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Abstract: To deal with the key-exposure protection problem in attribute-based 
signature systems, we extend the parallel key-insulated mechanism to attribute-
based signature scenarios, and then introduce the primitive of an Attribute-Based 
Parallel Key-Insulated Signature (ABPKIS). After formalizing the definition and 
security notions for ABPKIS, a concrete ABPKIS scheme is presented. The security 
of our proposed ABPKIS scheme can be proved on a standard model. According to 
our knowledge, this is the first ABPKIS scheme up to now. Moreover, this is also 
the first concrete attribute-based key-insulated signature construction supporting 
multi-helpers.  
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1. Introduction 

To protect private keys, D o d i s  et al. [2] introduced the key insulation mechanism 
in 2002. In a key-insulated cryptosystem, the helper keys are kept in a helper  
(a physically-secure, but computationally-limited device) while the temporary 
private keys are stored in a powerful but insecure device where cryptographic 
computations occur. The temporary private keys are refreshed at discrete times via 
interaction between the user and the helper, and the public key remains constant 
during the lifetime of the system. To enhance the security and flexibility of the key 
insulation mechanism, the idea of parallel key insulation [3, 6, 8, 9, 10] was put 
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forward. In a parallel key-insulated cryptosystem, distinct independent helpers are 
alternatively used in key update operations.  

Attribute-Based Signature (ABS) [4, 5, 7] is a kind of signature that manifests 
a pretension to the attributes that the underlying signer owns. Attribute-based 
signatures have many applications, such as attribute based messaging systems and 
anonymous authentication. In 2014 C h e n  et al. [1] proposed an Attribute-Based 
Key-Insulated Signature (ABKIS), which is a crucial technique for protecting 
signing keys in ABS systems. Nevertheless, in Chen et al. scheme, where only one 
helper is used, if both the user’s helper key and some of his temporary signing keys 
are exposed, the security of the signature system will be entirely lost.  

To further enhance the security of the system by allowing frequent key-
updates without increasing the risk of helper key exposure, we extend the parallel 
key-insulated mechanism to attribute-based signature scenarios and give an 
Attribute-Based Parallel Key-Insulated Signature (ABPKIS) scheme which is 
provably secure in the standard model. Our proposed scheme is strongly key-
insulated, and even if one of a user’s helper keys and some of his temporary signing 
keys are exposed, it is still impossible for an adversary to obtain all of this user’s 
temporary signing keys. To the best of our knowledge, this is the first ABPKIS 
scheme up to now. Further on, this is also the first concrete attribute-based key-
insulated signature construction supporting multi-helpers. 

2. Preliminaries 

Throughout this paper, we let Zp denote the set {0, 1, 2,…, p−1} and Z* 
p  denote 

Zp\{0}. For a finite set S, x U
←S means choosing an element x from S with a uniform 

distribution.  

2.1. Bilinear pairings 

Our ABPKIS scheme uses a bilinear map (pairing), ê : G1 ×G1 → G2 , where G1 is a 
multiplicative group with a prime order p and G2 is also a multiplicative group with 
a prime order p. The pairing ê  satisfies the following conditions: 

• Bilinear: For all g1, g2 ∈ G1 and for all a, b ∈ Z* 
p , we have  

ê (ga 
1 , gb 

2 ) = ê (g1, g2)ab. 
• Non-degenerate: There exist g1, g2 ∈ G1 such that ê (g1, g2) ≠1. 
• Computable: There is an efficient algorithm to compute (g1, g2) for all  

g1, g2 ∈ G1. 

2.2. Computational Diffie-Hellman assumptions 
Definition 1. The CDH problem in G1 is, given g, ga, gb∈ G1, to compute gab (for 
unknown randomly chosen a, b ∈ Z* 

p ). 
Definition 2. We say that the (t, ε )-CDH assumption holds in a group G1 if no 

algorithm running in time t can solve the CDH problem in G1 with probability at 
least ε. 
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3. Model of ABPKIS 

3.1. Definition 

An ABPKIS scheme consists of six algorithms: 
• Setup(κ, l, d): Given a security parameter κ, the length l of some universe 

U, of size |U| and a threshold value d, the PKG runs this algorithm to output a 
master key (msk) and public parameters (cp). 

• KeyGen(msk, cp, ω): Given the user’s identity ω ⊆ U as a set representing 
the user’s attributes, the public parameters cp and the master key msk, the PKG 
runs this algorithm to output an initial private key TKω,0 and two helper keys 
(HKω,0, HKω,1) that correspond to ω.  

• HelperUpt(cp, t, ω, HKω): Given the public parameters cp, the period index 
t, an identity ω ⊆ U and its helper key HKω, the helper runs this algorithm to output 
the key-update information for ω for a period t, UIω,t. 

• UserUpt(cp, t, ω, TKω,t–1,UIω,t, TKω,t): Given the public parameters cp, the 
period index t, an identity ω ⊆ U, the key-update information UIω,t, and the 
temporary private key TKω,t–1 that corresponds to ω and t –1, the user with identity ω 
runs this algorithm to output the temporary private key TKω,t that corresponds to ω 
and t. 

• Sign(cp, t, m, TKω,t): Given the public parameters cp, a period index t, a 
message m and a temporary private key TKω,t, this algorithm outputs a signature  
(t, σ) with regard to the period index t, the attribute set ω′ ⊆ ω and message m.  

• Verify(cp, m, ω′, (t, σ )): Given the public parameters cp, a message m, an 
attribute set ω′ and a signature (t, σ) with regard to the period t, an attribute set ω′ 
and message m, this algorithm outputs 1 if (t, σ) is a valid signature and 0 
otherwise. 

3.2. Security notions for ABPKIS 

For convenience, we give the definition of a restricted identity as below: a restricted 
identity ω* satisfies α ⊆ ω*, where α is the challenge identity. 

