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Abstract: Exploration of the structural balance of social networks is of great 
importance for theoretical analysis and practical use. This study modeled the 
structural balance of social networks as a mathematical optimization problem by 
using swarm intelligence, and an efficient discrete particle swarm optimization 
algorithm was proposed to solve the modeled optimization problem. To take 
advantage of the topologies of social networks in the algorithm design, the discrete 
representation of the particle was redefined, and the discrete particle update 
principles were redesigned. To validate the efficiency of the proposed algorithm, 
experiments were conducted using synthetic and real-world social networks. The 
experiments demonstrate that the proposed algorithm not only achieves a balanced 
social network structure, but also automatically detects the community topology of 
networks. 

Keywords: Particle Swarm Optimization, social network, structural balance, 
community structure. 

1 .  Introduction 

The prevalence of social networks is changing the way people live. Social media 
provide individuals with an outlet to express their viewpoints and concerns, and 
social relationships can be developed through social platforms. Analysis of social 
networks not only discloses their structural features, but can also predict the 
propagation of information along networks and its possible disasters. Therefore, 
network analysis is of great importance for the perspectives of theoretical research 
and practical applications [1]. 
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One efficient method of analyzing a social network is to model it as a complex 
network composed of nodes and edges. The nodes represent the objects in the 
network and the edges denote the relationships between the objects. Analysis of the 
basic features of complex networks can help people get knowledge of the social 
network better and contributes to a great deal to decision making. Because 
friendship and antagonism generally exist between objects, the social networks are 
normally modeled as signed networks comprised of positive and negative edges, 
where a positive edge represents friendship and a negative edge denotes 
antagonism. 

Complex networks [2, 3] have been found to exhibit numerous features of 
interest, such as small world features and scale-free features. In recent years, 
scholars have established another important feature exhibited by complex networks, 
i.e, the community structure characteristics [4]. The network community structure 
feature embodies the idea associated with the phrase “birds of a feather flock 
together”. Research regarding network community structure has attracted 
considerable attention from scholars [5]. 

From the perspective of sociology, the network community structure feature 
lays particular stress on the macrostructure of a network, where a complex network 
can be viewed as an aggregation of several communities. On the other hand, other 
features, such as the structural balance feature, reveal the microstructure of a 
network. The network structural balance is also known as social balance. The 
concept was first proposed by Heider [6], and was later generalized by Cartwright 
and Harary from the perspective of graph theory [7, 8]. According to the theory of 
structural balance, a complex signed network is structurally balanced if it can be 
divided into two subsets, where the relations are friendly within each subset, and the 
relations are hostile between the subsets. More than 70 years have elapsed since the 
advent of the concept of structural balance; however, the study of structural balance 
still maintains the interest of scholars worldwide [9]. The theory of structural 
balance has been widely applied in fields such as social psychology, international 
relations and Internet. 

Early researches on the network structural balance have focused on 
establishing the mathematical definition of the balance structure and formulating 
the balance criteria. However, this earlier definition easily leads to polarization 
between two sharply divided subsets, and later researchers have pointed out that 
real social networks can be divided into numerous subsets rather than just two. This 
indicates that the structural balance definition given in early studies is too strict. 
The general idea of recent network structural balance methods is to first determine 
the imbalanced edges, and to change them so as to make the network structurally 
balanced. However, these methods are not sufficiently sophisticated. Some of these 
methods must artificially specify the network division numbers in advance, but 
some methods, while achieving a balanced network structure, are unable to 
determine the community topology of the network. 

The present paper considers the structural balance problem of social networks 
as a mathematical optimization problem, where the network structural balance is 
established by the minimization of an energy function. An efficient optimization 
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method based on a discrete particle swarm optimization algorithm is proposed to 
solve the minimization problem. Combined with the social network topology 
information, we have redefined the discrete particle representation schema and have 
also redesigned the particle update principles based on these schemas. In contrast to 
the existing network structural balance methods, the proposed algorithm not only 
achieves a balanced network structure, but also detects the community topology of 
the network. The method proposed can automatically determine the optimum 
community partitions. The efficiency of the proposed algorithm is validated using 
synthetic and real-world signed networks. 

2. Network structural balance 

The structural balance is an important part of social network research. For the 
networks composed of three nodes, shown in Fig. 1, structural balance theory 
defines the structures given in Figs 1(a) and (b) as balanced, whereas those given in 
Figs 1(c) and (d) are imbalanced. The “+” symbol in the figure represents a positive 
relationship, such as love or friendship, whereas a “−” denotes a negative 
relationship, such as dislike or animosity. 
 

 
(a)                                                   (b) 

 

 
(c)                                                      (d) 

 
Fig. 1. An illustration of the structural balance where (a) and (b) are considered balanced networks, 

and (c) and (d) are imbalanced 
 

For an arbitrary complex network, if the nodes of the network can be divided 
into two subsets X and Y, and if X and Y meet the relationship described in Fig. 2, 
then the network is considered structurally balanced. 

