
 45

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 4

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0066

An Approach of XML Query Evaluation Based Model Checking

Li Yan-Mei, Huang Shao-Bin, Li Ya, Xu Li

College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

Emails: liyanmei@hrbeu.edu.cn huangshaobin@hrbeu.edu.cn liya@hrbeu.edu.cn

Xuli@hrbeu.edu.cn

Abstract: In this paper, we show the process inspired by model checking which

integrate temporal logic to the application of semi-structured data query. We

investigate the potential of a technique based on CTL (Computation Tree Logic)

model checking for evaluating queries expressed in (a subset of) XPath. Our research

consists of query algebra, constraint understanding and expression mapping. The

core of research is mapping the XML query algebra to an expression collection of

temporal logic. We try a new kind of query execution strategy to enhance the accuracy

of semantic description of the XML query. For the purpose of supporting the

generation of the formal specifications and reducing the mapping processing, the

XML query constraint can be converted to a specification of SPS (Specification

Pattern System) through which we get the formula set to evaluate path queries

directly on CTL formula.

Keywords: XML, model checking, Xpath, temporal logic, SPS.

1. Introduction

Twigs pattern is a common XML query strategy whose core ideas are decomposition

and connection. We convert the query to binary relations contained child-parent

relationship or ancestors-descendents, and merge the structural results with a

connected algorithm after matching process. The relationship between XQuery and

temporal logic has been investigated in [1, 2, 9]. The familiar correspondences

between logic and XML languages are automata and regular language [3]. By using

tree automata, pushdown automata, register automata and pebble automata, some

researchers anaylzed the nature of XML language and established the contact

between the sorts of automata and validate XML [4, 8]. In the aspect of temporal

logic, we drew the conclusion that a query can be stated in query language Q if and

only if it can be expressed in logic L. Of course, these results always refer to

reasonably abstracted versions and precisely defined subsets of query or schema

languages. In [9], it was shown that a node-selecting query can be stated in the

mailto:liya@hrbeu.edu.cn

 46

navigational core of XPath if and only if it can be expressed in two-variable logic

which restrict the formulas of the first-order logic with two variables.

Some researchers considered that the query in semi-structure data like XML

might be regarded as the constraint satisfiability problem whose constraint

specification is presented expression of temporal logic. In [5, 7], they processed the

subset of Xpath which included vertical axis and label assignment with the temporal

operator {true, ∧, EXϕ, EFϕ}. They proved that the tree patterns in XML query can

be translated to the formula of Computation Tree Logic (CTL). The complexity of

the problem of query containment is serious in [6,10]. So, in this paper, we try to

figure out three problems in XML query evaluation based on the temporal logic.

Firstly, one of the problems is how to analyze and characterize the expressiveness of

XPath algebra by temporal logic. Secondly, we need to identify the restrictions

understanding. Another aspect is the reduction of expression of temporal logic

concerned about Xpath algebra. Finally, we applied the SPS (Specification Pattern

System) to the translation and the study diagram is as the figure1. We devise a linear

translation of the query evaluation for Simple XPath into model checking for CTL.

The translation is sound: a query matches a XML document if and only if the

translated formula matches the XML model.

Fig. 1. Query evaluation with model checking based Computation tree logic

Compared to the popular use of formal verification techniques in software

engineers, it is imperative that automatically generate complex formal specifications

in XML query instead of manually. Through by SPS and Prospec we automatically

generate CTL formulas for character description in XPath. We use formal proofs to

validate the correctness of the templates in XML query. We additional describes a

novel approach to validating CTL formulas using model checker. Formal method

make us to be confident that the formal specifications accurately reflect the intended

query properties.

2. Computation tree logic and XML represents by SPS

In this section, we introduce the formal description and definition of model checking

and the syntax and the semantics of Computation tree logic. Then we present a model-

Query Specification
Understanding

Query Template by
SPS

Format and character
Specification with CTL

Analysis of Power of

CTL fomular

Model checker

XML Query evaluation convert to Logic expression

Transaction
Input

 47

checking algorithm for CTL. Firstly, the CTL is formated as clearly tree structure,

and their Backus-Naur normal form is as following.
Φ ∷=⊥ |T|p|¬Φ|Φ ∧ Φ|Φ ∨ Φ|Φ → Φ|AXΦ|EXΦ|

𝐴FΦ|𝐸FΦ|𝐴GΦ|𝐸GΦ|𝐴[ΦUΦ]|𝐸[ΦUΦ].

