
 26

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 15, No 3

Sofia • 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2015-0039

Attribute-Based Parallel Key-Insulated Signature

Jianhong Chen1, Kun Yu1, Yu Long2, Kefei Chen3
1Faculty of Computer Engineering, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
2Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China
3School of Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Emails: jianhong_chen_cis@163.com Varguard@163.com longyu@sjtu.edu.cn
kfchen@sjtu.edu.cn

Abstract: To deal with the key-exposure protection problem in attribute-based
signature systems, we extend the parallel key-insulated mechanism to attribute-
based signature scenarios, and then introduce the primitive of an Attribute-Based
Parallel Key-Insulated Signature (ABPKIS). After formalizing the definition and
security notions for ABPKIS, a concrete ABPKIS scheme is presented. The security
of our proposed ABPKIS scheme can be proved on a standard model. According to
our knowledge, this is the first ABPKIS scheme up to now. Moreover, this is also
the first concrete attribute-based key-insulated signature construction supporting
multi-helpers.

Keywords: Parallel key-insulated, attribute-based signature, key-exposure.

1. Introduction

To protect private keys, D o d i s et al. [2] introduced the key insulation mechanism
in 2002. In a key-insulated cryptosystem, the helper keys are kept in a helper
(a physically-secure, but computationally-limited device) while the temporary
private keys are stored in a powerful but insecure device where cryptographic
computations occur. The temporary private keys are refreshed at discrete times via
interaction between the user and the helper, and the public key remains constant
during the lifetime of the system. To enhance the security and flexibility of the key
insulation mechanism, the idea of parallel key insulation [3, 6, 8, 9, 10] was put

 27

forward. In a parallel key-insulated cryptosystem, distinct independent helpers are
alternatively used in key update operations.

Attribute-Based Signature (ABS) [4, 5, 7] is a kind of signature that manifests
a pretension to the attributes that the underlying signer owns. Attribute-based
signatures have many applications, such as attribute based messaging systems and
anonymous authentication. In 2014 C h e n et al. [1] proposed an Attribute-Based
Key-Insulated Signature (ABKIS), which is a crucial technique for protecting
signing keys in ABS systems. Nevertheless, in Chen et al. scheme, where only one
helper is used, if both the user’s helper key and some of his temporary signing keys
are exposed, the security of the signature system will be entirely lost.

To further enhance the security of the system by allowing frequent key-
updates without increasing the risk of helper key exposure, we extend the parallel
key-insulated mechanism to attribute-based signature scenarios and give an
Attribute-Based Parallel Key-Insulated Signature (ABPKIS) scheme which is
provably secure in the standard model. Our proposed scheme is strongly key-
insulated, and even if one of a user’s helper keys and some of his temporary signing
keys are exposed, it is still impossible for an adversary to obtain all of this user’s
temporary signing keys. To the best of our knowledge, this is the first ABPKIS
scheme up to now. Further on, this is also the first concrete attribute-based key-
insulated signature construction supporting multi-helpers.

2. Preliminaries

Throughout this paper, we let Zp denote the set {0, 1, 2,…, p−1} and Z*
p denote

Zp\{0}. For a finite set S, x U
←S means choosing an element x from S with a uniform

distribution.

2.1. Bilinear pairings

Our ABPKIS scheme uses a bilinear map (pairing), ê : G1 ×G1 → G2 , where G1 is a
multiplicative group with a prime order p and G2 is also a multiplicative group with
a prime order p. The pairing ê satisfies the following conditions:

• Bilinear: For all g1, g2 ∈ G1 and for all a, b ∈ Z*
p , we have

ê (ga
1 , gb

2) = ê (g1, g2)ab.
• Non-degenerate: There exist g1, g2 ∈ G1 such that ê (g1, g2) ≠1.
• Computable: There is an efficient algorithm to compute (g1, g2) for all

g1, g2 ∈ G1.

2.2. Computational Diffie-Hellman assumptions
Definition 1. The CDH problem in G1 is, given g, ga, gb∈ G1, to compute gab (for
unknown randomly chosen a, b ∈ Z*

p).
Definition 2. We say that the (t, ε)-CDH assumption holds in a group G1 if no

algorithm running in time t can solve the CDH problem in G1 with probability at
least ε.

 28

3. Model of ABPKIS

3.1. Definition

An ABPKIS scheme consists of six algorithms:
• Setup(κ, l, d): Given a security parameter κ, the length l of some universe

U, of size |U| and a threshold value d, the PKG runs this algorithm to output a
master key (msk) and public parameters (cp).

• KeyGen(msk, cp, ω): Given the user’s identity ω ⊆ U as a set representing
the user’s attributes, the public parameters cp and the master key msk, the PKG
runs this algorithm to output an initial private key TKω,0 and two helper keys
(HKω,0, HKω,1) that correspond to ω.

• HelperUpt(cp, t, ω, HKω): Given the public parameters cp, the period index
t, an identity ω ⊆ U and its helper key HKω, the helper runs this algorithm to output
the key-update information for ω for a period t, UIω,t.

• UserUpt(cp, t, ω, TKω,t–1,UIω,t, TKω,t): Given the public parameters cp, the
period index t, an identity ω ⊆ U, the key-update information UIω,t, and the
temporary private key TKω,t–1 that corresponds to ω and t –1, the user with identity ω
runs this algorithm to output the temporary private key TKω,t that corresponds to ω
and t.

• Sign(cp, t, m, TKω,t): Given the public parameters cp, a period index t, a
message m and a temporary private key TKω,t, this algorithm outputs a signature
(t, σ) with regard to the period index t, the attribute set ω′ ⊆ ω and message m.

• Verify(cp, m, ω′, (t, σ)): Given the public parameters cp, a message m, an
attribute set ω′ and a signature (t, σ) with regard to the period t, an attribute set ω′
and message m, this algorithm outputs 1 if (t, σ) is a valid signature and 0
otherwise.

3.2. Security notions for ABPKIS

For convenience, we give the definition of a restricted identity as below: a restricted
identity ω* satisfies α ⊆ ω*, where α is the challenge identity.

