
 113

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No 6

Special Issue on Logistics, Informatics and Service Science

Sofia 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2015-0072

Distributed Consistency Method and Two-Phase Locking

in Cloud Storage over Multiple Data Centers

Fan Lin, Jianbin Xiahou, Qihua Huang

Software School, Xiamen University, Xiamen, China

Emails: iamafan@xmu.edu.cn jbxiahou@xmu.edu.cn 23020111153052@stu.xmu.edu.cn

Abstract: In replication management under multi-datacenter cloud storage

environments, the problem of a replica being inconsistent across multiple

datacenters must be solved. Focusing on data management strategies under

multiple datacenters, this paper presents a design of a HDFS-based two Cascading

Master-Slave Storage System (2CMSSS), which simplifies the research work of the

replication management strategies under multi-datacenter cloud storage

environments. On this basis a two-phase locking maintenance strategy for replica

consistency is presented to validate and fix the problem of replica inconsistency

across multiple datacenters. According to the experiment simulation, this strategy

can ensure strong data consistency and maintain low latency for users to access

data.

Keywords: Multiple datacenters; replication management; Two Cascading Master-

Slave Storage System (2CMSSS); AHP-backward cloud; two-phase locking.

1. Introduction

In distributed storage systems based on cloud computing, data replication

management technologies are the key to realizing reliability and security [1].

However, they are often limited to a single datacenter model in the current cloud

storage systems while neglecting the presence of multiple datacenters across the

regions, such as service selection of a datacenter, replication layout across

datacenters, as well as maintenance of the replication consistency [2, 3]. Therefore,

after exploring the Hadoop Distributed File System (HDFS) [4], storage distribution

strategies across multiple datacenters, as well as the traditional policies of

distributed data consistency, this paper has put forward a multi-data cloud storage

framework based on a Two Cascading Master-Slave Storage System (2CMSSS),

mailto:iamafan@xmu.edu.cn
mailto:jbxiahou@xmu.edu.cn
mailto:23020111153052@stu.xmu.edu.cn

 114

which simplifies the research work of the replication management strategies under

multi-datacenter cloud storage environments. In addition, to maintain the

consistency of a replica in a cloud storage over multiple datacenters, a two-phase

locking mechanism is designed on the 2CMSSS framework to realize improved

consistency maintenance strategy across the datacenters.

2. 2CMSSS framework

In cloud storage over multiple datacenters, the storage nodes are connected to

datacenters, thus constituting a whole hierarchical mesh storage system [5, 6].

Hence, in cloud storage over multiple datacenters, the replication management

strategies must be divided into two different levels of inter-data and intra-

datacenters [7]. From the perspective of its development trend and load balancing of

the cloud storage over multiple datacenters, for disaster recovery and improved

access rate to the data, it has become essential to design a model of a multi-

datacenter cloud storage system model.

Aiming to establish two levels of the replication management in cloud storage

over multiple datacenters, this paper designs the HDFS-oriented 2CMSSS cloud

storage model architecture, which has simplified replication management strategies

under multi-datacenter cloud storage environments and has set the foundation for

replication management strategies for multiple datacenters in subsequent researches

[8-10]. A two-phase locking strategy for maintaining the replication consistency is

designed on this basis.

2.1. Storage model

The design of a 2CMSSS storage system model has not only met the management

and storage needs of ultra-large-scale data clusters relying on autonomous

datacenters and favourable characteristics of HDFS, but has also provided a

particular object of study for the replication management strategies in a cloud

storage over multiple datacenters and has laid the foundation for subsequent

researches of replication management strategies [11].

The multi-datacenter cloud storage system is composed of a plurality of

distributed datacenters [12]. The set of these distributed datacenters is denoted as

, where datacenter is numbered i. Let

(1) ,

presents the 2CMSSS multi-datacenter storage system designed in this paper, where

(2)

represents the Main Master of 2CMSSS. It is the master server of the entire multi-

datacenter cloud storage system, which is equivalent to the NameNode in HDFS;

where mmID and mmIP represent the ID number and IP address of the main master,

respectively

(3)

 115

(4) ,

(5) ,

(6)

(7)

The storage space, IO throughput, CPU, memory, and client master

information of the main master in the 2CMSSS storage system are shown

respectively. GFNS (Global File Name Space) denotes a file or data object

namespace of the entire multi-datacenter cloud storage system. It is expressed

as , where is the namespace of the files or

data objects in and its property will be given later, while otherInfo is used to

reserve information bits or store other information by the main master.