CTL formulae is divided into state formulae and path formulae. Intuitively, state

formulae express a property of a state, while path formulae expresses a property of a

path, i.e., an infinite sequence of states, where P is the set of atomic proposition, ⊥ is

absurdity and T presents tautology. A and E are path quantifiers. A is “along all the

path” and E is “at least one path”. X, F, G, U is the temporal operators. X pronounced

“next” and U pronounced “until”. The until operator allows to derive the temporal

modalities F and G, F is “eventually”, sometimes in the future and G is “always”,

from now on forever. F𝜑 ≜ True U𝜑, and G𝜑 ≜ ¬F¬𝜑.

Definition 2.1. The syntax of CTL formula, where 𝜑 is CTL formula, for state

situation the satisfy relation is as follows:
 𝑠| = 𝑎 iff 𝑎 ∈ 𝐿(𝑠)

 𝑠| = ¬Φ iff 𝑠| = Φ is false

 𝑠| = Φ ∧ 𝛹 iff (𝑠| = Φ) and (𝑠| = 𝛹)

 𝑠| = ∃𝜑 iff 𝜋| = Φ，exist 𝜋 ∈ Paths(𝑠)

 𝑠| = ∀𝜑 iff 𝜋| = Φ for all 𝜋 ∈ Paths(𝑠).

For a Path 𝜋 the satisfy relation =is design as follows.

 𝜋| = XΦ iff 𝜋[1]| = Φ

 𝜋| = Φ ∪ 𝛹 iff ∃𝑗 ≥ 0. (𝜋[𝑗]| = 𝛹 ∧ (∀0 ≤ 𝑘 < 𝑗. 𝜋[𝑘]| = Φ)).

where, the path𝜋 = 𝑠0𝑠1𝑠2. .. and the integer 𝑖 ≥ 0，𝜋[𝑖] presents the (i+1)-th

element of 𝜋，that is 𝜋[𝑖] = 𝑠𝑖.

Definition 2.2. CTL formula semantics

Let Sat(Φ) is the maches nodes for CTL state formula Φ,
Sat(Φ) = {𝑠 ∈ 𝑆|𝑠| = Φ}.

For path 𝜋 = 𝑠0𝑠1𝑠2. ..:

𝜋| = FΦ iff 𝑠𝑗| = Φ，∃𝑗 ≥ 0.

These induced that:

𝑠| = ∃GΦ iff ∃𝜋 ∈ Paths(𝑠). 𝜋[𝑗]| = Φ ∀𝑗 ≥ 0，

𝑠| = ∀GΦ iff ∀𝜋 ∈ Paths(𝑠). 𝜋[𝑗]| = Φ ∀𝑗 ≥ 0.

Therefor，GΦ may viewed as the path formula with sementic:

𝜋 = 𝑠0𝑠1𝑠2. . . | = GΦ iff ∀𝑗 ≥ 0, 𝑠𝑗| = Φ.

In the same way，it can conclude that ∃GΦ，∃FΦ，∀FΦ.

That CTL-model checking can be performed by a recursive procedure that

calculates the satisfaction set for all subformulae of Φ.

(a) Sat(true) = 𝑆

(b) Sat(a) = {𝑠 ∈ 𝑆 | a ∈ 𝐿(𝑠)}, for any 𝑝 ∈ 𝑃,

(c) Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ),

(d) Sat(¬Φ) = 𝑆 \ Sat(Φ),

(e) Sat(∃XΦ) = {𝑠 ∈ 𝑆 | Post(𝑠) ∩ Sat(Φ) ≠ ∅},

(f) Sat(∃(ΦUΨ))is the smallest subset 𝑇 of 𝑆, such that

Sat(Ψ) ⊆ 𝑇 and 𝑠 ∈ Sat(Φ) and Post(𝑠) ∩ 𝑇 ≠ ∅ implies 𝑠 ∈ 𝑇.

 48

(g) Sat(∃GΦ)is the largest subset 𝑇 of 𝑆, such that 𝑇 ⊆ Sat(Φ) and
𝑠 ∈ 𝑇 implies Post(𝑠) ∩ 𝑇 ≠ ∅.