3.2.1. Key-insulated security

The key-insulated security notion captures the intuition that, if an adversary does
not compromise the helper key for a given identity (i.e., an attribute set), then the
exposure of any of the private keys does not enable an adversary to forge a valid
signature for the non-exposed time periods.

Formally, for an ABPKIS scheme, its key-insulated security can be defined via
the following game of existential unforgeability against a chosen identity and an
adaptive chosen message attack under key-exposure (UF-ID&KE-CMA) between
an adversary T and a challenger V.

• Init. The adversary declares the identity α, where |α|< d and d is the
threshold and the time period index t* that he wishes to be challenged upon.

 29

• Setup. The challenger V runs the Algorithm Setup and tells the adversary
T the public parameters.

• Query Phase. The adversary T adaptively issues a set of queries as
below:

− Key Generation queries 〈ω〉: V first runs the algorithm KeyGen to obtain
the initial private key TKω,0 and the helper key HKω that corresponds to the identity
ω. It then sends these results to the adversary.

− Helper Key queries 〈ω 〉: V runs the algorithm KeyGen to generate HKω and
sends it to the adversary.

− Temporary Private Key queries 〈ω, t〉: V runs the algorithm UserUpt to
obtain the temporary private key for the identity ω and period index t. It then sends
the result to T.

− Signing queries 〈ω, t, m 〉: V runs the algorithm Sign(cp, t, m, TKω,t) to
generate a signature (t, σ). Then, V returns (t, σ) to T.

• Output. Finally, T outputs an identity α, a period index t* and a
corresponding signature (t*, σ*).

In the above game, it is also mandated that the following conditions are
simultaneously satisfied: ① Verify(cp, (t*, σ*), m*, ω′) =1; ② T is disallowed to

issue key generation queries for any restricted identity; ③ T is disallowed to issue
temporary private key queries for any restricted identity and the challenged time
period t*; ④ T is disallowed to issue signing queries for any restricted identity, the
challenged time period t* and message m*.

3.2.2. Strongly key-insulated security

The strongly key-insulated security for ABPKIS systems says that, even if one of
the user’s helper keys and some of his temporary signing keys are exposed, it is still
impossible for an adversary to obtain all of this user’s temporary signing keys.

Formally, for an ABPKIS scheme, its strongly key-insulated security can be
defined via the following strongly-UF-ID&KE-CMA game between an adversary
T and a challenger V:

• Init. The same as a UF-ID&KE-CMA game.
• Setup. The same as a UF-ID&KE-CMA game.
• Query Phase. The adversary T adaptively issues a set of queries, such as

those given below:
− Key Generation queries 〈ω 〉: The same as a UF-ID&KE-CMA game.
− Helper Key queries 〈ω 〉: V runs algorithm KeyGen to generate HKω and

sends it to the adversary.
− Signing queries 〈ω, t, m 〉: The same as a UF-ID&KE-CMA game.
• Output. Finally, T outputs an identity α, a period index t* and a

corresponding signature (t*, σ*).
In the above game, it is also mandated that the following conditions are

 30

simultaneously satisfied: ① Verify(cp, (t*, σ*), m*, ω′) =1; ② T is disallowed to

issue key generation queries for any restricted identity; ③ T is disallowed to issue
signing queries for any restricted identity, the challenged time period t* and
message m*.

3.2.3. Anonymity

An ABPKIS scheme satisfies the anonymity requirement if no adversary T can
win the following ANONY-ABPKIS game between T and a challenger V with a
non-negligible advantage:

• V runs the algorithm Setup to generate a master key msk and public
parameters cp and sends them to T.

• T can use the master key msk to generate temporary private keys and
signatures.

• T will next submit a challenge period index t*, a message m*, two identities
(α1, α2) and a challenge identity α, where α ⊆ (α1 ∩ α2) and |α| ≤ d.

• Assume that T has issued temporary private key queries 〈α1, t*〉 and
〈α2, t*〉. Let *

1 ,
TK

tα
 and *

2 ,
TK

tα be temporary private keys for (α1, t*) and (α2, t*),

respectively.
• V flips a random coin, b, computes a signature (t*, σ*) =Sign(cp, t*, m*,

*,
TK

b tα
) and sends it to T.

• Finally, T outputs a guess b′ of b by judging whether (t*, σ*) is generated
from *

1 ,
TK

tα
or *

2 ,
TK

tα

4. Model of ABPKIS

4.1. Definition

We use a Pseudo-Random Function (PRF) [1] F, such that given a κ-bit seed
(index) s and a κ-bit argument (input) x, it outputs a κ-bit string Fs(x), and defines
the Lagrange coefficient

Δi,S(x) = x j
j S i j
j i

−
∈ −
≠

∏

for i∈ Zp and a set S of elements in Zp. The proposed ABPKIS scheme consists of
the following algorithms:

Setup(κ, l, d): Given a security parameter κ, the length l of some universe U
of size |U|, and a threshold value d, the PKG works as follows: ① Define the
universe U. For simplicity, we can take the first l elements of Z*

p to be the universe,
specifically, the integers 1, …, l (mod p); ② Let G1 and G2 be two groups with

 31

prime order p of size, let g be a generator of G1, let ê : G1 ×G1 →G2 denotes the

bilinear map; ③ Let H1: {0, 1}*→ {0, 1} wn , H2 : {0, 1}*→ {0, 1} mn be two collision-

resistant hash functions with nw, nm ∈ Z; ④ Pick y U
← Z

p and g2
U
← G1, set g1 = gy;

⑤ Choose a default set of d−1 attributes from Z
p, Ω = {l + 1, l + 2, …, l + d – 1};

⑥ Pick a random (l + d −1)-length vector H
r

 = (hi) whose elements are randomly

chosen from G1; ⑦ Pick w′ U
← G1 and a random nw-length vector W

r
 = (wi) whose

elements are randomly chosen from G1; ⑧ Pick m′ U
← G1 and a random nm-length

vector M
r

 = (mi) whose elements are randomly chosen from G1; ⑨ Output the

public parameters and the master secret key as cp = (G1, G2, ê , g, g1, g2, w′, m′,

H
r

, W
r

, M
r

, Ω), msk = y. For convenience, we define two functions L1 and L2, such
that L1(S1)=w′

1∈∏ i S wi, L2(S2)=m′
2∈∏ i S mi. In addition, for a given time period t

and a given message m, we hereafter use Wt and Mm to denote the following sets:
Wt = {i|a[i] = 1, a = H1(t) ⊆{1, …, nw}}, Mm = {j|b[j] = 1, b = H2(m) ⊆
⊆{1, …, nm}}.