3.2.1. Key-insulated security 

The key-insulated security notion captures the intuition that, if an adversary does 
not compromise the helper key for a given identity (i.e., an attribute set), then the 
exposure of any of the private keys does not enable an adversary to forge a valid 
signature for the non-exposed time periods. 

Formally, for an ABPKIS scheme, its key-insulated security can be defined via 
the following game of existential unforgeability against a chosen identity and an 
adaptive chosen message attack under key-exposure (UF-ID&KE-CMA) between 
an adversary T   and a challenger V. 

• Init. The adversary declares the identity α, where |α|< d and d is the 
threshold and the time period index t* that he wishes to be challenged upon. 
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• Setup. The challenger V  runs the Algorithm Setup and tells the adversary 
T  the public parameters.  

• Query Phase. The adversary T   adaptively issues a set of queries as 
below: 

− Key Generation queries 〈ω〉: V  first runs the algorithm KeyGen to obtain 
the initial private key TKω,0 and the helper key HKω that corresponds to the identity 
ω. It then sends these results to the adversary. 

− Helper Key queries 〈ω 〉: V runs the algorithm KeyGen to generate HKω and 
sends it to the adversary. 

− Temporary Private Key queries 〈ω, t〉: V runs the algorithm UserUpt to 
obtain the temporary private key for the identity ω and period index t. It then sends 
the result to T. 

− Signing queries 〈ω, t, m 〉: V runs the algorithm Sign(cp, t, m, TKω,t) to 
generate a signature (t, σ ). Then, V  returns (t, σ) to T. 

• Output. Finally, T   outputs an identity α, a period index t* and a 
corresponding signature (t*, σ*). 

In the above game, it is also mandated that the following conditions are 
simultaneously satisfied: ① Verify(cp, (t*, σ*), m*, ω′) =1; ② T   is disallowed to 

issue key generation queries for any restricted identity; ③ T  is disallowed to issue 
temporary private key queries for any restricted identity and the challenged time 
period t*; ④ T   is disallowed to issue signing queries for any restricted identity, the 
challenged time period t* and message m*. 

3.2.2. Strongly key-insulated security 

The strongly key-insulated security for ABPKIS systems says that, even if one of 
the user’s helper keys and some of his temporary signing keys are exposed, it is still 
impossible for an adversary to obtain all of this user’s temporary signing keys.  

Formally, for an ABPKIS scheme, its strongly key-insulated security can be 
defined via the following strongly-UF-ID&KE-CMA game between an adversary 
T   and a challenger V: 

• Init. The same as a UF-ID&KE-CMA game. 
• Setup. The same as a UF-ID&KE-CMA game.  
• Query Phase. The adversary T  adaptively issues a set of queries, such as 

those given below: 
− Key Generation queries 〈ω 〉: The same as a UF-ID&KE-CMA game. 
− Helper Key queries 〈ω 〉: V  runs algorithm KeyGen to generate HKω and 

sends it to the adversary. 
− Signing queries 〈ω, t, m 〉: The same as a UF-ID&KE-CMA game. 
• Output. Finally, T  outputs an identity α, a period index t* and a 

corresponding signature (t*, σ*). 
In the above game, it is also mandated that the following conditions are 
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simultaneously satisfied: ① Verify(cp, (t*, σ*), m*, ω′) =1; ② T  is disallowed to 

issue key generation queries for any restricted identity; ③ T  is disallowed to issue 
signing queries for any restricted identity, the challenged time period t* and 
message m*. 

3.2.3. Anonymity 

An ABPKIS scheme satisfies the anonymity requirement if no adversary T  can 
win the following ANONY-ABPKIS game between T  and a challenger V  with a 
non-negligible advantage: 

• V  runs the algorithm Setup to generate a master key msk and public 
parameters cp and sends them to T. 

• T  can use the master key msk to generate temporary private keys and 
signatures.  

• T  will next submit a challenge period index t*, a message m*, two identities 
(α1, α2) and a challenge identity α, where α ⊆ (α1 ∩ α2) and |α| ≤ d. 

• Assume that T  has issued temporary private key queries 〈α1, t*〉 and  
〈α2, t*〉. Let *

1 ,
TK

tα
 and *

2 ,
TK

tα  be temporary private keys for (α1, t*) and (α2, t*), 

respectively. 
• V  flips a random coin, b, computes a signature (t*, σ*) =Sign(cp, t*, m*, 

*,
TK

b tα
) and sends it to T. 

• Finally, T  outputs a guess b′ of b by judging whether (t*, σ*) is generated 
from *

1 ,
TK

tα
or *

2 ,
TK

tα
 

4. Model of ABPKIS 

4.1. Definition 

We use a Pseudo-Random Function (PRF) [1] F, such that given a κ-bit seed 
(index) s and a κ-bit argument (input) x, it outputs a κ-bit string Fs(x), and defines 
the Lagrange coefficient  

Δi,S(x) = x j
j S i j
j i

−
∈ −
≠

∏  

for i∈ Zp and a set S of elements in Zp. The proposed ABPKIS scheme consists of 
the following algorithms: 

Setup(κ, l, d): Given a security parameter κ, the length l of some universe U 
of size |U|, and a threshold value d, the PKG works as follows: ① Define the 
universe U. For simplicity, we can take the first l elements of Z* 

p  to be the universe, 
specifically, the integers 1, …, l (mod p); ② Let G1 and G2 be two groups with 
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prime order p of size, let g be a generator of G1, let ê : G1 ×G1 →G2 denotes the 

bilinear map; ③ Let H1: {0, 1}*→ {0, 1} wn , H2 : {0, 1}*→ {0, 1} mn  be two collision-

resistant hash functions with nw, nm ∈ Z; ④ Pick y U
←  Z 

p and g2 
U
←  G1, set g1 = gy;  

⑤ Choose a default set of d−1 attributes from Z 
p, Ω = {l + 1, l + 2, …, l + d – 1};  

