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Abstract: Internal clustering validation is recognized as one of the vital issues 

essential to clustering applications, especially when external information is not 

available. Existing measures have their limitations in different application 

circumstances. There are still some deficiencies for Internal Validation of Boolean 

clustering. This paper proposes a new Clustering Validation index based on Type of 

Attributes for Boolean data (CVTAB). It evaluates the clustering quality in the light 

of Dissimilarity of two clusters for Boolean Data (DBD). The attributes in the 

Boolean Data are categorized into three types: Type A, Type O and Type E 

representing respectively the attribute values 1,0 and not the same for all the 

objects in the set. When two clusters are composed into one, DBD applies the 

numbers of attributes with the types changed and the numbers of objects changed to 

measure dissimilarity of two clusters. CVTAB evaluates the clustering quality 

without respect to external information 

Keywords: Clustering Validation index based on Type of Attributes for Boolean 

data (CVTAB), Dissimilarity for Boolean Data (DBD), internal clustering 

validation index, Boolean data, high dimensional data. 

1. Introduction 

1.1. Background 

Nowadays, data volume increases explosively along with the computer technology 

fully integrated into the social life. Internet applications, such as Micro-Blog, Social 

Network, and e-business, produce a large amount of data particularly in recent 

years. Data mining is the core of knowledge discovery in databases. 

Technologically, it is a process, to get implicit pattern from the various, incomplete, 
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fuzzy, and random data. With abundant methods of data acquisition, data normally 

has two characteristics, high dimensionality and no label. Specifically, a great deal 

of research work has focused on unsupervised high dimensional data mining. In 

fact, some clustering algorithms, such as k-means [1, 2], are commonly used in 

practice.  

Cluster analysis, as a main task of data mining, groups objects to clusters, so 

that objects in the same cluster are more similar to each other than to those in other 

clusters. It is also a common technique for statistical data analysis used in many 

fields, such as machine learning, image analysis, pattern recognition, information 

retrieval, bioinformatics and so on [3]. The result of cluster analysis depends on 

characteristics of the data set, but no matter what the data distribution pattern is the 

clustering algorithm can always give a result. So, the index evaluating the quality of 

clustering result is very significant [4, 5], particularly for high dimensional and 

large in size data, such as Time-series data [6]. 

The clustering validation index falls into three types [7]: External Index, 

Internal Index and Relative Index. External Index focuses on comparing clustering 

results with the external information; Internal Index focuses on evaluating the 

goodness of a clustering structure without respect to external information; Relative 

Index focuses on comparing the results of various algorithms of clustering. Among 

the 3 of them, only Internal Index can evaluate the clustering results by the interior 

information of data set without the information outside of the data set such as 

original category labels. So, Internal Index is more practical [8]. In practice, 

Internal Index can also be used to select the suitable algorithm and parameter of 

algorithm objectively. 

Categorical data and Boolean data widely exist [9]. The difference between the 

Boolean data and categorical data is that the attributes of the Boolean data are only 

0 and 1, but those of the categorical data are not. The multiple category attributes 

can be converted into binary attributes by using 0 and 1 to represent either a 

category absent or present [10]. This paper focuses on the evaluation of Boolean 

data clustering. It is also applicable to categorical data, which can be transformed 

into Boolean data harmoniously. 

1.2. Related work 

Clustering validation measures can be affected by various data characteristics [11], 

such as data type and noise. Internal Index evaluates the clustering result sensitive 

to the properties of data set and clusters. Specifically, compactness inside a cluster 

and separation among the clusters are closely related with Internal Index [12], and 

many researches focus on it. 

For a dataset X, n is the number of objects. The dataset is divided into nc 

subset; X=C1∪C2 ∪ …∪Cnc; c is the centroid of X, and ci is the centroid of Ci; ni is 

the number of objects in Ci; d (xi, xj) is distance between xi and xj. But most of the 

Internal Indices lack pertinence to Boolean data. Some indices are shown in  

Table 1. 

 

https://en.wikipedia.org/wiki/Statistics
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Table 1. Some of internal indices 

Index Equation of Definition 
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and i, j, p = 1, 2,… , nc; q is a parameter of I index, and q = 2 in this paper. 