KeyGen(msk, cp, ω): To generate the helper key and the initial private key for
an identity ω ⊆ U, the PKG works as follows: (1) Pick a helper key HKω,0,
HKω,1

U
← {0, 1}κ; (2) A d−1 degree polynomial q is randomly chosen such that

q(0) = y; (3) Generate a new attribute set ω̂ =ω∪Ω; (4) For all i∈ω̂ , pick ri
U
← Z

p,
compute ki,0 = F

,0HKω
(0 || i) and ki,–1 = F

,1HKω
(−1 || i) (Note that if the length of the

input for F is less than κ, then we can add some “0”s as the prefix to meet the
length requirement); (5) Define the initial private key as
(1) ˆ,0 1,0 2,0 3,0 4,0TK {(, , ,)}ω ω∈= i i i i id d d d =

, 1 ,0 , 1 ,0()
ˆ2 1 1 1 1 0{(() () () , , ,)} ω

− −
− ∈= i i i ii ik k k kr rq i

i ig g h L W L W g g g .
HelperUpt(cp, t, ω, HKω): Given the public parameters cp, the period indices t

and t′, an identity ω ⊆ U, and its helper key HKω, for each i ∈ ω̂ , where ω̂ =ω∪Ω,
this algorithm computes ki,t = F HKω

(t||i) and ki,t-2= F HKω
(t–2||i). Then this algorithm

defines and returns the key-update information as follows:
,

,

, 2

1
ˆ, 1, 2 ,

1 2 ˆ

()
UI {(UI , UI)} ,

()
.

i t

i t

i t

k
kt

t i t i t i k

t i

L W
g

L W
ω ω

ω

−
∈

− ∈

= =
⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

UserUpt(cp, t, ω, UIω,t, TKω,t): This algorithm is executed by the user with
identity ω ⊆ U and works as follows: (1) Parse the temporary private key for the
identity ω and period t−1 as TKω, t–1 = {(di1, t–1, di2, t–1, di3, t–1, di4, t–1)} ˆi ω∈ ;

(2) Parse the key-update information for the identity ω for t as

 32

ˆ, 1, 2,UI {(UI , UI)}t i t i t iω ω∈= ˆi ω∈ ; (3) Set the temporary private key for the identity ω and
period t TKω, t= {(di1, t, di2, t, di3, t, di4, t}i∈ω= {(di1, t–1 ·UIi1, t, di3, t–1, UIi2, t, di4, t–1)} ˆi ω∈ ;
(4) Delete TKω, t–1 and UIω,t; (5) Return TKω, t. Note that if let î = t mod2 and
ĵ = (t−1) mod2, then TKω, t is always set to be

(2) TKω, t= , 1 , , 1 ,()
ˆ2 1 1 1 1{(() () () , , ,)} ,i t i t i t i ti ik k k kr rq i

i t t ig g h L W L W g g g ω
− −

− ∈
where ki, t–1 = F

ˆ,HK jω
(t–1||i) and ki, t = F

ˆ,HK iω
(t||i).

Sign(cp, t, m, TKω, t): Suppose that the signer has a temporary private key for
the attribute set ω and time period t. In period t, the signer can produce the signature
on m with the attribute set ω′ = {i1, i2, …, ik}⊆ ω, where 1≤ k ≤ d, as follows:
(1) Parse TKω, t as TKω, t= {(di1, t, di2, t, di3, t, di4, t}i∈ω; (2) Select a d − k default
attribute subset Ω′ = {ik+1, ik+2, …, id}⊆Ω. Then, pick 1r

′ , 2r
′ , …, dr

′ , s1, s2, … , sd,

c1, t–1, c2, t–1, …, cd, t–1, c1, t, c2, t, …, cd, t
U
← Z

p , choose a d−1 degree polynomial q′(x)
such that q′(0) = 0; (3) For each v ∈ {1, …, d}, compute
σv1 = ()

1, 2

′

v

v

q i

i td g 1()
′

v

v

r

ig h , 1

1 1() −

−
v tc

tL W ,

1 () v tc

tL W 2 () vs

mL M , σv2 = ,4
v

v

r

i td g
′

, σv3 = vsg ,

σv4 = , 1

2, 1
v t

v

c

i td g −

−
, σv5 = ,

2,

v t

v

c

i t
d g′ ; (4) Output the signature (t, σ)= (t, {(σv1, σv2, σv3, σv4,

σv5)}1≤v≤d). Note that if we let
vi

r =
vi vr r ′+ , , 1v tc

−
= , 1 , 1vi t v tk c

− −
+ , ,v tc = , ,vi t v tk c+ , choose a

d−1 default attribute subset q such that for each 1≤v≤d, q (iv) = q(iv) + q′ (iv) (note
that q (0) = q(0) + q′ (0)= y), the signature (t, σ) is always set to be

(3) (t, {(, 1 , , 1 ,()
2 1 1 1 1 2() () () () , , , ,i iv t v t v t v tv v v v v

v

r rc c c cq i s s
i t t mg g h L W L W L M g g g g− −

−)} 1≤v≤d).
This result can be seen from the following:

(σv1, σv2, σv3,σv4,σv5) =
=(1

,vi td 〈 〉 ()

2
vq ig

′

1() v

v

r

ig h
′

, 1

1 1() v tc

tL W −

−
,

1 () v tc

tL W 2 () vs

mL M , 4

,vi td 〈 〉 vrg
′

, vsg , 2

,vi t
d ′

〈 〉 , 1v tcg − , 3

,vi t
d ′

〈 〉 ,v tcg)=

= (()

2
vq ig 1() iv

v

r

ig h , 1

1 1() i tv
k

tL W −

−

,

1 () i tv
k

tL W ()