⑥ Pick a random (l + d −1)-length vector H
r

 = (hi) whose elements are randomly 

chosen from G1; ⑦ Pick w′ U
←  G1 and a random nw-length vector W

r
 = (wi) whose 

elements are randomly chosen from G1; ⑧ Pick m′ U
←  G1 and a random nm-length 

vector M
r

 = (mi) whose elements are randomly chosen from G1; ⑨ Output the 

public parameters and the master secret key as cp = (G1,  G2, ê , g, g1, g2, w′, m′, 

H
r

, W
r

, M
r

, Ω), msk = y. For convenience, we define two functions L1 and L2, such 
that L1(S1)=w′

1∈∏ i S wi, L2(S2)=m′
2∈∏ i S mi. In addition, for a given time period t 

and a given message m, we hereafter use Wt and Mm to denote the following sets: 
Wt = {i|a[i] = 1, a = H1(t) ⊆{1, …, nw}}, Mm = {j|b[j] = 1, b = H2(m) ⊆  
⊆{1, …, nm}}. 

KeyGen(msk, cp, ω): To generate the helper key and the initial private key for 
an identity ω ⊆ U, the PKG works as follows: (1) Pick a helper key HKω,0,  
HKω,1

U
←  {0, 1}κ; (2) A d−1 degree polynomial q is randomly chosen such that  

q(0) = y; (3) Generate a new attribute set ω̂ =ω∪Ω; (4) For all i∈ω̂ , pick ri 
U
←  Z 

p, 
compute ki,0 = F

,0HKω
(0 || i)  and ki,–1 = F

,1HKω
(−1 || i)  (Note that if the length of the 

input for F is less than κ, then we can add some “0”s as the prefix to meet the 
length requirement); (5) Define the initial private key as  
(1)   ˆ,0 1,0 2,0 3,0 4,0TK {( , , , )}ω ω∈= i i i i id d d d =  

, 1 ,0 , 1 ,0( )
ˆ2 1 1 1 1 0{( ( ) ( ) ( ) , , , )} ω

− −
− ∈= i i i ii ik k k kr rq i

i ig g h L W L W g g g . 
HelperUpt(cp, t, ω, HKω): Given the public parameters cp, the period indices t 

and t′, an identity ω ⊆ U, and its helper key HKω, for each i ∈ ω̂ , where ω̂ =ω∪Ω, 
this algorithm computes ki,t = F HKω

(t||i) and ki,t-2= F HKω
(t–2||i). Then this algorithm 

defines and returns the key-update information as follows:  
,

,

, 2

1
ˆ, 1, 2 ,

1 2 ˆ

( )
UI {(UI , UI )} ,

( )
.

i t

i t

i t

k
kt

t i t i t i k

t i

L W
g

L W
ω ω

ω

−
∈

− ∈

= =
⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

UserUpt(cp, t, ω, UIω,t, TKω,t): This algorithm is executed by the user with 
identity ω ⊆ U   and works as follows: (1) Parse the temporary private key for the 
identity ω and period t−1 as TKω, t–1 = {(di1, t–1, di2, t–1, di3, t–1, di4, t–1 )} ˆi ω∈ ;  

(2) Parse the key-update information for the identity ω for t as 
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ˆ, 1, 2,UI {(UI , UI )}t i t i t iω ω∈= ˆi ω∈ ; (3) Set the temporary private key for the identity ω and 
period t TKω, t= {(di1, t, di2, t, di3, t, di4, t}i∈ω= {( di1, t–1 ·UIi1, t, di3, t–1, UIi2, t, di4, t–1)} ˆi ω∈ ; 
(4) Delete TKω, t–1 and UIω,t; (5) Return TKω, t. Note that if let î  = t mod2 and  
ĵ  = (t−1) mod2, then TKω, t is always set to be  

(2)   TKω, t= , 1 , , 1 ,( )
ˆ2 1 1 1 1{( ( ) ( ) ( ) , , , )} ,i t i t i t i ti ik k k kr rq i

i t t ig g h L W L W g g g ω
− −

− ∈  
where ki, t–1 = F

ˆ,HK jω
(t–1||i) and ki, t = F

ˆ,HK iω
(t||i). 

Sign(cp, t, m, TKω, t): Suppose that the signer has a temporary private key for 
the attribute set ω and time period t. In period t, the signer can produce the signature 
on m with the attribute set ω′ = {i1, i2, …, ik}⊆ ω, where 1≤ k ≤ d, as follows:  
(1) Parse TKω, t as TKω, t= {(di1, t, di2, t, di3, t, di4, t}i∈ω; (2) Select a d − k default   
attribute subset Ω′ = {ik+1, ik+2, …, id}⊆Ω. Then, pick 1r

′ , 2r
′ , …, dr

′ , s1, s2, … , sd,  

c1, t–1, c2, t–1, …, cd, t–1, c1, t, c2, t, …, cd, t 
U
←  Z  

p , choose a d−1 degree polynomial q′(x) 
such that q′(0) = 0; (3) For each v ∈ {1, …, d}, compute  
σv1 = ( )

1, 2

′

v

v

q i

i td g 1( )
′

v

v

r

ig h , 1

1 1( ) −

−
v tc

tL W  ,

1 ( ) v tc

tL W 2 ( ) vs

mL M , σv2 = ,4
v

v

r

i td g
′

, σv3 = vsg ,  

σv4 = , 1

2, 1
v t

v

c

i td g −

−
, σv5 = ,

2,

v t

v

c

i t
d g′ ; (4) Output the signature (t, σ )= (t, {(σv1, σv2, σv3, σv4, 

σv5)}1≤v≤d). Note that if we let 
vi

r =
vi vr r ′+ , , 1v tc

−
= , 1 , 1vi t v tk c

− −
+ , ,v tc = , ,vi t v tk c+ , choose a  

d−1 default attribute subset q  such that for each 1≤v≤d, q  (iv) = q(iv) + q′ (iv) (note 
that q  (0) = q(0) + q′ (0)= y), the signature (t, σ ) is always set to be 