Besides, dissimilarity, as an essential element of the Internal Index, is often 

used in many algorithms for Boolean data. In k-modes [17], the dissimilarity 

measure between two objects is defined by the total mismatches of the 

corresponding attribute. Formally, 
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where X and Y denote the categorical objects, xj and yj denote the attributes of X and 

Y, j = 1, 2, …, m; Nj denotes the coefficient. If d(X, Y) gives equal importance to 

each category of an attribute, Nj = 1. But if the frequencies of categories in the data 

set are taken into account, Nj is half of the harmonic average of nxj and nyj, where nxj 

and nyj are the numbers of objects in X and Y respectively. The smaller the number 

of mismatches is, the more similar the two objects are. This measure can only 

evaluate the dissimilarity of the objects, not that of categories or clusters. 

In CABOSFV [18], which is a clustering algorithm for high dimensional 

sparse data, the measure named Sparse Feature Dissimilarity (SFD) is proposed to 

represent the dissimilarity of the objects in a set, and it is defined as: 
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SFD ,
e

X a



 

where a denotes the number of attributes that equal 1 for all objects, e denotes the 

number of attributes that equal 1 for some objects and equal 0 for other objects. |X| 

indicates the number of objects in set X. The smaller the SFD is, the more similar 

the objects are. However, SFD can only measure the dissimilarity of the objects in a 

set or cluster rather than that between two sets or clusters. 

Boolean data clustering is impacted negatively by lacking Internal Index 

which has pertinence to data with binary attributes. This paper proposes a new 

index to evaluate the effectiveness of the Boolean data clustering. 

2. Concepts and definitions 

To evaluate the dissimilarity of two clusters, the new index is proposed to measure 

the validation of clustering. Let A1, A2, …, Am be m attributes of the dataset X, 

describing a space Ω; Ω is a Boolean space if all A1, A2, …, Am are Boolean.  
Aj, whose acceptable values are only 1 and 0, is called a Boolean attribute, for  

j=1, 2, …, m. 

2.1. The definition of attribute types 

Let X = {x1, x2, …, xn} be a set of n objects with Boolean values and X . For the 

Boolean dataset, the attributes can be categorized into three types. Type A is 

defined for attributes which values are 1 for all the objects in X; Type O is defined 

for attributes whose values are all 0; Type E is defined for attributes that have not 

the same value for all the objects in X. Then the space Ω would be divided into 

three subsets, JA, JO and JE. For dataset X, if the attribute Ai belongs to Type A 

attributes, Ai∈JA; if the attribute Ai belongs to Type O attributes, Ai∈JO; and if the 

attribute Ai belongs to Type E attributes, Ai∈JE, for 1≤i≤m. Apparently, set JE shows 

the differences and JA∪JO shows the similarity.   

2.2. Dissimilarity of two Boolean sets 

For Boolean data, to compare the dissimilarity of two clusters Ci and Cj, Ci and Cj 

can merge into one cluster CU, and CU = Ci ∪ Cj. For CU, JA, JO and JE can be 

calculated as (1), (2) and (3): 

(1) JAU = JAi ∩ JAj, 

(2) JOU = JOi ∩ JOj, 

(3) JEU = CU (JAU ∪ JOU ), 

where JAi denotes the set JA in Ci; JOi denotes the set JO in Ci; JAj denotes the set JA 

in Cj; JOj denotes the set JO in Cj; JAU denotes the set JA in CU; JOU denotes the set JO 

in CU; CU (•) denotes calculating the complementary set. Composing Ci and Cj will 
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result in some attributes of Type A or O altered to E, but Type E attributes in Ci or 

Cj cannot be changed in CU obviously. Fig. 1 shows this process. 