2 1()v v

v

q i r

ig g h
′ ′

, 1

1 1() v tc

tL W −

−
,

1 () v tc

tL W ×
× 2 () vs

mL M , iv
r

g vrg
′

, vsg , , 1i tv
k

g − , 1v tcg − , ,i tv
k

g ,v tcg)=

=(() ()

2
v vq i q ig

′
+

1() i vv

v

r r

ig h
′

+ , 1 , 1

1 1() i t v tv
k c

tL W − −+

−
, ,

1 () i t t vv
k c

tL W +

2 () vs
mL M , i vv

r rg
′+ , vsg , , 1 , 1i t v tv

k cg − −+ ,
, ,i t v tv

k cg +)=

=(()
2

vq ig 1() iv

v

r

ig h , 1

1 1() v tc
tL W −

−
,

1 () v tc
tL W 2 () vs

mL M , iv
rg , vsg , , 1v tcg − , ,v tcg).

Verify(cp, m, ω′, (t, σ)): Let S = {i1, …, id}. Given the signature (t, σ) for
period t, the attribute set ω′ = {i1, …, ik} and a message m with the default attribute
set Ω′ = {ik+1, ik+2, …, id}, the verifier accepts (t, σ) iff the following equality holds:

,1

1 2 2 3 1 1 4 1 5

(0)

1

ˆ(,)
ˆ ˆ ˆ ˆ(,) ((),) ((),) ((),)() i Svv

i v m v t v t vv

d

v

e g
e g h e L M e L W e L W

σ
σ σ σ σ−

Δ

=

∏ = ê （g1, g2）.

 33

The consistency of this scheme can be explained as follows:

,1

1 2 2 3 1 1 4 1 5

(0)

1

ˆ(,)
ˆ ˆ ˆ ˆ(,) ((),) ((),) ((),)() i Svv

i v m v t v t vv

d

v

e g
e g h e L M e L W e L W

σ
σ σ σ σ−

Δ

=

∏ =

=
,

() , 1 ,
1 1 1 1 22

, 1 ,
1 2 1 1 1

(0)

1

ˆ(, () () () ())

ˆ ˆ ˆ ˆ(,) ((),) ((),) ((),)
() i Sv

r c cq i i sv t v tv v v
i t t mv

r c ci s v t v tv v
i m t tv

d

v

e g g g h L W L W L M

e g h g e L M g e L W g e L W g

−
−

−
−

Δ

=

∏ =

=
, (0)()

2
1

ˆ((,)) i Sv v

d
q i

v

e g g
Δ

=

∏ = ê (g, g2) (0)q = ê (g, g2)y= ê (g1, g2).

4.2. Security

Theorem 1. The proposed ABPKIS scheme is key-insulated in the Selective-ID
model, assuming that the CDH assumption holds in group G1 and the hash function
H is collision-resistant. Concretely, if there exists a (T,ε)-UF-ID&KE-CMA
adversary T against our scheme, asking at most qk (qt, qs, respectively) queries to
the oracle of key generation queries (temporary private key queries, signature
queries, respectively), then there exists an efficient algorithm U that can solve the
(T′, ε′)-CDH assumption in group G1 with T′ ≤ T +Ο((qk + qt + qsd)te + (nw(qk + qt) +

+(nw + nm)qsd)tm), ε′ ≥ ()2 227(1) (1)() 1w m t s s
d kn n q q q d

ε
−+ + + −

, where te and tm denote the

running time of an exponentiation and a multiplication in group G1, respectively,
where d is the threshold value, and k is the length of the challenge identity.

P r o o f: Suppose that U is given a tuple (g, ga, gb) ∈ G3
1 for some unknown

a, b ∈ Z*
p . The task of U is to compute gab. U flips a fair coin Vb\a ∈{1, 2}. If

Vb\a = 1, U plays Game 1 with T, else he plays Game 2.
Game 1. Define the universe U of l elements as {1, …, l}. For simplicity, let

the default set of d−1 attributes be Ω = {l+1, l+2, …, l+d–1}. During the initial
phase, U receives the challenge period index t* and the challenge identity α (an n
elements set of members of Z*

p), where |α| = k < d, and d is the threshold value.
Setup. U generates the public parameters for T as follows: (1) Choose a

random subset Ω* ⊆ Ω with |Ω*| = d – k; (2) Set lw = 2(qt + qs), lm = 2qs, and
randomly choose two integers kw and km with 0 ≤ kw ≤ nw and 0 ≤ km ≤ nm. We here
assume that lw(nw + 1) < p and lm(nm + 1) < p; (3) Randomly choose the following
integers:

x′
w

U

lZ← , z′
m

U

lZ← , y′, u′ U
← Z

p; βi
U
← Z

p, i = 1, …, l + d – 1; ˆ
w

U

j lx Z← , j = 1, …, nw;

ˆ
m

U

lz Zτ ← , τ = 1, …, nm; ˆ
jy

U
← Z

p, j = 1, …, nw; ûτ U
← Z

p, τ = 1, …, nm;

(4) Define a set of public parameters: g1 = ga, g2 = gb, w′ = 2
w wl k x yg g

′ ′− + ,

 34

m′ = 1
m ml k z ug g

′ ′− + ; H
r

= (hi), i = 1, …, l+d–1, with hi = 1

1
ig g β− for ∀ i∈ α∪Ω* and

hi = ig β for ∀ i∈/ α∪Ω*; W
r

= (wj), with wj =
ˆ ˆ

2
j jx yg g , j = 1, …, nw; M

r
= (mτ), with

mτ =
ˆˆ

1
z ug gτ τ ,τ = 1, …, nm. Finally, give T the above public parameters. Note that

the distribution of these public parameters is identical to the real construction. To
make the notation easy to follow, we define four functions J1, J2, K1 and K2, such
that

K1(S1) = – lwkw + x′ +
1

ˆ
jj

x
∈∑ S

, J1(S1) = y′ +
1

ˆ
∈∑ jj S

y
1

ˆ
∈∑ jj S

x ,

K2(S 2) = – lmkm + z′ +
2

ˆ
ττ∈∑ S

x , J2(S2) = u′ +
2

ˆ
ττ∈∑ S

u ,

where S1⊆{1, …, nw} and S2⊆ {1, …, nm}. Note that the following equalities always
hold: 1 1 1 1() ()