(3)   (t, {( , 1 , , 1 ,( )
2 1 1 1 1 2( ) ( ) ( ) ( ) , , , ,i iv t v t v t v tv v v v v

v

r rc c c cq i s s
i t t mg g h L W L W L M g g g g− −

−  )} 1≤v≤d). 
This result can be seen from the following:  

(σv1, σv2, σv3,σv4,σv5) = 
=( 1

,vi td 〈 〉 ( )

2
vq ig

′

1( ) v

v

r

ig h
′

, 1

1 1( ) v tc

tL W −

−
,

1 ( ) v tc

tL W  2 ( ) vs

mL M , 4

,vi td 〈 〉  vrg
′

, vsg , 2

,vi t
d ′

〈 〉 , 1v tcg − , 3

,vi t
d ′

〈 〉 ,v tcg )= 

= ( ( )

2
vq ig 1( ) iv

v

r

ig h , 1

1 1( ) i tv
k

tL W −

−

,

1 ( ) i tv
k

tL W ( )

2 1( )v v

v

q i r

ig g h
′ ′

, 1

1 1( ) v tc

tL W −

−
,

1 ( ) v tc

tL W × 
× 2 ( ) vs

mL M , iv
r

g vrg
′

, vsg , , 1i tv
k

g − , 1v tcg − , ,i tv
k

g ,v tcg )= 

=( ( ) ( )

2
v vq i q ig

′
+

1( ) i vv

v

r r

ig h
′

+ , 1 , 1

1 1( ) i t v tv
k c

tL W − −+

−
, ,

1 ( ) i t t vv
k c

tL W +

2 ( ) vs
mL M , i vv

r rg
′+ , vsg , , 1 , 1i t v tv

k cg − −+ ,
, ,i t v tv

k cg + )= 

=( ( )
2

vq ig 1( ) iv

v

r

ig h , 1

1 1( ) v tc
tL W −

−
,

1 ( ) v tc
tL W 2 ( ) vs

mL M , iv
rg , vsg , , 1v tcg − , ,v tcg ). 

Verify(cp, m, ω′, (t, σ )): Let S = {i1, …, id}. Given the signature (t, σ ) for 
period t, the attribute set ω′ = {i1, …, ik} and a message m with the default attribute 
set Ω′ = {ik+1, ik+2, …, id}, the verifier accepts (t, σ ) iff the following equality holds: 

,1

1 2 2 3 1 1 4 1 5

(0)

1

ˆ( , )
ˆ ˆ ˆ ˆ( , ) ( ( ), ) ( ( ), ) ( ( ), )( ) i Svv

i v m v t v t vv

d

v

e g
e g h e L M e L W e L W

σ
σ σ σ σ−

Δ

=

∏ = ê （g1, g2）. 
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The consistency of this scheme can be explained as follows:  

,1

1 2 2 3 1 1 4 1 5

(0)

1

ˆ( , )
ˆ ˆ ˆ ˆ( , ) ( ( ), ) ( ( ), ) ( ( ), )( ) i Svv

i v m v t v t vv

d

v

e g
e g h e L M e L W e L W

σ
σ σ σ σ−

Δ

=

∏ = 

=
,

( ) , 1 ,
1 1 1 1 22

, 1 ,
1 2 1 1 1

(0)

1

ˆ( , ( ) ( ) ( ) ( ) )

ˆ ˆ ˆ ˆ( , ) ( ( ), ) ( ( ), ) ( ( ), )
( ) i Sv

r c cq i i sv t v tv v v
i t t mv

r c ci s v t v tv v
i m t tv

d

v

e g g g h L W L W L M

e g h g e L M g e L W g e L W g

−
−

−
−

Δ

=

∏ = 

=
, ( 0 )( )

2
1

ˆ( ( , )) i Sv v

d
q i

v

e g g
Δ

=

∏ = ê (g, g2) (0)q = ê (g, g2)y= ê (g1, g2). 

4.2. Security 

Theorem 1. The proposed ABPKIS scheme is key-insulated in the Selective-ID 
model, assuming that the CDH assumption holds in group G1 and the hash function 
H is collision-resistant. Concretely, if there exists a (T,ε)-UF-ID&KE-CMA 
adversary T   against our scheme, asking at most qk (qt, qs, respectively) queries to 
the oracle of key generation queries (temporary private key queries, signature 
queries, respectively), then there exists an efficient algorithm U  that can solve the 
(T′, ε′ )-CDH assumption in group G1 with T′ ≤ T +Ο((qk + qt + qsd)te + (nw(qk + qt) + 

+(nw + nm)qsd)tm), ε′ ≥ ( )2 227( 1) ( 1)( ) 1w m t s s
d kn n q q q d

ε
−+ + + −

, where te and tm denote the 

running time of an exponentiation and a multiplication in group G1, respectively, 
where d is the threshold value, and k is the length of the challenge identity. 

