

To solve this problem, the steps of first and second adjustment of  

B-CABOSFV clustering are as followed. 

Steps of the first adjustment 

Step 1. Set the initial SFD threshold b1=1;  

Step 2. Create a set-to-cluster for each client, denote as S1,i
(0), i∈{1, 2, ..., 6}; 

Step 3. Calculate the SFDs. Apparently, as the first adjustment, we have 
(1)

1, 1SFD( ) 0 {1, 2,..., 6},iS b i    

all of which are not greater than b1, no need to subtract. Regard all the sets as new 

set-to-cluster, denote as St,i
(1), i∈{1, 2, ..., 6}, then go to Step 5; 
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Step 4. Skipped; 

Step 5. Merge sets-to-cluster and manage the SFD after merging to be no 

greater than SDF threshold b1. The result sets are S1,1
(2)={X1, X2, X3, X4}, 

S1,2
(2)={X5}, S1,3

(2)={X6}. SFDs of the sets are SFD(S1,1
(2))=0.75, SFD(S1,2

(2))=0, 

SFD(S1,3
(2))=0; 

Step 6. Not satisfied with the results, need another adjustment.  

Steps of the second adjustment 

Step 1. Reset the SFD threshold to b2=0.5; 

Step 2. Create a set for each previous result sets as S2,1
(0)={X1, X2, X3, X4}, 

S2,2
(0)={X5}, S2,3

(0)={X6};  

Step 3. Since SFV(S2,1
(0))=0.75>b2, we cull off the last client in the set (X4), 

denote the remaining part as S2,1
(1). Create a new set for X4, denote as S2,4

(1); 

Step 4. Calculate the SFD of set S2,1
(1):  

(1) (0)

2,1 2,1 4 2

| NS | 2
SFD( ) SFD( { }) 0.22 .

| | 3 2
S S X b

N S
     

 
 

At this point, the new sets-to-cluster are S2,1
(1)={X1, X2, X3}, S2,2

(1)={X5}, 

S2,3
(1)={X6}, S2,4

(1)={X4}, SFDs are all below b2;  

Step 5. Merge new sets-to-cluster, obtain the result sets of the second 

adjustment (Table 2);  

Step 6. Finish.  

Table 2. Clustering result of the example 

Clients All ordered  Partial ordered SFD 

X1, X2, X3, X6 1, 8 2, 3, 4 0.375 

X4, X5 5, 6, 7, 8 2 0.125 

In this example, B-CABOSFV clustering made use of the results of the previous 

adjustment, which saved two addition operations. 

3. Simulated annealing optimization 

The optimization of SFD threshold b combination is crucial to CABOSFV 

clustering. Different from classic CABOSFV, Bidirectional CABOSFV can make 

use of the results of previous adjustment, which decreases the time complexity 

greatly and improves the feasibility of iterative optimization. 

Simulated Annealing is derived from the Metropolis algorithm [25]. It has 

been used to solve large-scale combinatorial problems by K i r k p a t r i c k  et al. 

[17]. The authors created an analogy between combinatorial optimization and the 

annealing of solids. In this process, an atomic configuration for a solid must be 

found such that it minimizes internal energy. In optimization cases, a solution to the 

problem is compared to an atomic configuration, and the internal energy to the 

objective function. 

The main features of the method are Temperature (T) and Temperature Length 

(TL). In order to achieve the best atomic configuration, the solid temperature must 

be slowly reduced. In the optimization case, the temperature variable determines the 
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chances of acceptance of a solution. The Probability of Acceptance (PoA) is a 

function of temperature and the Objective Function Value (OFV), and is calculated 

by 

(9)  PoA(OFV, T) = e–OFV/T. 

ΔOFV denotes the difference between the OFV of current solution and the new 

solution. If a new solution is better than the current, it is automatically accepted. If 

it is worse, it still has a chance of acceptance. When temperature is high, these 

chances are also high and more uphill moves are accepted. Such strategy leads to 

local minima avoidance, preventing premature stagnation in non-optimal solutions. 