However, a large number of studies have shown that the structural balance 
condition given in Fig. 2 is too strict, and that the majority of real-world networks 
can be divided into more than two subsets that can also satisfy the condition of X 
and Y. Real-world social networks are rarely structurally balanced, and most of 
them require changes in the network edge attributes or an increase or reduction of 
the number of network edges to achieve a balanced structure. 
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Fig. 2. A schematic describing of the condition for structural balance 

3. Particle swarm optimization 

Particle Swarm Optimization (PSO) involves the artificial modeling and simulation 
of the behavior of swarm intelligence attributed to the foraging and predator 
avoidance behavior of social animals [11]. PSO involves simple principles, few 
parameters, and rapid convergence, and has been widely used to solve complex 
optimization problems [12, 13]. 

PSO is used to optimize problems according to a set of particles, where each 
particle represents a candidate solution to the problem, and each particle iteratively 
adjusts their movement within the search space to reflect their own learning in 
accordance with some simple updating rules, ensuring that the particles tend to 
swarm towards the globally optimal solution of the problem. 

We suppose that a particle swarm is comprised of n particles, the particle 
dimension of the search space is d, and 1 2{ , , , }d

i i i iV v v v=  represents the velocity 

vector of i-th particle and 1 2{ , , , }d
i i i iX x x x=  indicates its position vector. 

Therefore, the updating rules can be expressed as: 
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where 1 2{ , , , }d
i i i iP p p p=  and 1 2{ , , , }dG g g g=  respectively represent the 

present and global optimal solutions of particle i during motion, c1 and c2 are the 
cognitive and social components, respectively, and r1 and r2 are two random 
numbers within the range from 0 up to 1. 

PSO is an iterative algorithm, where each particle constantly adjusts their path 
of motion, and thus attains a position close to the optimal solution of the problem 
based on (1) and (2). 

4. Particle Swarm Optimization based network structural balance 

4.1. Algorithm framework 

In this paper we propose a discrete PSO by minimizing an energy function to locate 
the unbalanced edges that exist in the network, and then change their signs to obtain 
a structurally balanced network. A flow chart of the proposed algorithm, denoted as 
PSOSB is shown in Fig. 3. 
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Fig. 3. A flow chart of the proposed PSOSB algorithm 

4.2. Particle fitness function 

The fitness function is used to evaluate the quality of the particle status, which 
determines the degree of structural balance of a social network. A previously 
proposed [14] energy function H(s) used to measure the degree of balance of a 
network is defined as follows: 
(3)    ∑ −=

ji jiij ssasH
,

2/)1()( ,  

where aij∈{±1} is an element of the adjacency matrix of the network, and si  and sj 
characterize the relationships of node i and node j, respectively. If node i and node j 
are friends, then si·sj = 1, otherwise si·sj = −1. 

When a network is balanced, H(s) = 0 and the network progressively draws 
closer to a balanced structure as the magnitude of H(s) decreases. In this paper the 
network having the smallest H(s) is identified using PSO, and the unbalanced edges 
are correspondingly changed to produce a balanced network structure. 

4.3. Particle representation 
Encoding and decoding serve as bridges in the optimization problems and 
optimization algorithms. Because the proposed algorithm seeks to minimize H(s) 
for structural balance problems, we use encoding based on a string due to its simple 
encoding and convenient decoding operation. The encoding proposed in this paper 
is illustrated in Fig. 4. 
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Fig. 4. A schematic diagram of the particles used in the proposed algorithm 
 

As shown in Fig. 4, the position of the particle graph is a sequence of integers 
and each digit represents a classification corresponding to the position of the node. 
When decoded, the nodes with the same community number are divided into the 
same community. Thus, the coding automatically determines how the network is 
divided into several communities, without the need for manually pre-specified 
community numbers. 

When decoded, if node i and node j belong to the same community, si·sj = 1, 
whereas if node I and node j belong to different communities, si·sj = −1. 

4.4. Particle status update rules 

From the representation of the particle, we know that the position of the particle is 
an integer. Therefore, the traditional updating rules, given by equations (1) and (2) 
are modified to apply PSO to the particles as follows: 
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Where ω is the inertial weight, and ⊕  is defined as the XOR operator. 
The term ζ(x) is a bounding function that transforms its argument x into a 

discrete binary form for operation by equation (4) with its position vector. The 
function ζ(x) is defined by the following expression: 
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The operation ⊗  is the core of the particle updating procedure in Equation (5), 
which directly affects the convergence of the algorithm and the performance of 
mining communities. 