P r o o f: Suppose that U  is given a tuple (g, ga, gb) ∈ G3 
1  for some unknown  

a, b ∈ Z* 
p . The task of U  is to compute gab. U   flips a fair coin Vb\a  ∈{1, 2}. If 

Vb\a = 1, U  plays Game 1 with T, else he plays Game 2. 
Game 1. Define the universe U of l elements as {1, …, l}. For simplicity, let 

the default set of d−1 attributes be Ω = {l+1, l+2, …, l+d–1}. During the initial 
phase, U receives the challenge period index t* and the challenge identity α (an n 
elements set of members of Z* 

p ), where |α| = k < d, and d is the threshold value. 
Setup. U generates the public parameters for T  as follows: (1) Choose a 

random subset Ω* ⊆ Ω with |Ω*| = d – k; (2) Set lw = 2(qt + qs), lm = 2qs, and 
randomly choose two integers kw and km with 0 ≤ kw ≤ nw and 0 ≤ km ≤ nm. We here 
assume that lw(nw + 1) < p and lm(nm + 1) < p; (3) Randomly choose the following 
integers: 

x′ 
w

U

lZ← , z′ 
m

U

lZ← , y′, u′ U
←  Z  

p; βi
U
←  Z  

p, i = 1, …, l + d – 1; ˆ
w

U

j lx Z← , j = 1, …, nw; 

ˆ
m

U

lz Zτ ← , τ = 1, …, nm; ˆ
jy

U
←  Z  

p, j = 1, …, nw; ûτ  U
←  Z  

p, τ = 1, …, nm; 

(4) Define a set of public parameters: g1 = ga, g2 = gb, w′ = 2
w wl k x yg g

′ ′− + ,  
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m′ = 1
m ml k z ug g

′ ′− + ; H
r

= (hi), i = 1, …, l+d–1, with hi = 1

1
ig g β− for ∀ i∈ α∪Ω* and  

hi = ig β for ∀ i∈/  α∪Ω*; W
r

= (wj), with wj =
ˆ ˆ

2
j jx yg g , j = 1, …, nw; M

r
= (mτ), with  

mτ =
ˆˆ

1
z ug gτ τ ,τ = 1, …, nm. Finally, give T  the above public parameters. Note that 

the distribution of these public parameters is identical to the real construction. To 
make the notation easy to follow, we define four functions J1, J2, K1 and K2, such 
that  

K1(S1) = – lwkw + x′ +
1

ˆ
jj

x
∈∑ S

, J1(S1) = y′ +
1

ˆ
∈∑ jj S

y
1

ˆ
∈∑ jj S

x , 

K2(S 2)  = – lmkm + z′ +
2

ˆ
ττ∈∑ S

x , J2(S2)  = u′ +
2

ˆ
ττ∈∑ S

u , 

where S1⊆{1, …, nw} and S2⊆ {1, …, nm}. Note that the following equalities always 
hold: 1 1 1 1( ) ( )

1

K S J Sg g = L1(S1), 2 2 2 2( ) ( )

1

K S J Sg g = L2(S2). According to Equations (1) and (2), a 
given user’s initial private key and all of his temporary private keys share the same 
exponent ri and q (i). To embody these implicit relations, U  forms two lists, called 
Rlist and Slist, which are initially empty. For easy explanation, an algorithm, called 
RQuery(ω, i) is defined such that: for a given input 〈ω, i〉, if Rlist contains a tuple  
(ω, i, r̂ ), then return r̂ ; otherwise, pick r̂

U
←  Z 

p, add (ω, i, r̂ ) to Rlist, and return r̂ . 
In addition, an algorithm called SQuery(ω, i) is defined such that: for a given input 
〈ω, i〉, if Slist contains a tuple (ω, i, ŝ ), then return ŝ ; otherwise, pick ŝ  U

←  Z p, add  
(ω, i, ŝ ) to Slist, and return ŝ . 

Query Phase. U  answers a series of oracle queries for T  in the following 
way: 

Help key queries: U maintains a list HKlist that is initially empty. Suppose that 
T  requests a helper key and an initial private key for the identity ω. U first checks 
whether HKlist has contained a tuple for this input. If yes, the predefined value is 
returned to T. . Otherwise, it picks HKω

U
←  {0, 1}κ. Next, it adds the tuple (ω, HKω) 

to the list HKlist and returns HKω to T. U  first checks whether HKlist has contained 
a tuple for this input. If yes, the predefined value is returned to T.  Otherwise, it 
picks HKω U

←  {0, 1}κ. Next, it adds the tuple (ω, HKω) to the list HKlist and returns 
HKω to T.  

Key generation queries: We define three sets Γ, Γ′, S, as follows: (1) Let  
Γ = ω∩α; (2) Let Γ′ be any set such that Γ′ ⊂α and |Γ′| = d−1; and (3) Let  

S = Γ′∪{0}. Next, we define the initial private key components as follows: (1) A 
d−1 degree polynomial q is randomly chosen such that q(0) = a; (2) Generate a new 
attribute set ω̂  = ω∪Ω, and for each i ∈ω̂ , compute ki,0 = F HKω

(0||i); (3) For each  

i ∈Γ′, compute ri = RQuery(ω, i) and si = SQuery(ω, i), let q(i) = si, and according 
to (1), set the initial private key components to be ,0 ,0

2 1 1 0( ( ) ( ) , , )i ii i i
k ks r r

ig g h L W g g ;  

(4) For each i ∈ ω̂ –Γ′, compute ir
′  = RQuery(ω, i), and set the initial private key 
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components to be ( ,( ) ( )

2
j Sj

q j i
g Γ ′∈

⋅Δ∑  0 ,· ( )
2

i S ig β− Δ  1( ) ir
ig h

′

 ,0

1 0( ) ikL W , ,0ikg , 0 , ( )
2

S ii rg g
′−Δ ). 