(h) Sat(∀XΦ) = {𝑠 ∈ 𝑆 | Post(𝑠) ⊆ Sat(Φ)}.

(i) Sat(∀(ΦUΨ))is the smallest set 𝑇 ⊆ 𝑆 satisfying
Sat(Ψ) ∪ {𝑠 ∈ Sat(Φ) | Post(𝑠) ⊆ 𝑇 } ⊆ 𝑇.

(j) Sat(∀GΦ) is the largest set 𝑇 ⊆ 𝑆 satisfying
𝑇 ⊆ {𝑠 ∈ Sat(Φ)| Post(𝑠) ⊆ T }.

In [11], they provided patterns and scopes to assist the practitioner in formally

specifying software properties with SPS. Each pattern describes the structure of

specific behavior and defines the pattern’s relationship with other patterns. In SPS,

each pattern is associated with a scope. There are five types of scopes defined in SPS:

Global, Before R, After L, Between L And R, and After L Until R.

Table 1. New CP class and XPath semanstic

New CP Class CTL Description for XPath Character XML Query Semantic

AtLeastOne Cluster and Single Node

AtLeastOneC 𝐸𝐴, 𝑎𝑖 ∈ 𝐴
Matching nodes(key-

words)

AtLeastOneH 𝛦F𝐴, 𝑎𝑖 ∈ 𝐴
Matching path rooted the

initial node

Parallel Cluster

ParallelC AFA
Small Lowest Common

Ancestor

ParallelH 𝐸 (F𝑎1 ∧ F𝑎2 … ∧ F𝑎𝑛) Lowest Common Ancestor

Consecutive Continue parent-child Path

ConsecutiveC (𝑎1 ∧ X(𝑎2 ∧ (. . . (∧ X𝑎𝑛)). . .))
Strict parent-child

sequence

ConsecutiveH

(S)
(¬𝑆) ∧ (𝑆1 ∧ X(𝑆2 ∧ (… (∧ X𝑆𝑛)) …)) Non-strict parent-child

Eventual Continue ancestor-descendent Path

EventualC
(𝑎1 ∧ X(¬𝑎2U(𝑎2 ∧ X(. . .∧
X(¬𝑎𝑛−1U(𝑎𝑛−1 ∧ X(¬𝑎𝑛U𝑎𝑛)))). . .)))

Strict ancestor-descendent

sequence

EventualH(S)
(¬𝑆) ∧ (𝑆1 ∧ X(¬𝑆2U(𝑆2 ∧ X(. . .∧
X(¬𝑆𝑛−1U(𝑆𝑛−1 ∧ X(¬𝑆𝑛U𝑆𝑛)))). . .)))

Non-strict ancestor-

descendent

1）Universality(P): Only the states that have the desired property (P). Also

known as Henceforth and Always.

2）Absence(P): Free of certain event or state (P).

3）Existence(P): Contains an instance of certain events or states (P). Also

known as Eventually.

4）Precedence(P, Q): To describe relationships between a pair of events/states

where the occurrence of the first (Q) is a necessary pre-condition for an occurrence

of the second (P). We say that an occurrence of the second is enabled by an

occurrence of the first.

 49

5）Response (P, Q): To describe cause-effect relationships between a pair of

events/states. An occurrence of the first (P), the cause, must be followed by an

occurrence of the second (Q), the effect.

3. XML and query constraint

For the sake of understanding the constraint about Xpath, we model the XML data

with the new introduce definition in the view of temporal logic description.

Definition 3.1. Let XML module 𝑀 = (𝐸, 𝑅). Where 𝐸 is the elements set, 𝑅

presents the edge related to the elements.

In the above definition, 𝑅 actually reflect the relationships the nested structure

of XML and classified with 𝑅↓and 𝑅↑ which respectively represents children and

parents direction, e.g., 𝑅↓
∗X (𝑅↑∗

X) means that it recursively get the parent(child)

node, until it is empty, and X may be nodes or paths.

Definition 3.2. XML Instance 𝐼 = (𝑉, 𝛾, 𝑛, Cons, Alph), where 𝑉 is the set

of nodes, and 𝛾 represents the instance edges, n is the root. That Cons: 𝑉 → 2𝑉

presents the mapping between nodes and alph(𝑡) = 𝐸 means that Albert for

instance I.