 
Fig. 1. The altering process of attributes 

According to Fig. 1, the attribute of Type A or Type O meeting the attribute of 

Type E before composing will be altered into Type E in CU. This means that when 

two different clusters are put into one, the differences will be more, but similarity 

will be less without considering the number of the objects in clusters. Therefore, the 

situation Type A meeting Type O should be focused on, and that is marked by the 

bold arrows in Fig. 1. and the number of the Type A attributes meeting Type O 

attributes is used to measure the dissimilarity from the attributes altered as  

(4) AlterAiOj = JAi ∩ JOj, 

where AlterAiOj denotes attributes altered to E by Type A in Ci meeting Type O in 

Cj; JAi denotes the set JA in Ci; JOi denotes the set JO in Ci; JAj denotes the set JA in 

Cj; JOj denotes the set JO in Cj. 

Furthermore, 1 is usually paid more attention than 0, particularly for sparse 

data, and the dissimilarity from attributes altering can be indicated by DFAA 

(Dissimilarity From Altered Attributes) as  
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where |•| denotes the number of elements in the set; ni denotes the number of objects 

in Ci; nj denotes the number of objects in Cj. According to (5), AlterAiOj denotes the 

Type A attributes in Ci altering to Type E by meeting Type O in Cj, and AlterAjOi 

denotes that in Ci;  
jii nnn   and  

jij nnn   are the weights. In symmetric 

variables, 0 and 1 are equally important. So the weights in (5) will not be taken into 

consideration, and DFAA is the number of Type A meeting Type O, and it is  

(6) ijji OAlterAOAlterADFAA ∪  

On the other hand, the number of objects in Ci and Cj respectively can also 

effect the dissimilarity of the two clusters. The value of this dissimilarity is the 

number of objects in CU minus the harmonic average of those in Ci and Cj, and it is  
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where DFN (Dissimilarity From Number) denotes the dissimilarity from the 

number of objects in cluster; n denotes the number of objects in CU, and n = ni +nj. 

Thus the Dissimilarity for Boolean Data (DBD) between Ci and Cj is 

composed by DFAA and DFN, and it is shown as 

(8) DBD DFAA DFN.   

In this paper, DBD (Ci, Cj) indicates the DBD of the cluster Ci and Cj. 

2.3.  CVTAB for clustering validation 

CVTAB (Clustering Validation index based on Type of Attributes for Boolean data) 

based on DBD can evaluate the validation of clustering for Boolean data. CVTAB 

is the average of the DBD between each two clusters. 

Let X = {x1, x2, …, xn} be a set of n objects and A1, A2, …, Am be m attributes 

of the dataset, then X . After clustering, X is partitioned into k subsets, and  

X = C1 ∪ C2∪…∪Ck. In Ci, there are ni objects for 1≤ni≤k, and CVTAB is  

(9) 
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CVTAB is positively associated with the effects of the clustering. The higher 

CVTAB, the better effects of clustering. Because higher CVTAB denotes more 

differences between each two clusters and more similarities in each cluster. The 

bigger value of CVTAB means the better effect of clustering. 
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3. Steps and examples 

Let X = {x1, x2, …x7}, and X is a Boolean dataset. x1, x2, …, x7 are seven objects in a 

dataset, and A1, A2, …, A16 are the attributes. Let’s assume that C1 = {x1, x2},  

C2 = {x3, x4, x5}, C3 = {x6, x7}. The dataset X is as given in Table 2. 

Table 2. The dataset X 

Cluster Object  
Sequence of attributes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

C1 
X1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 

X2 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 

C2 

X3 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 

X4 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 

X5 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 

C3 
X6 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 

X7 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 

3.1. Example of DBD 

According to Fig. 1, after C1 and C2 merged to CU, the types of attributes are 

transformed as given in Table 3. Further on, the sets JA, JO and JE of cluster C1, 

cluster C2, and the composed cluster CU are shown in Table 4. Based on Table 4, the 

AlterAO, DFAA, DFN, and CVTAB can also be calculated, and this process can be 

indicated with Venn diagram, shown on Fig. 2. 