Temporary private key queries: We require that T  only queries on the 
restricted identity ω* where α⊆ω*. Consider that T  receives a temporary private 
key query 〈ω, t〉. Upon receiving a temporary private key query 〈ω, t〉, U  outputs 
“failure” and aborts if K1(Wt) ≡ 0 mod p holds (denote this event by E1). Otherwise, 
we define three sets Γ, Γ′, S in the same way as Key generation queries. Next, we 
define the temporary private key components as follows. ① A d−1 degree 

polynomial q is randomly chosen such that q(0) = a; ② Generate a new attribute set 

ω̂  = ω∪Ω; ③ For each i ∈Γ′, compute ri = RQuery(ω, i) and si = SQuery(ω, i), pick 
ki,t 

U
←Z* 

p , let q(i) = si, and according to Equation (2), set the temporary private key 
components to be  

( , 1 , 1, ,( )
2 1 1 1 1( ) ( ) ( ) , , ,i t i t i t i ti ik k k kr rq i

i t tg g h L W L W g g g− −

− ); 

④ For each i ∈ ω̂ –Γ′, compute ir  = RQuery(ω, i), pick ,i tk ′ U
←  Z* 

p , and set the 
temporary private key components to be  

( ,( ) ( )

2
j Sj

q j i
g Γ ′∈

⋅Δ∑ ( ) ( )1 0,
( )1

2

J W it S
K Wtg

⋅Δ
−

1( ) ir
ig h , 1

1 1( ) i tk
tL W −
−

,

1 ( ) i tk
tL W ′ , , 1i tkg − ,

0,

,1

( )
( )

2

S

i tt

i
kK Wg g
′

Δ
−

, irg ). 
Signing queries: Suppose U receives a signature query 〈ω, t, m 〉. If α⊆/ ω, 

then U can generate a simulated temporary private key for 〈ω, t〉 to be a Temporary 
private key query and obtain a signature for 〈ω, t〉 on message m, normally. If 
(α⊆ω)∧ (K1(Wt) ≡ K2(Mm) ≡ 0 mod p) holds, then U outputs “failure” and aborts 
(denote this event by E3). Otherwise, U constructs the signature for T  according to 
two cases  

Case 1. If (α⊆ω)∧ (K1(Wt) ≡/  0 mod p) ∧ (K2(Mm) ≡ 0 mod p), then U 

chooses a random (d-|ω|)-element subset Γ′ from Γ. Assume that ω∪Γ = {i1, …, id}. 
A d–1 degree polynomial q  is randomly chosen such that q (0) = a. For each  
k ∈ {1,…, d–1}, pick τk, 

ki
r , ,k tc , sk 

U
←  Z 

p, set q  (ik) = τk, and according to (3), set the 

signature components to be  ( , 1 ,( )
2 1 1 1 1 2( ) ( ) ( ) ( )−

−
i v t v tv v v

v

r c cq i s
i t t mg g h L W L W L M , iv

rg , vsg , 
, 1−v tcg , ,v tcg ). For k = d, pick

di
r , , 1d tc − , ,d tc ′ , sd 

U
←  Z  

p , and set the signature 
components to be   

1 ,

1

( ) ( 0)

( )

1 2

1
,1

2

( ) ( )
( )

t i Sd

id t

d

J W

r K W

i

d
i S k kdi

i q i
g h gg

Δ
−−

=
Δ

⎛ ∑⎜
⎜
⎝

 , 1

1 1( ) v tc
tL W −

−
,

1 ( ) d tc
tL W

′

 2 ( ) ds

mL M , ik
rg , dsg , , 1v tcg − , 

,
,

1

· (0)

( )
i Sd

d t
t

b
c

K Wg
′

Δ
− ⎞

⎟
⎟
⎠

. 
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Case 2. If (α⊆ω)∧ (K1(Wt) ≡ 0 mod p) ∧ (K2(Mm) ≡/  0 mod p), U chooses a 

random (d–|ω|)-element subset Γ′ from Γ. Assume that ω∪Γ = {i1, …, id}. A d−1 
degree polynomial q  is randomly chosen such that q (0) = a. For each  
k ∈ {1,…, d–1}, pick τk, 

ki
r , ,k tc , sk 

U
←  Zp, set q  (ik) = τk, and according to (3), set the 

signature components to be  
( , 1 , , 1 ,( )

2 1 1 1 1 2( ) ( ) ( ) ( ) , , , ,i iv t v t v t v tv v v v v

v

r rc c c cq i s s
i t t mg g h L W L W L M g g g g− −

−
,k tcg ). 

For k = d, pick
di

r , ,d tc , ds′ U
←Zp, and set the signature components to be  
( ) (0)21

1
,
)2, (

1 2 2

( ) ( )
( ) id

d

d
i S

J Mm i Sd
K Mmk kdir

i

i q i
g h g g

Δ−

=
−Δ⎛ ∑

⎜
⎝

, 1

1 1( ) v tc
tL W −

−
,

1 ( ) d t
t

cL W  2 ( )s
m

dL M ′ , ik
r

g , 

, 1

(0),
( ) ,2 , , .v t

i Sd
d K M d tcs cgg g−

Δ′ − ⎞
⎟
⎠

 

Output. Finally, the adversary outputs a forged signature  
(t*,σ*)=(t*,{ 1 *σ 〈 〉

v , 2 * 3 * 4 * 5 *, , ,σ σ σ σ〈 〉 〈 〉 〈 〉 〈 〉

v v }1≤v≤d) on message m* for α and t* with a 

default attribute subset *Ω . If (K1(Wt*-1) ≡ K1(Wt*) ≡ K2(Mm *) ≡ 0 mod p) ∧ 

∧( *Ω = Ω*) does not hold, then U outputs “failure” and aborts (denote this event by 
E4). Otherwise, we have  

1 *
,

2 * 3 * 4 * 5 *
1 2 * 1 * 1 *1

(0)ˆ( , )
ˆ ˆ ˆ ˆ( , ) ( ( ), ) ( ( ), ( ( ), )

1

( ) i Sv v

i v v v vv m t t

d
e g

e g h e L M e L W e L W
v

σ
σ σ σ σ

−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ = 

=
1 *

,
( ) ( ) ( )( ) ( ) ( )2 * 1 * 1 *2 * 1 * 1 *1 2 * 3 * 4 * 5 *

1 1 1 1 1
1

1

(0)ˆ( , )

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )1

( ) i Sv v
K M K W K WJ M J W J Wi m t tv m t t

v v v v

d
e g

e g g g e g g e g g e g gv
β

σ

σ σ σ σ

〈 〉

− 〈 〉 〈 〉 〈 〉 〈 〉−
−

Δ

=
∏ = 

=
1 *

,
( ) ( ) ( )2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)ˆ( , )