1

K S J Sg g = L1(S1), 2 2 2 2() ()

1

K S J Sg g = L2(S2). According to Equations (1) and (2), a
given user’s initial private key and all of his temporary private keys share the same
exponent ri and q (i). To embody these implicit relations, U forms two lists, called
Rlist and Slist, which are initially empty. For easy explanation, an algorithm, called
RQuery(ω, i) is defined such that: for a given input 〈ω, i〉, if Rlist contains a tuple
(ω, i, r̂), then return r̂ ; otherwise, pick r̂

U
← Z

p, add (ω, i, r̂) to Rlist, and return r̂ .
In addition, an algorithm called SQuery(ω, i) is defined such that: for a given input
〈ω, i〉, if Slist contains a tuple (ω, i, ŝ), then return ŝ ; otherwise, pick ŝ U

← Z p, add
(ω, i, ŝ) to Slist, and return ŝ .

Query Phase. U answers a series of oracle queries for T in the following
way:

Help key queries: U maintains a list HKlist that is initially empty. Suppose that
T requests a helper key and an initial private key for the identity ω. U first checks
whether HKlist has contained a tuple for this input. If yes, the predefined value is
returned to T. . Otherwise, it picks HKω

U
← {0, 1}κ. Next, it adds the tuple (ω, HKω)

to the list HKlist and returns HKω to T. U first checks whether HKlist has contained
a tuple for this input. If yes, the predefined value is returned to T. Otherwise, it
picks HKω U

← {0, 1}κ. Next, it adds the tuple (ω, HKω) to the list HKlist and returns
HKω to T.

Key generation queries: We define three sets Γ, Γ′, S, as follows: (1) Let
Γ = ω∩α; (2) Let Γ′ be any set such that Γ′ ⊂α and |Γ′| = d−1; and (3) Let

S = Γ′∪{0}. Next, we define the initial private key components as follows: (1) A
d−1 degree polynomial q is randomly chosen such that q(0) = a; (2) Generate a new
attribute set ω̂ = ω∪Ω, and for each i ∈ω̂ , compute ki,0 = F HKω

(0||i); (3) For each

i ∈Γ′, compute ri = RQuery(ω, i) and si = SQuery(ω, i), let q(i) = si, and according
to (1), set the initial private key components to be ,0 ,0

2 1 1 0(() () , ,)i ii i i
k ks r r

ig g h L W g g ;

(4) For each i ∈ ω̂ –Γ′, compute ir
′ = RQuery(ω, i), and set the initial private key

 35

components to be (,() ()

2
j Sj

q j i
g Γ ′∈

⋅Δ∑ 0 ,· ()
2

i S ig β− Δ 1() ir
ig h

′

 ,0

1 0() ikL W , ,0ikg , 0 , ()
2

S ii rg g
′−Δ).

Temporary private key queries: We require that T only queries on the
restricted identity ω* where α⊆ω*. Consider that T receives a temporary private
key query 〈ω, t〉. Upon receiving a temporary private key query 〈ω, t〉, U outputs
“failure” and aborts if K1(Wt) ≡ 0 mod p holds (denote this event by E1). Otherwise,
we define three sets Γ, Γ′, S in the same way as Key generation queries. Next, we
define the temporary private key components as follows. ① A d−1 degree

polynomial q is randomly chosen such that q(0) = a; ② Generate a new attribute set

ω̂ = ω∪Ω; ③ For each i ∈Γ′, compute ri = RQuery(ω, i) and si = SQuery(ω, i), pick
ki,t

U
←Z*

p , let q(i) = si, and according to Equation (2), set the temporary private key
components to be

(, 1 , 1, ,()
2 1 1 1 1() () () , , ,i t i t i t i ti ik k k kr rq i

i t tg g h L W L W g g g− −

−);

④ For each i ∈ ω̂ –Γ′, compute ir = RQuery(ω, i), pick ,i tk ′ U
← Z*

p , and set the
temporary private key components to be

(,() ()

2
j Sj

q j i
g Γ ′∈

⋅Δ∑ () ()1 0,
()1

2

J W it S
K Wtg

⋅Δ
−

1() ir
ig h , 1

1 1() i tk
tL W −
−

,

1 () i tk
tL W ′ , , 1i tkg − ,

0,

,1

()
()

2

S

i tt

i
kK Wg g
′

Δ
−

, irg).
Signing queries: Suppose U receives a signature query 〈ω, t, m 〉. If α⊆/ ω,

then U can generate a simulated temporary private key for 〈ω, t〉 to be a Temporary
private key query and obtain a signature for 〈ω, t〉 on message m, normally. If
(α⊆ω)∧ (K1(Wt) ≡ K2(Mm) ≡ 0 mod p) holds, then U outputs “failure” and aborts
(denote this event by E3). Otherwise, U constructs the signature for T according to
two cases

Case 1. If (α⊆ω)∧ (K1(Wt) ≡/ 0 mod p) ∧ (K2(Mm) ≡ 0 mod p), then U

chooses a random (d-|ω|)-element subset Γ′ from Γ. Assume that ω∪Γ = {i1, …, id}.
A d–1 degree polynomial q is randomly chosen such that q (0) = a. For each
k ∈ {1,…, d–1}, pick τk,

ki
r , ,k tc , sk

U
← Z

p, set q (ik) = τk, and according to (3), set the

signature components to be (, 1 ,()
2 1 1 1 1 2() () () ()−

−
i v t v tv v v

v

r c cq i s
i t t mg g h L W L W L M , iv

rg , vsg ,
, 1−v tcg , ,v tcg). For k = d, pick

di
r , , 1d tc − , ,d tc ′ , sd

U
← Z

p , and set the signature
components to be

1 ,

1

() (0)

()

1 2

1
,1

2

() ()
()

t i Sd

id t

d

J W

r K W

i

d
i S k kdi

i q i
g h gg

Δ
−−

=
Δ

⎛ ∑⎜
⎜
⎝

 , 1

1 1() v tc
tL W −

−
,

1 () d tc
tL W

′

 2 () ds

mL M , ik
rg , dsg , , 1v tcg − ,

,
,

1

· (0)

()
i Sd

d t
t

b
c

K Wg
′

Δ
− ⎞

⎟
⎟
⎠

.