Based on HDFS’s client-server architecture and the autonomy of the

datacenter, let the set denote the storage node-set in the

datacenter and let be denoted as:

(8)

where is a local HDFS system whose system structure, data reading/writing

mechanism and heartbeat mechanism are the same as HDFS, while the replication

strategy is improved in combination with the relevant work

(9) ,

indicates the j-th storage node in data center , and

represent the data blocks stored in the node.

(10)

,

where represents the client master in the i-th datacenter and NameNode in

. cmID and cmIP are the ID number and IP address of ; StorageInfo, IoInfo,

CpuInfo and MemInfo are shown respectively in Equations (3)-(6), and have

similar meanings, while otherInfo is used to reserve information bits or store other

information by and

(11)

,

represents metadata information stored in and it is metadata information in the

whole , BandWidth represents the network bandwidth of . Due to the

dynamic nature of the inter-datacenter network environment, the network

bandwidth in the general sense has no practical significance. In this paper the

network latency value of the datacenter is used to present the bandwidth of

. As shown in Equation (3), StorageInfo denotes the storage space information

in , and its value is calculated by adding the corresponding total storage space

and the total amount of storage space of each storage node to

. FailureTime denotes the mean free error time.

 shows the

namespace of files or data objects, where denote

files or database objects in ; FileNum shows the number of files or data objects

 116

in ; TotalAccess and TotalAnswered represent the number of visits and the

number of responses to requests of , respectively. Next formula shows the

namespace of files or data objects:

(12)

where denotes the files or database objects in ;

FileNum shows the number of files or data objects in ; TotalAccess and

TotalAnswered represent the number of visits and the number of responses to

requests of , respectively.

(13)

represents the i-th file, where is the only GUID value in the 2CMSSS

storage system; BlockSize is the block size of the file (with a default size of 64 M);

FileReplicaNum indicates the number of replicas in the file’s data blocks (in this

2CMSSS storage system model, the replicas are managed in the unit of files, which

will be illustrated in the following section): FileMetaInfo indicates some meta-

information in the file (such as file owner, user group, file size, read and write

access, the number of visits, and the number of responses to requests, etc.),

 is a list of the file’s data blocks, and denoted as

, and is the metadata information set for

each storage node in .

In the 2CMSSS system model designed herein, and each constitute

the master-slave relationship; each will report its storage status in the

datacenter to MM by heartbeat messages and accept MM’s management. They have

the same relationship as the one between NameNode and DataNode in HDFS, and

their interaction process is also the same. Thus, in the entire system, all storage

nodes in MM and are as in and . Constitute a two-tier cascading

master-slave architecture and this system is called 2CMSSS. The diagram of the

system’s conceptual structure is shown in Fig. 1.

Fig. 1. The 2CMSSS concept structure diagram

 117

2.2. Data read-write separation strategy

In a 2CMSSS storage system, when a user accesses a particular file or data object

Obj, if the datacenter that receives the requests cannot find the corresponding

GUID (Obj) information from the datacenter CMi namespace, it will continue to

look for it in MM namespace, and MM will return the datacenter information

from the corresponding GUID (Obj) data. Then the users can access and manipulate

the data Obj in accordance with the appropriate information and the corresponding

2CMSSS mechanism.

The 2CMSSS system model provides us with a specific research object for

replica management strategies in cloud storage over multiple datacenters. Since the

replica creation, deletion and dynamic adjustment must consider the node and

datacenter of the replicas to be chosen in replica management under multi-

datacenter cloud storage environments, the selection of the datacenters is the

priority issue for replica management in cloud storage over multiple datacenters.

Focusing on this research void, we have proposed the 2-phase locking replica

consistency maintenance method for 2CMSSS model in Section 2.3, based on the

corresponding replica layout mechanism.

2.3. Two-phase locking replica consistency maintenance method

With the multi-datacenter cloud storage system, the users can get closer and have

faster access to the data [13]. By using the replica technology, the data and

datacenters can have stronger availability, so that the system can be more fault-

tolerant. However, due to the complex and erratic network environment between the

datacenters, a network delay usually takes a few hundred milliseconds [14], so that

the cost of storing and transmitting data replicas across multiple datacenters is high,

and the consistency of synchronizing replicas across datacenters becomes quite

impractical. Much work has been done in studying the data replica consistency in

cloud storage over multi-datacenters, which has yielded some achievements. For

example, [15] proposed the MDCC multi-datacenter consistency solution, and

offered a new programming model. However, MDCC is mainly for database

systems in multiple datacenters, and it is not suitable for the “Write Once Read

Many” application scenarios of the 2CMSSS system.