Table 3. The types of attributes in C1, C2 and CU 

Cluster 
Sequence of attributes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

C1 O A E E O E O O O E O O E O E O 

C2 A A E E E A O O E O E A E O O E 

CU E A E E E E O O E E E E E O E E 

 

Table 4. The sets of JA, JO and JE 

Cluster Type of sets Sequence of attributes 

C1 

JA1 2, 13, 15 

JO1 1, 5, 7, 8, 9, 11, 12, 14, 16 

JE1 3, 4, 6, 10 

C2 

JA2 1, 2, 6, 12 

JO2 7, 8, 10, 14, 15 

JE2 3, 4, 5, 9, 11, 13, 16 

CU 

JAU 2 

JOU 7, 8, 14 

JEU 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 16 
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Fig. 2. Venn diagram of composing C1 and C2 

According to Table 4 and Fig. 2, there are 12 elements in set JEU, and 9 of 

them are from JE1 and JE2 which are not transformed, but three of them are from JA1 

and JA2. Specially, Attribute 15 is in the intersection of JA1 and JO2. Attribute 1 and 

attribute12 are in intersection of JO1 and JA2. According to (5), (7) and (8), DBD is 

calculated as:  

 1 2AlterA O 15 1,   

 2 1AlterA O 1,12 2,   

2 3
DFAA 1 2 1.6,

5 5
      

 
2

DFN 2 3 2.6,
1 1
2 3

   


 

DBD DFAA DFN 4.16.    

In this example, DBD of C1 and C2 is 4.16. Similarly, DBD of C1 and C3 is 

7.00, and DBD of C2 and C3 is 3.64. 

  
(a) JA1, JA2, JAU (b) JO1, JO2, JOU 

 

 

 

 
(c) JE1, JE2 (d) JE1, JE2, JEU 

 

 

 

 
(e) Type A altered to E in JA1 (f) Type A altered to E in JA2 



 240 

3.2. Example of CVTAB 

As above, DBD of each two clusters can be calculated, and the results will be a 

symmetric matrix as given in Table 5, and there are 6 values in it. The average of 

these values is CVTAB. According to (9), the CVTAB is calculated as: 

 

4 16 7 00 4 16 3 64 7 00 3 64
CVTAB 4 9333

3 3 1

. . . . . .
. .

    
 

 
 

Table 5. Symmetric matrix of DBD 

Cluster C1 C2 C3 

C1 – 4.16 7.00 

C2 4.16 – 3.64 

C3 7.00 3.64 – 

4. Experiments 

4.1. Experiment design 

In this experiment, k-modes algorithm on two UCI data sets (Table 6) are 

implemented in Matlab R2015b to measure the effectiveness of clustering. To 

compare the effectiveness of various clustering validation measures, the selected 

data set has external information, original clustering label. For data of zoo, after 

eliminating the repeated objects, there are 59 objects in it. Another 6 indices 

Calinski-Harabasz index (CH), Dunn index (D), I index (I), Silhouette index (S), 

Normalized Mutual Information (NMI) [19], and Accuracy Index(ACC) will also 

be used as comparative indices to evaluate the validation properties and 

performances of CATAB. Among these indices, CH, Dunn, I, and S are internal 

clustering validation measures, focusing on the data set, but NMI and ACC are 

external clustering validation measures. 

Table 6. Data sets for experiments 

Data set Instances Attributes Categories 

Zoo 101 16 7 

Small Soybean 47 35 4 

Tests of k-modes would be carried out 100 times to eliminate the effects of 

randomness, and each time involves different parameters of k whose range is 2-11. 

4.2. Results and analysis 

Table 7 and Table 8 show averages of 100 times clustering results by k-modes. 

There are some null values in ACC column because ACC cannot evaluate the result 

while calculated number of clusters is larger than that of actual clusters.  
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Table 7. Results of data Zoo by k-modes 
k CVTAB CH D ( 10–1) S ( 10–3) I ( 10–1) NMI ACC 