 36

Case 2. If (α⊆ω)∧ (K1(Wt) ≡ 0 mod p) ∧ (K2(Mm) ≡/ 0 mod p), U chooses a

random (d–|ω|)-element subset Γ′ from Γ. Assume that ω∪Γ = {i1, …, id}. A d−1
degree polynomial q is randomly chosen such that q (0) = a. For each
k ∈ {1,…, d–1}, pick τk,

ki
r , ,k tc , sk

U
← Zp, set q (ik) = τk, and according to (3), set the

signature components to be
(, 1 , , 1 ,()

2 1 1 1 1 2() () () () , , , ,i iv t v t v t v tv v v v v

v

r rc c c cq i s s
i t t mg g h L W L W L M g g g g− −

−
,k tcg).

For k = d, pick
di

r , ,d tc , ds′ U
←Zp, and set the signature components to be
() (0)21

1
,
)2, (

1 2 2

() ()
() id

d

d
i S

J Mm i Sd
K Mmk kdir

i

i q i
g h g g

Δ−

=
−Δ⎛ ∑

⎜
⎝

, 1

1 1() v tc
tL W −

−
,

1 () d t
t

cL W 2 ()s
m

dL M ′ , ik
r

g ,

, 1

(0),
() ,2 , , .v t

i Sd
d K M d tcs cgg g−

Δ′ − ⎞
⎟
⎠

Output. Finally, the adversary outputs a forged signature
(t*,σ*)=(t*,{ 1 *σ 〈 〉

v , 2 * 3 * 4 * 5 *, , ,σ σ σ σ〈 〉 〈 〉 〈 〉 〈 〉

v v }1≤v≤d) on message m* for α and t* with a

default attribute subset *Ω . If (K1(Wt*-1) ≡ K1(Wt*) ≡ K2(Mm *) ≡ 0 mod p) ∧

∧(*Ω = Ω*) does not hold, then U outputs “failure” and aborts (denote this event by
E4). Otherwise, we have

1 *
,

2 * 3 * 4 * 5 *
1 2 * 1 * 1 *1

(0)ˆ(,)
ˆ ˆ ˆ ˆ(,) ((),) ((), ((),)

1

() i Sv v

i v v v vv m t t

d
e g

e g h e L M e L W e L W
v

σ
σ σ σ σ

−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ =

=
1 *

,
() () ()() () ()2 * 1 * 1 *2 * 1 * 1 *1 2 * 3 * 4 * 5 *

1 1 1 1 1
1

1

(0)ˆ(,)

ˆ ˆ ˆ ˆ(,) (,) (,) (,)1

() i Sv v
K M K W K WJ M J W J Wi m t tv m t t

v v v v

d
e g

e g g g e g g e g g e g gv
β

σ

σ σ σ σ

〈 〉

− 〈 〉 〈 〉 〈 〉 〈 〉−
−

Δ

=
∏ =

=
1 *

,
() () ()2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)ˆ(,)

ˆ ˆ ˆ ˆ(,) (,) (,) (,)1

() i Sv v
J M J W J Wiv m t t

v v v v

d
e g

e g e g e g e gv
β

σ

σ σ σ σ

〈 〉

〈 〉 〈 〉 〈− 〉 〈 〉

Δ

=
∏ =

=
1 *

,
() () ()2 * 1 * 1 *2 * 3 * 4 * 1 5 *

(0)ˆ(,)

ˆ ˆ ˆ ˆ(,) (,) (,) (,)1

() i Sv v
J M J W J Wiv m t t

v v v v

d
e g

e g e g e g e gv
β

σ

σ σ σ σ

〈 〉

〈 〉 〈 〉 〈 〉 − 〈 〉

Δ

=
∏ =

=
1

1 *
,

() () ()2 * 1 * 1 *2 * 3 * 4 * 5 *

(0)

1

,ˆ() i Sv v
J M J W J Wiv m t t

v v v v

d

v

ge β

σ

σ σ σ σ

〈 〉

〈 〉 〈 〉 〈 〉 〈− 〉

Δ

=
∏ =

= ê (
1 *

,
() () ()2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)

1

() i Sv v
J M J W J Wiv m t t

v v v v

d

v
β

σ

σ σ σ σ−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ , g),

and

 37

1 *
,

2 * 3 * 4 * 5 *
1 2 * 1 * 1 *1

(0)ˆ(,)
ˆ ˆ ˆ ˆ(,) ((),) ((), ((),)

1

() i Sv v

i v v v vv m t t

d
e g

e g h e L M e L W e L W
v

σ
σ σ σ σ

−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ =

=

* *() , 1 ,
1 1 * 1 * 2 *2 ,

* *, 1 ,
1 2 * * *

1

1 11

ˆ(, () () () ()) (0)

ˆ ˆ ˆ ˆ(,) ((),) ((),) ((),)1

()
c crq i i sv t v tv v v

iv i St t m v
c cri s v t v tv v

iv m t t

d e g g g h L W L W L M

e g h g e L M g e L W g e L W gv

−

−

−

−

Δ

=
∏ =

= , (0)()

2
1

ˆ(,) i Sv v

d
q i

v

e g g
Δ

=

∏ = 2

,1
() (0)

ˆ(,)
d

v i svv
q i

e g g =
⋅Δ∏ = (0)

2
ˆ(,) qe g g = ˆ(,)b ae g g = ê (gab, g).

ê (
1 *

,
() () ()2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)

1

() i Sv v
J M J W J Wiv m t t

v v v v

d

v
β

σ

σ σ σ σ−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ , g) = ê (gab, g).

Then, U can successfully compute gab as
1 *

,
() () ()2 * 1 * 1 *2 * 3 * 4 * 5 *1

(0)

1

() i Sv v
J M J W J Wiv m t t

v v v v

d

v
β

σ

σ σ σ σ−

〈 〉

〈 〉 〈 〉 〈 〉 〈 〉

Δ

=
∏ = gab.