The cloud storage system, especially with the emergence of the multi-

datacenter cloud storage systems, is to deliver services to users nearby and create a

better user’s experience. As a consequence, in order the users to experience

satisfactory access and easily utilize the read-write data, this paper principally

considers the following objectives when designing the replica consistency strategy

in the 2CMSSS storage system: (1) the system can provide the users with data

operation services as quickly as possible, such as read or write; (2) the user access

and loading from one datacenter is essentially independent of that in another, which

means that the user access and loading is non-interacting as much as possible in

each datacenter; and (3) data with a high level of consistency must be globally

guaranteed continuance of the same high levels.

On account of the above design goals, while using the autonomy feature of

 118

each datacenter and localization of the system users in 2CMSSS, this paper designs

a replica consistency strategy in the 2CMSSS storage system, following these

considerations: (1) in order to be able to provide data operation services to users as

fast as possible, we should take advantage of the autonomy of the various

datacenters; and (2) in order to ensure a high level of data consistency, we must

include a global asynchronous lock to the data.

In the 2CMSSS-based two-phase locking consistency maintenance strategy, if

a user wants to update the i-th replica Obj_rep(i) of a data object Obj, it must first

get through the two-locking phase.

1. Process of requesting locks (Fig. 2) is as follows:

Step 1. Prior to updating Obj_rep(i), the user must first obtain the user client

master lock that allows Obj_rep(i) operations; that is, the user should apply

the lock to operate Obj_rep(i) from ; this process is expressed as

req_CMlock(Obj_rep(i)).

Step 2. Before the operation of locking Obj_rep(i , we must obtain permission

from the Main Master (MM) to operate i that is, should apply for the

lock to operate Obj_rep (i); this process is described as req_MMlock (Obj_rep(i)).

Step 3. If the main master responds to the lock requests from , MM will

lock the operations to Obj in the system global namespace and return the lock to

 to operate Obj_rep(i); this process is described as MMLock (Obj_rep(i)).

Step 4. When receives permission from the main master to operate the

lock of Obj_rep (i), it will immediately return to the user a confirmation message of

req_CMlock (Obj_rep(i)); this process is described as CMLock (Obj_rep (i)).

Step 5. When the user completes the appropriate update operations of

Obj_rep(i), the corresponding metadata information will be updated and Obj_rep(i)

checksum in , and release the operation lock of Obj_rep(i).

Fig. 2. Process of requesting locks

2. Process of releasing locks (Fig. 3) is as follows:

Step 1. If the user applies from to release the lock to operate Obj_rep(i);

this process is described as CMLock (Obj_rep(i)).

Step 2. If responds to release CMLock (Obj_rep(i)), it then returns a

message confirming the lock release to the user, and the datacenter where is

located, will be able to see the updated Obj; this process is described as

locaWriteSuccess.

Step 3. If  happens, will apply for a lock to release Obj_rep(i)

operation, and simultaneously send the user’s updates to MM; this process is

described as releaseMMLock (Obj_rep(i)).

Step 4. MM will synchronously update Obj_rep(i) in datacenters like that

have Obj replica; this process is described as

 119

Sync_write (WriteContent(Obj_rep(i))).

Step 5. After updating Obj_rep(i) in synchronous datacenters, in

datacenters that have Obj replica will, in turn, return to MM the message

confirming the completion of synchronous updates; this process is described as

Sync_writeSuccess(WriteContent(Obj_rep(i))).

Step 6. After the process entitled

Sync_writeSuccess(WriteContent(Obj_rep(i)))

between MM and all datacenters that own Obj replica is completed, MM

releases the operation lock to Obj_rep(i) in the system global namespace; this

process is described as globalWriteSuccess.

Step 7. The replica consistency strategy in HDFS is adopted within the

datacenter, which means the data pipeline is used. Checksum can guarantee reading

consistency in the data replicas while for strongly consistent read requests of data,

the decision may be handed over to the users who will then be able to select

whether to compare consistency with the global data (such as a query to MM)

before reading.

Fig. 3. Process of releasing locks

3. Experiments and analyses

To prove the efficiency of the proposed method, the cloud computing simulation

environment Cloudsim is chosen [50, 51] as a simulation experiment platform, on

which an expansion is made. The experiment environment simulates and randomly

distributes the users’ access requests. The 2CMSSS cloud storage system has 100

storage nodes, each with a storage capacity of 80 G, five data centers (assuming that

each datacenter is located in a different geographic location) and 100 data source

files with a size of 100 M for each file. The data redundancy is set to 10.

The experiment is compared to the replication index-based consistency

maintenance algorithm [15] in terms of changes in the average update time of each

replica with the number of updates. The results are shown in Fig. 4.