The temperature must remain the same for a given number of moves before it is 

reduced. That given number of moves is represented by the TL. A schedule for 

temperature reduction must be set. After all the allowed moves are performed in a 

temperature level, it is reduced according to 
(10)  Tk+1 = Tk, 

where T is the current temperature; k is the current iteration; α is a decreasing rate 

parameter. 

3.1. Objective function 

We use two clustering validity indexes as objective function. 

3.1.1. Internal clustering validity index CVISFD 

CVISFD [26], which is proposed based on DB*, is used to evaluate the clustering 

results: 

(11)  c

c 1
c

1 1
max SFD SFD

1
CVISFD( )

min SFD
i i

i j
j j i

n i j

i
x y

x C y C

n n
n

n





 

 
 

 
 

 
,

,
,

,
 

where nc is the number of result clusters; Ci is the i-th cluster; ni is the number of 

objects of Ci; SFDi is the sparse feature dissimilarity of Ci; SFDx,y is the sparse 

feature dissimilarity of object x and y. 

A lower value of CVISFD indicates the lower dissimilarity in each clusters, 

and higher dissimilarity between clusters, and vice versa. Thereby reflects the 

quality of clustering. 

As an internal criterion, CVISFD has no requirement of prior knowledge. 

3.1.2. External clustering validity index Averaged Accuracy (AA) 

Table 3 shows the four possible cases on the objects. 

Table 3. Cases on objects 

Desired categories 
Result categories 

Same  Different  

Same  a b 

Different  c d 
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Positive Accuracy (PA):  

(12)  PA / ( ).a a c   

Negative Accuracy (NA): 

(13)  NA / ( ).d b d   

Averaged Accuracy (AA): 

(14)  
PA NA / ( ) / ( )

AA .
2 2

a a c d b d   
   

AA takes both positive and negative accuracy into consideration to evaluate the 

clustering quality with objectivity and comprehensiveness. 

As an external criterion, AA can help to verifying the performance and 

theoretical limits of the algorithm. 

3.2. Data pre-processing: Weighted sorting 

Definition 7. Weighted sorting with uncorrelated sequences. Given n objects, 

object i is described by attributes Ai1, Ai2,…, Aim, uncorrelated sequence  

M=(M1, M2,…, Mm)，the uncorrelated sequence index of object i is  

(15)  1 1 2 2 ... ,i i i m imq M A M A M A     

Sorting the objects by qi is defined as Weighted Sorting with Uncorrelated 

Sequences. 

Pre-process the input data with this method would decrease the input order 

sensibility and improve the quality of CABOSFV clustering [16]. 

3.3. Combinatorial optimization 

Definition 8. Parameter Vector, PV. Given n parameters for multiple adjustments, 

define PV(n) = (b1，b2，…, bn) as PV. 

Strategy 1. Multi-adjustment Clustering. Given PV(n) = (b1，b2，…, bn) is 

the input parameter of one iteration, consecutively perform adjustment clustering 

(Definition 6) with SFD threshold b1，b2，…, bn, initial clusters of each 

adjustment are the result of previous adjustment. Thus n times of adjustments are 

regarded as one iteration. 

Definition 9. Parameter Selection Vector, PSV. Given n parameters for 

multiple adjustments, n-1 parameter selection indexes s1, s2, …, sn-1, define 

PSV(n)=(s1, s2, …, sn-1) as Parameter Selection Vector. 

Strategy 2. Parameter Selection. Given PV(n)=(b1, b2, …, bn),  

PSV(n)=(s1, s2,…, sn-1), select parameters by 

(16)  
0,adopt ,

ignore , 0,

i i

i i

b s

b s





 

to produce the selected parameter vector PVʹ(m)=(b1, b2, …, bm), 1 ≤ m ≤ n. 