Definition 3.3. Let path ℎ(𝑣1) = 〈𝑣1, 𝑣2, . . . , 𝑣𝑛〉, where 𝑣𝑖 ∈ 𝑉, i=1, …, n,

satisfied condition:

(1) ∀𝑖，𝑖 = 1, . . . , 𝑛, ∃𝑣𝑖 → 𝑣𝑖+1, and 𝑣𝑖+1 ∈ cons(𝑣𝑖);

(2) 𝑣𝑛 is the leaf of the path;

(3) 𝑣𝑖 ∈ 𝑉，𝑖 = 1, . . . , 𝑛 − 1, means not branch or predicate.

Definition 3.4. Let path ℎ(𝑣1) = 〈𝑣1, 𝑣2, … , 𝑣𝑛〉, 𝐴(𝑣𝑙) = 𝑎1,
𝐴(𝑣𝑙+1) = 𝑎2, . . . , 𝐴(𝑣𝑙+𝑚) = 𝑎𝑚, 𝑙 = 1, . . . , 𝑛, 𝑚 < 𝑛. We called 𝑇(ℎ) as the strict

label trace of h and denoted by 𝐴(𝑎1𝑎2. . . 𝑎𝑛) ⊆ 𝑇(ℎ). For the path ℎ(𝑣1) and

𝐴(𝑣𝑙) = 𝑎1, 𝐴(𝑣𝑖>𝑙) = 𝑎2, 𝐴(𝑣𝑗>𝑖) = 𝑎3, 𝑖, 𝑗, 𝑙 = 1, . . . , 𝑛, we called �̂�(ℎ) unstrict

label trace of h and denoted by 𝐴(𝑎1, 𝑎2, . . . , 𝑎𝑚) ⊆ �̂�(ℎ). In the same way, let 𝐿 =
{𝑎1, 𝑎2, . . . , 𝑎𝑚} and s presents all the string on L.

Definition 3.5. Let 𝐻(𝑉𝐻 , 𝑇𝐻 , 𝐿(𝑟)), where 𝑉𝐻 presents set of nodes and 𝑇𝐻

is the string collection based 𝐿 = {𝑎1, 𝑎2, … , 𝑎𝑚} and it satisfied conditions:

1) 𝑇𝐻 ⊆ �̃�(ℎ), 𝑇𝐻 = {𝑠} is all sort on alphabet L;

2) 𝑇𝐻 ⊆ �̃�(ℎ)，𝑠𝑖 ∈ 𝑇𝐻 , the string 𝑠𝑖 covered character 𝑟 and all the element of

set 𝐿 𝑟⁄ .

3) Meet the condition (1) or meet (2);

4) Exist no untrivial nodes, 𝐻(𝑉𝐻 , 𝑇𝐻 , 𝐿(𝑟)) is path connected.

Next definition gives the definition of continued parent-child path which have

no nodes test and predicates excepted the last node.

Definition 3.6. Let ℎ(𝑣1) = 〈𝑣1, 𝑣2, . . . , 𝑣𝑛〉, it means the each labels of path

nodes from top to bottom is exactly 𝑎1𝑎2. . . 𝑎𝑛. Let 𝐴(𝑎1, 𝑎2, . . . , 𝑎𝑚) ⊆ �̂�(ℎ), it

means that each labels of path nodes from top to bottom included in 𝑎1𝑎2. . . 𝑎𝑛.

𝑆 ⊆ �̃�(ℎ) expands that above two situation and it means that the trace of the path is

on the alphabet 𝐿 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} no matter its sort.

 50

In the Definition 3.5, it reflects that a cluster of result which either a linear path

with no branch or 𝑟 is its joint and the braches covered all the element of alphabet L.

XPath query which expressed long path structure as the main characteristics

covers a complex branching structure. Based on XPath, Xquery queries integrate the

nested structure of programming which adds the conditional statement. Fig. 2 shows

the XPath syntax structure which is the intermediate products in XML query

researches. Core-XPath is a fragment of XPath, which only covers the navigation

part, but not express any attribute contained data; It is the core of the XPath language

which is able to keep the navigation of a language and give up the arithmetic and

string operations. Core-Data-XPath is an expansion of the Core-XPath language

which contains equal and unequal test concerned Data, and it is undecidable. Vertical-

XPath* defines the fragments of Core-Data-XPath, which applies only forward axis

like child and descendant and reverse axis like parent and ancestor, which do not

allow the siblings axis and permit any XPath expression of asterisks *.