2 5.99 49.18 4.69 21.75 19.29 0.39 0.51 

3 9.52 31.18 4.27 32.18 17.22 0.56 0.65 

4 11.14 23.37 4.31 42.94 12.22 0.63 0.71 

5 12.47 18.96 4.44 47.70 9.60 0.67 0.72 

6 13.41 16.66 4.15 58.57 8.29 0.69 0.75 

7 13.60 13.95 4.12 69.23 7.02 0.82 0.75 

8 13.90 12.22 4.02 81.43 6.14 0.68 – 

9 13.32 11.50 4.04 93.11 5.39 0.68 – 

10 13.17 10.21 4.00 105.27 4.96 0.67 – 

11 12.92 9.65 4.00 105.98 4.38 0.67 – 

Table 8. Results of data Small Soybean by k-modes 

k CVTAB CH D ( 10–1) S ( 10–2) I ( 10–1) NMI ACC 

2 32.10 39.04 7.22 2.86 4.61 0.45 0.57 

3 43.73 22.34 6.67 4.34 3.18 0.65 0.78 

4 44.69 16.73 5.74 5.49 2.30 0.90 0.87 

5 39.21 12.63 5.32 5.74 1.67 0.72 – 

6 35.39 10.72 5.29 6.13 1.35 0.70 – 

7 31.99 9.14 5.33 7.56 1.10 0.69 – 

8 28.79 8.14 5.39 8.25 0.93 0.67 – 

9 26.38 7.06 5.42 8.94 0.81 0.64 – 

10 24.04 6.26 5.45 9.65 0.71 0.62 – 

11 22.80 5.91 5.59 10.20 0.64 0.64 – 

According to Table 7 and Table 8, the Fig. 3 shows the trends of the results 

under various numbers of clusters (k) to compare these indices after data 

standardization. ACC is ignored on Fig. 3 considering the null values. In fact, 

determining the number of clusters is one of the most important clustering 

validation problems [20]. 

According to Fig. 3a and b show the results of internal validation indices. CH, 

S, and I have a significant monotonic relationship with k. Among them, CH and S 

show monotonic increase, but index of I shows monotone decrease. This means that 

obviously, CH, S, and I are affected by k on Boolean data. Because of being 

sensitive to k, they cannot evaluate the results of clustering objectively and validly. 

As for Dunn index, it shows stationarity both in (a) and (b) for being sensitive to 

noise. And this will add the uncertainty to evaluation. So, CH, I, S and D are not 

suitable for Boolean data, and all of them cannot determine the best k for k-modes 

algorithm. However, on data Zoo, CVTAB increases rapidly from k=2 to k=5, and 

increases smoothly from k=5 to k=9, then decreases. On data Small Soybean, 

CVTAB shoots up until k=3, and increases smoothly from k=3 to k=4, then falls 

rapidly. In summary, CVTAB has the obvious peak value as the increase of k 

values, and it suggests the recent, even “correct”, cluster number on Boolean data, 

while CH, I, S and D cannot do it. 
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(a) Internal indices on data Zoo (b) Internal indices on data Small Soybean 

  

(c) CVTAB and NMI on data Zoo (d) CATAB and NMI on data Small Soybean 

Fig. 3. Clustering results by k-modes 

On Fig. 3c and d is shown the trend of CVTAB and NMI as the increase of k 

values. As an internal evaluation index, CVTAB shows consistency with the 

external clustering validation measures, and the normalized value of CVTAB is 

near that of NMI. NMI is more accurate than CVTAB on data Zoo, but on data 

Small Soybean, both of them show the same superiority. Apparently, since NMI is 

an external validation measure, it knows the “true” cluster number in advance and 

usually is more precise than an internal measure. However, internal validation 

measures are the only option for cluster validation without external information, 

and the conditions when the external information is not available are more common 

in practice. From this perspective, CVTAB is more applicable. 

5. Conclusion 

CVTAB is an effective internal clustering validation measure for high dimensional 

Boolean data. It is also suitable for categorical data which can be translated into 

Boolean data. Experimental results show that compared with some internal 

validation indices (CH index, I index and S index), CVTAB shows consistency with 
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the external clustering validation measure (NMI); CVTAB can point the best 

clustering result instead of showing monotonicity with the parameter of algorithm. 

Meanwhile, CVTAB is not as sensitive to noise as Dunn index (internal validation 

index). Compared with NMI which is external validation index, CVTAB evaluates 

the clustering validation without external information. From this perspective, 

CVTAB is more applicable. 

In addition, CVTAB can optimize clustering algorithm by determining the 

parameter of the clustering algorithm, or by selecting optimal results from many 

experiments to avoid the negative impacts from randomness. 
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