Use both PV and PSV as input of SA optimization. By Strategy 1 and  

Strategy 2, we are able to optimize the number and parameters of adjustments, 

thereby achieve the optimal clustering result. 
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3.4. Algorithm steps 

The steps of the p-th iteration are as followed in Fig. 2. 

Check SFD

No greater 
than bt

Merge sets
(Addition)

Y

Cull off object
(Subtraction)

N

N

Adjustment clustering

Y
Stopping 
criteria

End

Eveluate CVISFD / AA

SA optimization

Adjustments 
completed

NY

Generate PV & PSV

Start

 
Fig. 2. Plot of steps of B-CABOSFV with SA 

Step 1. Generate new PV and PSV by SA, thereby specify the number of 

adjustment times T, and SFD threshold bt for each adjustment; 

Step 2. Create a set for each of the n objects or sets from the previous result as 

the initial sets of the t-th adjustment (1 ≤ t ≤ T), denote as St,i
(0), i∈{1, 2, ..., n}; 

Step 3. Calculate the SFD of each set. Obviously, set contains only one object 

has a SFD of 0. If the SFD of all sets are no greater than bt, add 1 to the superscripts 

of sets, denote as St,i
(1), i∈{1, 2, ..., n}, regard as new sets-to-cluster and go to  

Step 5; if SFV(St,i*
(0)) is greater than bt, cull off the last object in the set, denote 

S't,i*(0) as St,i*
(1). Create a new set-to-cluster for the object culled off, denote as 

St,n+1
(1), then go to Step 4; 

Step 4. By Subtraction of BSFV, calculate  

       1 0 0 0 0

, * , , 1

( )) ( )

, ,

( )

1

( ) ) (SFV SFV SFV SFV ,t i t i t n t i t nS S S S S      

then go back to Step 3; 

Step 5. Similar to classic CABOSFV clustering, by addition of BSFV, merge 

sets-to-cluster and manage the SFD after merging to be no greater than SDF 

threshold bt, obtain the clustering result denoted as St,i
(2), i∈{1, 2, ..., k}. If the 

adjustment number t reaches T, go to Step 6; else, t→t+1, go back to Step 2; 



 38 

Step 6. Use cluster validity index to evaluate the result, if it reaches the 

stopping criteria of SA, terminate the process; else, p→p+1, go back to Step 1. 

3.5. Time complexity 

Considering addition and subtraction of BSFVs have the same complexity, the time 

complexity of one B-CABOSFV iteration is  

(17)  
1

,
t

i i

i

T O m k q


 
  

 
  

where m is the number of the attributes; t is the total number of adjustments; ki is 

the number of result clusters after the i-th adjustment. qi is the number of initial 

clusters before the i-th adjustment, which is given by 

(18)  

1

, 1,
1, 2,..., ,

, 1,
i

i i
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where n is the number of objects in data set, pi is the number of objects culled off in 

the i-th adjustment.  

Apparently, in classic CABOSFV clustering, qi=n, i∈{1, 2,..., t}. So the ratio 

of the time complexity of B-CABOSFV to classic CABOSFV is  

(19)  ratio 1

1 1

( ) / .
t t

i i i i

i i

T k p k nk

 

    

With the increasing of the times and precision of the adjustments, the total 

time B-CABOSFV clustering takes is far less than classic CABOSFV clustering. 

4. Experiments 

4.1. Experimental method 

Test on 2 UCI data sets (Table 4) with the objective function of CVISFD and AA. 

The length of initial PV is 5. 

Table 4. Date sets for experiments 

Data set #Instances #Attributes #Categories 

Zoo 101 16 7 

Small soybean 47 35 4 

Since each iteration includes multiple adjustments, we use Equivalent Iteration 

Time (EIT) to compare the time efficiency between bidirectional and unidirectional 

CABOSFV: 

(20)  
1

EIT( ) ( / ),
n

i ii
n T t


  

where n is the number of iterations; Ti is the time cost of the i-th iteration; ti is the 

adjustments times of the i-th iteration. Mean Equivalent Iteration Time (MEIT) is 
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(21)  
1

1
MEIT( ) ( / ).

n

i ii
n T t

n 
   

Apparently, to unidirectional CABOSFV, the value of ti is always and only can 

be 1. 