Node Constraint 𝑝: : = 𝑝 ˄ 𝑝 | 𝑝 ˅ 𝑝 | ¬ 𝑝 | ℎ(𝑝)

Path Constraint ℎ ∶: = 𝑟 | 𝑟/ℎ , 𝑟 ∈ 𝑅{𝑅↑, 𝑅↓}

 𝑟 = 𝑟 ∶ : 𝑙 | 𝑟 ∶ : 𝑙 [𝑝]
Semantics for M [[𝑅↑]]𝑀 = {𝑟 | 𝑟 ∈ 𝑅↑, }

[[𝑅↓]]𝑀 = { 𝑟 | 𝑟 ∈ 𝑅↓, }

[[𝑟/ℎ]] 𝑀,𝑥 = {𝑦 |∃𝑘. 𝑘 ∈ [[𝑟]]𝑀,𝑥 , 𝑦 ∈ [[ℎ]]𝑀,𝑥 }

[[𝑝1 ˄ 𝑝2]] 𝑀,𝑥 = [[𝑝1]]𝑀,𝑥 ∩ [[𝑝2]]𝑀,𝑥
[[𝑝1 ˅ 𝑝2]]𝑀,𝑥 = [[𝑝1]]𝑀,𝑥 ∪ [[𝑝2]] 𝑀,x

[[¬ 𝑝]]𝑀,𝑥 = 𝑋 \ [[𝑝]]𝑀,𝑥

[[𝑅↑ [𝑙]]]𝑀,𝑥 = {𝑦 | (𝑥, 𝑦) ∈ [𝑅↑]𝑀 , 𝑦 ∈ 𝐿(𝑙)}

[[𝑅↓ [𝑙]]]𝑀,𝑥 = {𝑥 | (𝑥, 𝑦) ∈ [𝑅↓]𝑀 , 𝑥 ∈ 𝐿(𝑙)}

[[r ∶: 𝑙[𝑝]]]𝑀,𝑥 = { 𝑦|(𝑥, 𝑦) ∈ [axis]𝑀 ， 𝑦 ∈ 𝐿(𝑙) , [[𝑝]]𝑀 , 𝑦 ≠ ∅}

Fig. 2. XPath schematic diagram and recursive syntax and semantics

 51

4. Embedding query constraint into CTL

In practical applications, we often need to describe properties where one or more

patterns or scope parameters are made of multiple propositions, i.e., Composite

Propositions (CP). To describe such patterns, Mondragon and Gates (2004) extended

SPS by introducing a classification for defining sequential and concurrent behavior

to describe pattern and scope parameters. Specifically, the work formally described

several types of CP classes and provided their formal descriptions. CP classes are

categorized to be either of condition type (denoted with a subscript C) or event type

(denoted with a subscript H). They respectively defined eight CP classes to describe

sequential and concurrent behavior. A condition is a proposition that holds over

multiple consecutive states, where an event represents a change in the truth value of

a proposition in two consecutive states.

The four CP classes of condition type are defined as follows:

AtLeastOne𝐶(𝑎1, ⋯ , 𝑎𝑛), 𝐻|root(𝑉), ∀𝑣 ∈ 𝑉𝐻 , ∃ℎ(𝑣), 𝑇𝐻 ⊆ 𝑇(ℎ),
𝑇𝐻 = 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑚, 𝐿 = {𝑎1, 𝑎2, . . , 𝑎𝑚}

Parallel𝐶(𝑎1, ⋯ , 𝑎𝑛),

𝐻|root(𝑉), ∀ℎ(𝑣𝑖) ∈ 𝐻, ∑ ℎ(𝑣𝑖

𝑛

𝑖=1

) = 𝐿, 𝐿 = {𝑎1, 𝑎2, 𝑎𝑛},

Consecutive𝐶(𝑎1, ⋯ , 𝑎𝑛),
𝐻|root(𝑉), ∀ℎ(𝑣𝑖) ∈ 𝐻, 𝑣𝑖 ∈ 𝑉𝐻 , 𝐴(𝑎1𝑎2, . . . , 𝑎𝑛) ⊆ 𝑇𝐻,