Game 2. In this game, U acts as a challenger expecting that T will corrupt
exactly one of the helper keys on the challenged identity. U picks η U

← {0，1} and
bets on that T queries on the η-th helper. We assume η = 1, the case of η = 0 can
be handled in a similar manner). U provides the simulation of Setup, Key
generation queries, Help key queries and Signing queries for T in the same way as
Game 1. U provides Temporary Private Key queries for T as follows:

Temporary Private Key queries: we explain how to deal with the case of an
even t (the case of an odd t can be handled in a similar manner). Since T does not
know HKω,0, U can compute ki,t-1 by KQuery. The other steps are the same as
Temporary Private Key queries of Game 1.

We can see that U’s running time is bounded by T′ ≤ T +Ο((qk + qt + qsd)te +
+ (nw(qk + qt) + (nw + nm)qsd)tm). The probability analysis is similar to [4]. The
advantage of U can be bounded by ε′ ≥ ()2 227(1) (1)() 1

.
w m t s s

d kn n q q q d

ε
−+ + + −

Theorem 2. The proposed ABPKIS scheme is key-insulated in the Selective-
ID model, assuming that the CDH assumption holds in group G1 and the hash
function H is collision-resistant. Concretely, if there exists a (T,ε)-strongly-UF-
ID&KE-CMA adversary T against our scheme, asking at most qk (qh, qs
respectively) queries to the oracle of key generation queries (helper key queries,
signature queries respectively), then there exists an efficient algorithm U that can
solve the (T′, ε′)-CDH assumption in group G1 with T′ ≤ T + Ο((qk + qsd)te + (nwqk +

+ (nw + nm)qsd)tm), ε′ ≥ ()2 2 227(1) (1)() 1

ε
−+ + + −w m t s s

d kn n q q q d
, where te, tm, d, k denote the

same quantities as in Theorem 1.

 38

P r o o f: The proof is the same as that of Theorem 1 except that: the
temporary private key queries are no longer provided to T.

Theorem 3. The proposed ABPKIS scheme satisfies anonymity.
P r o o f; First, the challenger V runs the algorithm Setup to obtain the public

parameters cp and the master secret key msk = y. V also gives cp and msk = y to the
adversary T.. After these interactions, the adversary outputs two identities ω*

1 and
ω*

2 , where *ω = ω*
1 ∩ ω*

2 . Note that the temporary private key for each user should

include the (d−1)-element default attribute set Γ. Let *ω)b =ω*
b ∪Ω for b ∈{0, 1}.

Assume that V. or T. has generated the temporary private key

* *
1 ,

TK
tω

= * * * *

1 1 1 1

1, 2, 3, 4 , *
1

{(, , ,)}
ω∈)i t i t i t i t i

d d d d for (ω*
1 , t*) and * *

2 ,
TK

tω
= * * * *

2 2 2 2

1, 2, 3, 4 , *
2

{(, , ,)}
∈
)i t i t i t i t i w

d d d d

for (ω*
2 , t*). For each i∈ *

θω
) , let

(*1,i t
d θ , *2 ,i t

d θ , *3,i t
d θ , *4,

θ

i t
d)=(()

2

q ig θ

1() ir

ig h
θ *,

*
1

1 1
()

θ

−

−
i t

k

t
L W *,

*1 ()
θ

i t
k

t
L W , *, 1

θ

−i t
k

g , *,i t
k

g
θ

, irg
θ

),

where θ∈{0, 1}, ir
θ , *,i t

k θ , *, 1
θ

−i t
k

U
← Z

p, qθ is a (d−1) degree polynomial such that

qθ (0) = y.
Then T. outputs the period index t*, message m* and a k-element subset

ω*= {i1, …, ik} ⊆ *ω , where |ω*|≤ d. T. asks V to generate a signature on message

m* with respect to ω* and t* from either * *
1 ,

TK
tω

or * *
2 ,

TK
tω

. V picks b U
← {0, 1} and a

(d−k)-element subset Ω′ = {ik+1, ik+2, …, id}⊆Ω. Then V runs algorithm
Sign(cp, t*, m*, * *,

TK
b tω

) to output a signature

(t*,{(*1,v

b
i t

d ()
2

vq ig
′

1() v

v

r
ig h

′
1* *, ,

* *11 1() ()−

−
v t v t

c c

t t
L W L W 2 () vs

mL M , 4,v

b
i td vrg

′

, vsg ,

*2,v

b
i t

d 1*, −v t
c

g , *,3v

b
i t

d *,v t
c

g)}v∈ω*∪Ω′),

where * *,
TK

b tω
= *0,

{(b

i t
d , *1,

b

i t
d , *2,

b

i t
d , * *3,

)}
ω∈ b

b

i t i
d , vr′ , sv, cv,t*-1, cv,t*

U
← Z

p, q′ is a d−1 degree

polynomial function with q′ (0) = 0. The signature (t*, σ*) could be generated from
either * *

1 ,
TK

tω
 or * *

2 ,
TK

tω
. If b = 1, the signature (t*, σ*) from * *

1 ,
TK

tω
 is

(t*,{(*
1

1,vi t
d ()

2
vq ig

′

1() v

v

r
ig h

′
1* *, ,

* *11 1() ()−

−
v t v t

c c

t t
L W L W 2 () vs

mL M , 1
,4vi td vrg

′

, vsg ,

*
1

2,vi t
d 1*, −v t

c
g , *

1
,3vi t

d *,v t
c

g)}v∈ω*∪Ω′).

We prove that this signature could be generated from * *
2 ,

TK
tω

 in four steps.

(1) From the construction of a temporary private key, we have
1

*1,
2

*1,

i t

i t

d

d
=

1
1 *() ,1

1 1 *2
2

2 *() ,2
1 1 *2

() ()

() ()

k
rq i i ti

i t
k

rq i i ti
i t

g g h L

g g h L

W

W

 = 1 2() ()

2

q i q ig −

1 2

1() i ir r

ig h −

1 2
* *, ,*

1() i t i t
k k

tL
−

W ,

 39

1
*2,

2
*2,

i t

i t

d

d
=

1
*,

2
*,

k
i t

k
i t

g

g

=
1 2

* *, ,i t i t
k k

g
−

,
1

*3,
2

*3,

i t

i t

d

d
=

1

2

ri

ri

g

g
=

1 2
i ir rg −

.