4.2. Results 

Tables 5 and 6 and Figs 3 and 4 show the results with the objective function of AA. 

Table 5. Result on data set Zoo (AA) 

Input length 

 of PV 

Number of optimal  

adjustment times 
AA 

Mean adjustment times  

per iteration 
MEIT (ms) 

1 1 92.9% 1 60.9 

2 2 98.9% 1.94 36.3 

3 3 99.1% 2.61 34.2 

4 3 99.1% 2.90 33.6 

5 3 99.1% 2.95 33.6 

 

  
a) Equivalent iteration time b) Mean equivalent iteration time 

Fig. 3. Time cost on data set Zoo 

Table 6. Result on data set Soybean (AA) 

Input length 

 of PV 

Number of optimal  

adjustment times 
AA 

Mean adjustment times  

per iteration 
MEIT (ms) 

1 1 91.3% 1 31.0 

2 2 98.5% 1.93 22.4 

3 3 100% 2.58 19.7 

4 3 100% 2.84 19.3 

5 3 100% 2.83 19.7 
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a) Equivalent iteration time b) Mean equivalent iteration time 

Fig. 4. Time cost on data set Soybean 

Table 7 shows the result with the objective function of CVISFD. 

Table 7. Result with CVISFD 

Input length 

 of PV 

Zoo Soybean 

Number of optimal  

adjustment times 
CVISFD AA 

Number of optimal  

adjustment times 
CVISFD AA 

1 1 0.062 91.9% 1 0.019 78.9% 

2 2 0.042 96.9% 2 0.013 78.4% 

3 3 0.035 98.5% 3 0.008 75.6% 

4 4 0.031 79.7% 3 0.008 75.6% 

5 5 0.030 86.1% 3 0.008 75.6% 

4.3. Discussion 

Discussions of the experimental results are as followed: 

In SA iterations, Bidirectional CABOSFV adjustments have an obvious 

advantage on iterative time than classic CABOSFV, which indicates Bidirectional 

CABOSFV adjustment’s ability of making full use of previous results can reduce 

considerable number of repeated clustering process. This provides a reference for 

further extending Bidirectional CABOSFV based on iterative optimization. 

MEIT decreases with the increase of adjustment times, but the rate of change 

decreases gradually. The reason seems to be, that in a probabilistic sense, the length 

of SA selected parameter vector tends to the median, reducing the influence of 

higher adjustment number on MEIT. Therefore MEIT can be further reduced as the 

length of initial PV increases. 

According to both internal and external criteria results, the lengths of optimal 

PVs, the optimal adjustment times, are all greater or equal to 3, validated the 

improvement on clustering quality of multi-adjustment clustering. 

The internal criteria result of dataset Zoo is ideal, but the internal criteria result 

of Soybean is relatively low, consider the internal clustering validity index is still to 

be improved. Meanwhile, the external criteria results of both datasets are 

remarkably good, proved that the theoretical limit of clustering quality has been 

improved. Also, with proper clustering validity index, the requirement of initial 

parameter determination can be circumvented by the algorithm. 
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5. Conclusion 

A method of multi-adjustment clustering is proposed on the base of parameter 

adjustment method and parameter selection method. To approach the optimal 

solution of multi-adjustment clustering, Simulated Annealing is used with the object 

function of clustering validity indexes. Both, time complexity analysis and 

experiments on UCI datasets prove that the proposed algorithm has a fine 

computational tractability through iterations, the clustering quality is improved, and 

the requirement of initial parameter determination can be circumvented. In general, 

the attainable clustering quality is higher by multi-adjustment clustering, which 

indicates that the sensibility of clustering order has been reduced through separation 

and re-aggregation of the objects. 

In addition, how to design a more reliable internal clustering validity index 

remains to be studied further. 
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