Eventual𝐶({𝑎1, ⋯ , 𝑎𝑛}), ∃𝐻, ∀ℎ(𝑣𝑖) ∈ 𝐻, 𝑣𝑖 ∈ 𝑉𝐻 , 𝐴(𝑎1𝑎2, . . . , 𝑎𝑛) ⊆ �̂�(ℎ).
The four CP classes of type event are as follows:

1. AtLeastOn𝑒𝐻(𝑎1, ⋯ , 𝑎𝑛) and AtLeastOne𝐶(𝑎1, ⋯ , 𝑎𝑛),

Parallel𝐻({𝑎1, ⋯ , 𝑎𝑛}) and Parallel𝐶(𝑎1, ⋯ , 𝑎𝑛) is as the same.

2. Consecutive𝐻(𝐿) for

𝐻(𝑉𝐻 , 𝑇𝐻): 𝐻(𝑉𝐻 , 𝑇𝐻), ∀ℎ(𝑣𝑖) ∈ 𝐻, 𝑣𝑖 ∈ 𝑉, 𝐿 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, 𝑆 ⊆ 𝑇(ℎ).

3. Eventual𝐻(𝐿) for

𝐻(𝑉𝐻 , 𝑇𝐻): 𝐻(𝑉𝐻 , 𝑇𝐻), ∀ℎ(𝑣𝑖) ∈ 𝐻, 𝑣𝑖 ∈ 𝑉, 𝐿 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, 𝑆 ⊆ �̂�(ℎ).

Within global scope，the pattern of Absence of P presents as 𝐴G¬𝑃CTL，the

pattern of Existence of P presents as 𝐴F𝑃CTL，and the other patterns is as the

Table 2.

Table 2. Template CTL formulas for patterns within Global scope for Xpath

Pattern CTL Formula Pattern CTL Formula

Q responds

to P
G(𝑃CTL → (𝑃CTL ∧𝑙 F𝑄CTL)) Q Precedes PC*

¬[(¬𝑄CTL)U(𝑃CTL ∧

¬𝑄CTL)]
Q strict

recedes PC
¬ [(¬(𝑄CTL ∧𝑟 ¬𝑃CTL)) U𝑃CTL] Q Precedes PC+ ¬[(¬(𝑄CTL ∧𝑙 ̅ ¬𝑃CTL))U𝑃CL𝑇𝐿]

Q strict

recedes PE
 ¬ [(¬ (𝑄CTL ∧𝑟 ¬(¬𝐴 ∧ X𝑃𝐻

CTL))) U(¬𝐴 ∧ X𝑃𝐻
CTL)]

Q precedes

PE*
 ¬[(¬(𝑄CTL ∧ ¬(¬𝐴 ∧ X𝑃𝐻

CTL)))U(¬𝐴 ∧ X𝑃𝐻
CTL ∧ ¬𝑄CTL)]

Q precedes

PE+
¬[(¬(𝑄CTL ∧𝑙 ̅ ¬(¬𝐴 ∧ 𝐴X𝑃𝐻

CTL)))U(¬𝐴 ∧ X𝑃𝐻
CTL)]

 52

Table 3. Template CTL formulas for patterns within global scope for XPath forward axis

In Table 3, we maped the XPath expression to template of CTL formula with

SPS and CP. The result may be nodes, nodes set and the path along to root.

5. An applied query instance and validation of CTL templates

For the purpose of evident of a CTL Templates instance for XPath, We applied the

CTL templates for Xpath query to model checking. We validate the template from

the two respects. On the one hand, the smaller number of templates for the Global

was formally proved the correctness. On the other hand the larger number of

templates was validated through testing in model checker. Queries of the test are

interpreted over an disease XML document, obeying to the following DTD, whose

skeleton represents the respiratory disease shown in Fig. 3.