(2) A d−1 degree polynomial q is randomly chosen such that q (0) = 0.
(3) Then we have

(*
1

1,vi t
d ()

2
vq ig

′

1() v

v

r
ig h

′
1* *, ,

* *11 1() ()−

−
v t v t

c c

t t
L W L W 2 () vs

mL M , 1
,4vi td vrg

′

, vsg ,

*
1

2,vi t
d 1*, −v t

c
g , *

1
,3vi t

d *,v t
c

g)=

=(*
2

1,vi t
d 1 2() ()

2
v vq i q ig −

1 2

1() i iv v

v

r r
ig h −

1

1 2
* 1 *

*
1, ,

1
() − −

−

−
i t i tv v

k k

t
L W 1

1 2
* *, ,

*()
−

i t i tv v
k k

t
L W ()

2
vq ig

′

1()
vi

vrg h
′

×

× 1
,

*
1*

1
() −

−
v t

c

t
L W 1

*,
*() v t

c

t
L W 2 ()m

vsL M ,
1 2

2
,4

′−i iv v v

v

r r r
i td g g , vsg ,

1 2
1 1 1* * *, , ,2

2,
− − −
−

i t i t v tv v

v

k k c

i td g g ,
1 2

* * *, , ,2
,3

−
i t i t v tv v

v

k k c

i td g g)=

=(*
2
1,vi t

d ()
2

vq ig
′

1() v

v

r
ig h

′
1* *, ,

* *11 1() ()−

−
v t v t

c c

t t
L W L W 2 () vs

mL M , 2
,4vi td vrg

′

, vsg ,

*
2

2,vi t
d 1*, −v t

c
g , *

2
,3vi t

d *,v t
c

g).

(4) A d−1 degree polynomial q′′ is randomly chosen such that q′′(x) = q1(x) −
– q2(x) + q′′(x). Then we have q′′(0) = 0, q′′(iv) = q1(iv) – q2(iv) + q′(iv). Let vr

′′ = 1
vi

r –

– 2
vi

r + vr
′ , * 1,

′
−v t

c = * 1
1

, −vi t
k – * 1

2
, −vi t

k + * 1, −v t
c , *,v t

c′ = *
1

,vi t
k – *

2
,vi t

k + *,v t
c . Then, the signature

(t*, σ*) could be rewritten as

(t*,{(*
2
1,vi t

d ()
2

vq ig
′

1() v

v

r
ig h

′
1* *, ,

* *11 1() ()−

−
v t v t

c c

t t
L W L W 2 () vs

mL M , 2
,4vi td vrg

′

, vsg ,

*
2

2,vi t
d 1*, −v t

c
g , *

2
,3vi t

d *,v t
c

g)}v∈ω*∪Ω′),

which is a valid signature generated from * *
2 ,

TK
tω

.

Similarly, a signature (t*, σ*) from * *
2 ,

TK
tω

 can also be generated from * *
1 ,

TK
tω

.

From the proof, it has been shown that the proposed ABPKIS scheme satisfies
unconditional anonymity.

5. Conclusion

We introduce the notion of an Attribute-Based Parallel Key Insulated Signature
(ABPKIS) and describe a construction that is based on an Attribute-Based Signature
(ABS).

Acknowledgements: This work is supported by NSFC under Grant No 61133014.

 40

R e f e r e n c e s

1. C h e n, J ., Y . L o n g, K . C h e n, G. J. H o o k. Attribute-Based Key-Insulated Signature and Its
Applications. – Information Sciences, Vol. 275, 2014, pp. 57-67.

2. D o d i s, Y., J. K a t z, S. X u, M. Y u n g. Key-Insulated Public-Key Cryptosystem. – In: Proc. of
21th Annual International Conference on the Theory and Applications of Cryptographic
Techniques (Eurocrypt), 28 April-2 May 2002.

3. D o d i s, J. K., S. X u, M. Y u n g. Key-Insulated Public-Key Cryptosystem. – In: Proc. of 9th
International Conference on Theory and Practice in Public-Key Cryptography (PKC), 24-26
April 2006.

4. L i, J., K. K i m. Hidden Attribute-Based Signatures without Anonymity Revocation. – Information
Sciences, Vol. 180, 2010, No 9, pp. 1681-1689.

5. L i, J., M. H. A u, W. S u s i l o, D. X i e, K. R e n. Attribute-Based Signature and Its Applications.
– In: Proc. of 5th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 13-16 April 2010.

6. L i b e r t, B., J. Q u i s q u a t e r, M. Y o u n g. Parallel Key-Insulated Public Key Encryption
without Random Oracles. – In: Proc. of 10th International Conference on Theory and
Practice in Public-Key Cryptography (PKC), 16-20 April 2007.

7. S h a h a n d a s h t i, S. F., R. S a f a v i-N a i n i. Threshold Attribute-Based Signatures and Their
Application to Anonymous Credential Systems. – In: Proc. of 2rd International Conference
on Cryptology in Africa (AFRICACRYPT), 21-25 June 2009.

8. W e n g, J., S. L i u, K. C h e n, C. M a. Identity-Based Parallel Key-Insulated Encryption without
Random Oracles: Security Notions and Construction. – In: Proc. of 7th International
Conference on Cryptology in India (INDOCRYPT), 11-16 December 2006.

9. W e n g, S. J., S. L i u, K. C h e n, X. L i. Identity-Based Parallel Key-Insulated Signature:
Framework and Construction. – Journal of Research and Practice in Information Technology,
Vol. 40, 2008, No 1, pp. 55-68.

10. . W e n g, X. L i, K. C h e n, S. L i u. Identity-Based Parallel Key-Insulated Signature without
Random Oracles. – Journal of Information Science and Engineering, Vol. 24, 2008, No 4,
pp. 1143-1157.