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )1

( ) i Sv v
J M J W J Wiv m t t

v v v v

d
e g

e g e g e g e gv
β

σ

σ σ σ σ

〈 〉

〈 〉 〈 〉 〈− 〉 〈 〉

Δ

=
∏ = 

=
1 *

,
( ) ( ) ( )2 * 1 * 1 *2 * 3 * 4 * 1 5 *

(0)ˆ( , )

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )1

( ) i Sv v
J M J W J Wiv m t t

v v v v

d
e g

e g e g e g e gv
β

σ

σ σ σ σ

〈 〉

〈 〉 〈 〉 〈 〉 − 〈 〉

Δ

=
∏ = 

=
1

1 *
,

( ) ( ) ( )2 * 1 * 1 *2 * 3 * 4 * 5 *

(0)

1

,ˆ( ) i Sv v
J M J W J Wiv m t t

v v v v

d

v

ge β

σ

σ σ σ σ

〈 〉

〈 〉 〈 〉 〈 〉 〈− 〉

Δ

=
∏ = 

= ê (
1 *

,
( ) ( ) ( )2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)

1

( ) i Sv v
J M J W J Wiv m t t

v v v v

d

v
β

σ

σ σ σ σ−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ , g), 

and  
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1 *
,

2 * 3 * 4 * 5 *
1 2 * 1 * 1 *1

(0)ˆ( , )
ˆ ˆ ˆ ˆ( , ) ( ( ), ) ( ( ), ( ( ), )

1

( ) i Sv v

i v v v vv m t t

d
e g

e g h e L M e L W e L W
v

σ
σ σ σ σ

−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ = 

=

* *( ) , 1 ,
1 1 * 1 * 2 *2 ,

* *, 1 ,
1 2 * * *

1

1 11

ˆ( , ( ) ( ) ( ) ( ) ) (0)

ˆ ˆ ˆ ˆ( , ) ( ( ), ) ( ( ), ) ( ( ), )1

( )
c crq i i sv t v tv v v

iv i St t m v
c cri s v t v tv v

iv m t t

d e g g g h L W L W L M

e g h g e L M g e L W g e L W gv

−

−

−

−

Δ

=
∏ = 

= , ( 0 )( )

2
1

ˆ( , ) i Sv v

d
q i

v

e g g
Δ

=

∏ = 2

,1
( ) (0)

ˆ( , )
d

v i svv
q i

e g g =
⋅Δ∏ = ( 0)

2
ˆ( , ) qe g g = ˆ( , )b ae g g = ê (gab, g). 

ê (
1 *

,
( ) ( ) ( )2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)

1

( ) i Sv v
J M J W J Wiv m t t

v v v v

d

v
β

σ

σ σ σ σ−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ , g) = ê (gab, g). 

Then, U can successfully compute gab as 
1 *

,
( ) ( ) ( )2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)

1

( ) i Sv v
J M J W J Wiv m t t

v v v v

d

v
β

σ

σ σ σ σ−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ = gab. 

Game 2. In this game, U acts as a challenger expecting that T  will corrupt 
exactly one of the helper keys on the challenged identity. U  picks η U

←  {0，1} and 
bets on that T  queries on the η-th helper. We assume η = 1, the case of η = 0 can 
be handled in a similar manner). U provides the simulation of Setup, Key 
generation queries, Help key queries and Signing queries for T  in the same way as 
Game 1. U  provides Temporary Private Key queries for T  as follows: 

Temporary Private Key queries: we explain how to deal with the case of an 
even t (the case of an odd t can be handled in a similar manner). Since T  does not 
know HKω,0, U can compute ki,t-1 by KQuery. The other steps are the same as 
Temporary Private Key queries of Game 1. 

We can see that U’s running time is bounded by T′ ≤ T +Ο((qk + qt + qsd)te +  
+ (nw(qk + qt) + (nw + nm)qsd)tm). The probability analysis is similar to [4]. The 
advantage of U can be bounded by ε′  ≥ ( )2 227( 1) ( 1)( ) 1

.
w m t s s

d kn n q q q d

ε
−+ + + −

 

Theorem 2. The proposed ABPKIS scheme is key-insulated in the Selective-
ID model, assuming that the CDH assumption holds in group G1 and the hash 
function H is collision-resistant. Concretely, if there exists a (T,ε)-strongly-UF-
ID&KE-CMA adversary T  against our scheme, asking at most qk (qh, qs 
respectively) queries to the oracle of key generation queries (helper key queries, 
signature queries respectively), then there exists an efficient algorithm U that can 
solve the (T′, ε′ )-CDH assumption in group G1 with T′ ≤ T + Ο((qk + qsd)te + (nwqk + 

+ (nw + nm)qsd)tm), ε′ ≥ ( )2 2 227( 1) ( 1)( ) 1

ε
−+ + + −w m t s s

d kn n q q q d
, where te, tm, d, k denote the 

same quantities as in Theorem 1. 
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P r o o f: The proof is the same as that of Theorem 1 except that: the 
temporary private key queries are no longer provided to T.  

Theorem 3. The proposed ABPKIS scheme satisfies anonymity. 
P r o o f; First, the challenger V  runs the algorithm Setup to obtain the public 

parameters cp and the master secret key msk = y. V  also gives cp and msk = y to the 
adversary T.. After these interactions, the adversary outputs two identities ω* 

1  and 
ω* 

2 , where *ω = ω* 
1  ∩ ω* 

2 . Note that the temporary private key for each user should 

include the (d−1)-element default attribute set Γ. Let *ω)b =ω* 
b ∪Ω for b ∈{0, 1}. 