Forward axis XPath Mapping CTL formula

Child::

Selected nodes

XPath“=p /child:: q”

（p/q）
Φchild(𝑝, 𝑞) = 𝑝 ∧ 𝐸X𝑞,𝑃 = 𝑅(𝑝), 𝑄 = 𝑅(𝑞)

XPath“=p1/p2/…/pn/

child:: Q”

Φchild(𝑃) = 𝑃𝑐
CTL ∧𝑙 𝐸X𝑄𝑐

CTL

𝑃 = 𝑅(𝑝1, 𝑝2, … , 𝑝𝑛), 𝑄 = 𝑅(𝑞1, 𝑞2, … , 𝑞𝑛),
𝑃, 𝑄 ∈ Consecutive𝐶;

Descendant::

The destination node labeled with P which ancestors concluded in Q

XPath“=p/descendant::q”
Φdesc(𝑝, 𝑞) = 𝐸F𝑞 ∧ 𝑝, 𝑃 = 𝑅(𝑝),

𝑄 = 𝑅(𝑞)

XPath=“p1//p2//…//pn/

descendant::q1//q2//…//qn”

Φdesc(𝑃, 𝑄) = 𝐸F𝑄𝑐
CTL ∧𝑙 𝑃𝑐

CTL

𝑃 = 𝑅(𝑝1, 𝑝2, . . . , 𝑝𝑛), 𝑄 = 𝑅(𝑞1, 𝑞2, . . . , 𝑞𝑛),
𝑃, 𝑄 ∈ Eventual𝐶;

Descendant-or-

self::

Descendent node and labeled with P and themselves

XPath=“//p1/p2/…/pn

”
Φdescself(𝑝) = 𝑃𝑐,𝑃 = 𝑅(𝑝), 𝑄 = 𝑅(𝑞)

XPath=“p1/p2/…/pn//

q1/q2/…/qn”

Φdescself(𝑃, 𝑄) = 𝐸F𝑄𝑐
CTL ∧𝑙 𝑃𝑐

CTL

𝑃 = 𝑅(𝑝1, 𝑝2, … , 𝑝𝑛), 𝑄 = 𝑅(𝑞1, 𝑞2, … , 𝑞𝑛),
𝑃, 𝑄 ∈ Consecutive𝐶;

Following-

sibling::

Destination nodes Q which are the preceding of P

XPath=“p / following-

sibling::q”

Φflwsibling(𝑝, 𝑞) = 𝛾(𝐸X𝑝) ∧ 𝑞 ∧ (𝑁𝑝 < 𝑁𝑞),

𝑃 = 𝑅(𝑝), 𝑄 = 𝑅(𝑞)

XPath=“p1/p2/…/pn/

following-sibling::Q”

Φ(𝑝, 𝑞)flwsibling =

=𝛾(𝐸X𝑃𝑐
CTL) ∧𝑟 𝑄𝑐

CTL ∧𝑙 (𝑁𝑃 < 𝑁𝑄)𝑃 =

= 𝑅(𝑝1, 𝑝2, … , 𝑝𝑛),
𝑄 = 𝑅(𝑞1, 𝑞2, … , 𝑞𝑛), 𝑃, 𝑄 ∈ Consecutive𝐶;

 53

Fig. 3. Generating DTD from an sample XML of the running example

We used the following Simple XPath queries:

Q1 – /[descendant:: pulmonary shadows]

Q2 – /[descendant:: tuberculosis/child:: hemoptysis]

Q3 – //[descendant:: pneumonia[fever]/child:: cough]

Observed that Q1, Q2, while Q3 are the relative path. We apply model checking

to validate these query, which gives us a positive answer if the query is successful

and a negative answer, otherwise. All the queries are designed to have non-empty

answer sets. According to the SPS template for CTL formula, the logical semantic of

query Q1 is “Atleast pulmonary shadows” and the CTL formula is E (pulmonary

shsdows). Q2 is continual parent-child and presented by Consecutive(tuberculosis,

hemoptysis) and so on.

There is an additional necessary content which is the validation of the defined

CTL templates for Xpath. The formal proofs is the main used method to validate the

correctness of the templates for patterns within the Global scope and CP classes

combinations.

Theorem 1. The CTL formula G(𝑃CTL → (𝑃CTL ∧𝑙 F𝑄CTL)) is equivalent to the

formal definition of the pattern “Q Responds to P” in Global scope.

P r o o f: According to the means of “Q responds to P”, if P holds at some

moment s, then Q holds at some moment sʹ for which 𝑏𝑄(𝑡′) ≥ 𝑒𝑃(𝑡). Formally, we

can describe this property as follows:

∀𝑡 (P(𝑡) → ∀𝜋 ∃𝑡′ (𝑄(𝑡′) ∧ 𝑏𝑄(𝑡′) ≥ 𝑒𝑃(𝑡))).