It can be seen from Fig. 4 that compared to the replication index-based

consistency maintenance algorithm [15], the proposed replication consistency

maintenance strategy based on 2CMSSS and two-phase locking has faster update

speed. Because a network delay usually takes a few hundred milliseconds in the

 120

multi-datacenter environments, the replication index-based consistency

maintenance algorithm needs to synchronously update all replicas, so it is more

time-consuming in average. As for the 2CMSSS-based two-phase locking strategy

suggested in this paper, the results can be read immediately after updating a single

datacenter. Although the data updates among the datacenters are done

asynchronously, in a statistical sense the average update time of the overall system

is shorter. The results of the experiment verify that the replication consistency

maintenance strategy based on 2CMSSS and two-phase locking has some practical

value.

Fig. 4. Comparison diagram of the update time with the number of updates

4. Conclusions

After analyzing the cloud storage systems, multi-datacenters and traditional

replication technology, this paper proposes a 2CMSSS cloud storage framework

based on structural analysis of the HDFS storage system, in order to solve problems

in the area, such as the architecture of the cloud storage systems over multi-

datacenters, the selection strategy of a datacenter, the replica layout mechanism and

data consistency maintenance strategies. This framework has simplified replica

management strategies in the cloud storage over multi-datacenters and the two-

phase locking data consistency maintenance method is designed based on a

2CMSSS framework. By Cloudsim simulation experiment, the efficiency of this

method has been validated, and it has demonstrated some advantages over the

conventional single datacenters.

R e f e r e n c e s

1. L i a n g, X. Study of Data Replication Technology in Cloud Storage Environment. Nanjing

University of Posts and Telecommunications 2013, p. 3.

2. K r a s k a, T., G. P a n g, M. J. F r a n k l i n et al. MDCC: Multi-Datacenter Consistency. –

In: Proc. of 8th ACM European Conference on Computer Systems, ACM, 2013, pp. 113-126.

3. B u y y a, R., R. R a n j a n, R. N. C a l h e i r o s. Modeling and Simulation of Scalable Cloud

Computing Environments and the CloudSim Toolkit: Challenges and Opportunities. –

In: Proc. of International Conference on High Performance Computing & Simulation, 2009,

HPCS’09, IEEE, 2009, pp. 1-11.

 121

4. L o n g, S., Y. Z h a o. A Toolkit for Modeling and Simulating Cloud Data Storage: An Extension

to CloudSim. – In: Proc. of 2012 International Conference on Control Engineering and

Communication Technology, IEEE Computer Society, 2012, pp. 597-600.

5. J i a n g, S., O. S o n g. Replication Index Based Consistency Maintenance Strategy in

Unstructured P2P Systems. – Computer Engineering, Vol. 34, 2008, No 19, pp. 123-126.

6. L u o, J.-Z., J.-H. J i n, A.-B. S o n g, F. D o n g. Cloud Computing: Architecture and Key

Technologies. – Journal on Communications, Vol. 32, 2011, No 7, pp. 167-173.

7. X i a o y u n, H. Researeh of Cloud Storage Service System Based on HDFS. Dalian Maritime

University, 2010.

8. L i u, T., C. L i, Q. H u, G. Z h a n g. Multiple-Replicas Management in the Clound Environment. –

Journal of Computer Research and Development, Vol. 48, 2011, No 3, pp. 254-260.

9. X u, J. Research on Replication Strategy in Cloud Storag. University of Science and Technology

of China, 2011.

10. D a i s u k e, T., T. S h i g e a k i, F. S a t o s h i. A Fault-Tolerant Content Addressable Network. –

IEICE Transactions on Information and Systems, Vol. 89, 2006, No 6, pp. 1923-1930.

11. B a r b e r a, P. Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using

Twitter Data. – Political Analysis, Vol. 23, 2015, No 1, pp. 76-91.

12. G a o, H. A Case Study on Trade, Technology and Human Rights under the Gats. – Asian Journal

of Wto & International Health Law and Policy, Vol. 6, 2011, No 2, pp. 349-387.

13. C o r b e t t, J. C., J. D e a n, M. E p s t e i n. Spanner: Google’s Globally Distributed Database. –

ACM Transactions on Computer Systems, Vol. 31, 2013, No 3, p. 8.

14. P a x t o n, W. H. A Client-Based Transaction System to Maintain Data Integrity. – In: Proc. of 7th

ACM Symposium on Operating Systems Principles.

15. G u o, L. Research on Replication in Peer-to-Peer File Sharing System. University of Science and

Technology of China, 2011.