Assume that V. or T. has generated the temporary private key 

* *
1 ,

TK
tω

= * * * *

1 1 1 1

1, 2, 3, 4 , *
1

{( , , , )}
ω∈ )i t i t i t i t i

d d d d  for (ω* 
1 , t*) and * *

2 ,
TK

tω
= * * * *

2 2 2 2

1, 2, 3, 4 , *
2

{( , , , )}
∈
)i t i t i t i t i w

d d d d  

for (ω* 
2 , t*). For each i∈ *

θω
) , let  

( *1,i t
d θ , *2 ,i t

d θ , *3,i t
d θ , *4,

θ

i t
d )=( ( )

2

q ig θ

1( ) ir

ig h
θ *,

*
1

1 1
( )

θ

−

−
i t

k

t
L W *,

*1 ( )
θ

i t
k

t
L W , *, 1

θ

−i t
k

g , *,i t
k

g
θ

, irg
θ

), 

where θ∈{0, 1}, ir
θ , *,i t

k θ , *, 1
θ

−i t
k

U
←  Z 

p, qθ is a (d−1) degree polynomial such that  

qθ (0) = y. 
Then T. outputs the period index t*, message m* and a k-element subset  

ω*= {i1, …, ik} ⊆ *ω , where |ω*|≤ d. T. asks V  to generate a signature on message 

m* with respect to ω* and t* from either * *
1 ,

TK
tω

or * *
2 ,

TK
tω

. V picks b U
←  {0, 1} and a 

(d−k)-element subset Ω′ = {ik+1, ik+2, …, id}⊆Ω. Then V runs algorithm  
Sign(cp, t*, m*, * *,

TK
b tω

) to output a signature  

(t*,{( *1,v

b
i t

d ( )
2

vq ig
′

1( ) v

v

r
ig h

′
1* *, ,

* *11 1( ) ( )−

−
v t v t

c c

t t
L W L W 2 ( ) vs

mL M , 4,v

b
i td vrg

′

, vsg , 

*2,v

b
i t

d 1*, −v t
c

g , *,3v

b
i t

d *,v t
c

g )}v∈ω*∪Ω′), 

where * *,
TK

b tω
= *0,

{( b

i t
d , *1,

b

i t
d , *2,

b

i t
d , * *3,

)}
ω∈ b

b

i t i
d , vr′ , sv, cv,t*-1, cv,t* 

U
←  Z 

p, q′ is a d−1 degree 

polynomial function with q′ (0) = 0. The signature (t*, σ*) could be generated from 
either * *

1 ,
TK

tω
 or * *

2 ,
TK

tω
. If b = 1, the signature (t*, σ*) from * *

1 ,
TK

tω
 is  

(t*,{( *
1

1,vi t
d ( )

2
vq ig

′

1( ) v

v

r
ig h

′
1* *, ,

* *11 1( ) ( )−

−
v t v t

c c

t t
L W L W 2 ( ) vs

mL M , 1
,4vi td vrg

′

, vsg , 

*
1

2,vi t
d 1*, −v t

c
g , *

1
,3vi t

d *,v t
c

g )}v∈ω*∪Ω′). 

We prove that this signature could be generated from * *
2 ,

TK
tω

 in four steps. 

(1) From the construction of a temporary private key, we have  
1

*1,
2

*1,

i t

i t

d

d
=

1
1 *( ) ,1

1 1 *2
2

2 *( ) ,2
1 1 *2

( ) ( )

( ) ( )

k
rq i i ti

i t
k

rq i i ti
i t

g g h L

g g h L

W

W

 = 1 2( ) ( )

2

q i q ig −
 

1 2

1( ) i ir r

ig h −
 

1 2
* *, ,*

1( ) i t i t
k k

tL
−

W , 
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1
*2,

2
*2,

i t

i t

d

d
=

1
*,

2
*,

k
i t

k
i t

g

g

=
1 2

* *, ,i t i t
k k

g
−

, 
1

*3,
2

*3,

i t

i t

d

d
=

1

2

ri

ri

g

g
=

1 2
i ir rg −

. 

(2) A d−1 degree polynomial q  is randomly chosen such that q  (0) = 0.  
(3) Then we have 

( *
1

1,vi t
d ( )

2
vq ig

′

1( ) v
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r
ig h

′
1* *, ,

* *11 1( ) ( )−

−
v t v t

c c
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−
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× 

× 1
,

*
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1
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−
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c
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*
2
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c
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2
,3vi t

d *,v t
c

g ). 

(4) A d−1 degree polynomial q′′ is randomly chosen such that q′′(x) = q1(x) −  
– q2(x) + q′′(x). Then we have q′′(0) = 0, q′′(iv) = q1(iv) – q2(iv) + q′(iv). Let vr

′′ = 1
vi

r – 

– 2
vi

r + vr
′ , * 1,

′
−v t

c = * 1
1

, −vi t
k – * 1

2
, −vi t

k + * 1, −v t
c , *,v t

c′ = *
1

,vi t
k – *

2
,vi t

k + *,v t
c . Then, the signature 

(t*, σ*) could be rewritten as  

(t*,{( *
2
1,vi t

d ( )
2

vq ig
′

1( ) v

v

r
ig h

′
1* *, ,

* *11 1( ) ( )−

−
v t v t

c c

t t
L W L W 2 ( ) vs

mL M , 2
,4vi td vrg

′

, vsg , 

*
2

2,vi t
d 1*, −v t

c
g , *

2
,3vi t

d *,v t
c

g )}v∈ω*∪Ω′), 

which is a valid signature generated from * *
2 ,

TK
tω

.  

Similarly, a signature  (t*, σ*)  from  * *
2 ,

TK
tω

 can also be generated from * *
1 ,

TK
tω

. 

From the proof, it has been shown that the proposed ABPKIS scheme satisfies 
unconditional anonymity.   

5. Conclusion 

We introduce the notion of an Attribute-Based Parallel Key Insulated Signature 
(ABPKIS) and describe a construction that is based on an Attribute-Based Signature 
(ABS).  
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