The equivalence is proven and hence Theorem 1 is proven.

Theorem 2. The CTL formula not 𝐴[not 𝑄CTL] ∪ 𝑃CTL ∧ not (𝑄CTL)] is

equivalent to the formal definition of the pattern “Q Precedes P” in Global scope.

P r o o f : According to the means of “Q responds to P”, if Q holds at some

moment s, then P holds at some moment sʹ for which 𝑒𝑄(𝑠′) ≥ 𝑏𝑃(𝑠). Formally, we

can describe this property as follows:

∀𝑠 (𝑃(𝑠) → ∀∃𝑠′ (𝑄(𝑠′) ∧ 𝑒𝑄(𝑠′) ≥ 𝑏𝑃(𝑠))).

The equivalence and Theorem 2 are proven.

 54

6. Conclusion

Through survey of automata and logic motivated by XML, we review the logic

imposed by XML. There is a close connection between the query processing problem

for XPath and model checking. In this paper, we processed a simple fragment of

XPath and established the relationship between XML navigation and temporal logics,

in particular CTL and XPath navigation based on regular expressions. We explore

the potential of model-checking techniques applied in the field of XML. Here we

proposed a technique for combining temporal logics to capture XPath queries

expressible in CTL formula with SPS which support the generation of formal

specifications. SPS has defined a set of patterns and scopes that allows a query to

generate formal specifications by using direct substitution of propositions into

parameters of selected patterns and scopes. Tools of Prospec extended SPS to support

the definition of patterns and scopes that include the ability to specify parameters

with composite propositions(CPs).

R e f e r e n c e s

1. S u r i n x, D., G. H. L. F l e t c h e r et al. Relative Expressive Power of Navigational Querying on

Graphs Using Transitive Closure. – Logic Journal of IGPL, Vol. 23, 2015, No 5, pp. 759-788.

2. Z h a n g, X., J. V. d e n B u s s c h e. On the Power of SPARQL in Expressing Navigational Queries.

– The Computer Journal, Vol. 58, 2015, No 11, pp. 2841-2851.

3. A n t o n o p o u l o s, T., D. H o v l a n d, W. M a r t e n s, F. N e v e n. Deciding Twig-Definability of

Node Selecting Tree Automata. – Theory of Computing Systems, Vol. 57, 2015, No 4,

pp. 967-1007.

4. D e b a r b i e u x, D., O. G a u w i n et al. Early Nested Word Automata for XPath Query Answering

on XML Streams. – Theoretical Computer Science, Vol. 578, 2015, pp. 100-125.

5. N i e l a n d t, J., A. B r o n s e l a e r, G. d e T r é. Predicate Enrichment of Aligned XPaths for

Wrapper Induction. – Expert Systems with Applications, Vol. 51, 2016, pp. 259-275.

6. W a n g, Y., B. W a n g, M. L i u. A Component Retrieval Tree Matching Algorithm Based on a

Faceted Classification Scheme. – Cybernetics and Information Technologies, Vol. 15, 2015, No 1,

pp. 14-23.

7. Z h e n g, C., Y. Y a o, S. H u a n g, Z. R e n. Modeling Workflow Systems Constrained by Inputs and

Outputs – An Approach Based on Petri Nets. – Cybernetics and Information Technologies,

Vol. 15, 2015, No 4, pp. 27-41.

8. G i r e, F., J.-M. T a l b o t. Nested Sibling Tree Automata. – RAIRO – Theoretical Informatics and

Applications, Vol. 43, No 2, 2009, pp. 379-402.

9. L i b k i n, L., C. S i r a n g e l o. Reasoning about XML with Temporal Logics and Automata. –

Journal of Applied Logic, Vol. 8, No 2, 2010, pp. 210-232.

10. K o s t y l e v, E. V., J. L. R e u t t e r, D. V r g o č. Static Analysis of Navigational XPath over Graph

Databases. – Information Processing Letters, Vol. 116, No 7, 2016, pp. 467-474.

11. S a l a m a h, S., A. G a t e s, V. K r e i n o v i c h. Validated Templates for Specification of Complex

LTL Formulas. – Journal of Systems and Software, Vol. 85, No 8, 2012, pp. 1915-1929.