For a network, the probability of two unconnected nodes belonging to a 
community is less than that for two connected nodes, so, based on this fact, we 
define the operation ⊗  by: 
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Here, rand( i
tx ) represents the community label of the node, which is selected from 

the neighborhood of the node i
tx . 
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5. Experimental tests and analyses 

5.1. Experimental settings 

We test the performance of the proposed algorithm in this section on both synthetic 
networks and real-world social networks. The parameter settings of the PSOSB 
algorithm are as follows: the inertial coefficient ω  is set to the classical value of 
0.729, the particle swarm learning factors c1 and c2 are both set to 1.494, and both 
the particle swarm population size pop and the maximum number of iterations  
gmax are set to 100. The performance of the PSOSB algorithm is compared with that 
of the previously proposed memetic computing based method [15], which is 
denoted as MemeSB. For this method the crossover probability and mutation 
probability are set to 0.8 and 0.2, respectively, and the population size and the 
maximum number of iterations for the algorithm are set to 100. Because both the 
PSOSB and MemeSB are iterative algorithms, 30 independent trials for each 
algorithm were conducted in the experiments. 

The synthetic network data employed in our experiments are the AN1 and 
AN2 networks used previously [16]. The networks are comprised of 28 nodes, 
divided into three communities, and the network structures are balanced. The real-
world network data used are the SPP [17] network, the GGS [18] network, the 
Yeast network [20], and the EGFR network [19]. The attributes of the four real-
word networks are listed in Table 1. 

Table 1. The properties of the real-world signed social networks employed in the tests 
Networks Nodes Edges Positive edges Negative edges 

SPP 10 45 18 27 
GGS 16 58 29 29 

EGFR 330 779 515 264 
Yeast 690 1080 860 220 

5.2. Simulated data tests 

The experiments demonstrated that when testing the AN1 and AN2 networks, the 
PSOSB and MemeSB algorithms obtained equivalent results. Moreover, the results 
were both rather stable. 

 
Fig. 5. Balanced structure of the ANI network obtained by the PSOSB and MemeSB algorithms, 

where the solid and dotted lines indicate positive and negative edges, respectively 
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The H(s) values obtained by the PSOSB and MemeSB algorithms after 30 
independent trials were 0, which indicates that both algorithms obtained the 
balanced structures of AN1 and AN2 networks, as shown in Figs 5 and 6, 
respectively. 

As it can be seen from Figs 5 and 6, the AN1 and AN2 networks are divided 
into three communities, and, within each community, the nodes are connected with 
positive edges, whereas, between communities, the nodes are connected with all 
negative edges. These results are in complete accordance with the definition of the 
network structural balance. 

5.3. Real-world data tests 

The results of the 30 independent trials of PSOSB and MemeSB algorithms on real-
world networks are recorded in Table 2. For the SPP and GGS networks, both 
algorithms have obtained equivalent results because the scales of these two 
networks are small, and consequently, both algorithms readily obtain the optimal 
solutions of the problem. However, while both PSOSB and MemeSB obtained 
minimum H(s) values, the computational speed of PSOSB was faster than that of 
MemeSB.  

Fig. 7 shows the actual community structure of the SPP network. The PSOSB 
obtains the minimum H(s) value of the network. The corresponding network 
topology is evaluated and we change all the imbalanced edges to obtain the 
balanced network topology. The balanced network topology is shown in Fig. 8. It 
can be seen from Figs 7 and 8, that in order to achieve the balanced structure of the 
network, the negative edges between the SNS node and the DS and ZS-ESS nodes 
have been changed to positive edges. 
 

 
Fig. 6. Balanced structure of the AN2 network, obtained by PSOSB and MemeSB algorithms, where 

the solid and dotted lines indicate positive and negative edges, respectively 

For the GGS network, it can be seen from Table 2 that PSOSB has obtained 
smaller values of H(s) than those of MemeSB, and the computational speed of 
PSOSB was still faster than of the MemeSB algorithm. Figs 9 and 10 respectively 
show the actual community structure of the GGS network and the balanced 
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structure obtained by changing the imbalanced edges. Comparison of the figures 
indicates that four positive edges of the GGS network have been changed to 
negative edges, as depicted by the black dashed lines in Fig. 10. 

 

 
Fig. 7. Actual community structure of the SPP network, where the solid and dotted lines indicate 

positive and negative edges, respectively 
 

 
Fig. 8. Balanced structure of the SPP network, obtained by PSOSB and MemeSB algorithms, where 

the solid and dotted lines indicate positive and negative edges, respectively 

Table 2. Statistical results for the real-world networks conducted in 30 independent trials 
Index H(s)min H(s)avg Communities Time (s) 

Algorithm PSOSB MemeSB PSOSB MemeSB PSOSB MemeSB PSOSB MemeSB 
SPP 2 2 2 2 2 2 3.3632×10–3 4.4575×10–1 
GGS 4 4 4 4 4 4 3.7983×10–3 5.2521×10–1 

EGFR 186 202 194.1333 232 73 86 7.3712 8.1589×102 
Yeast 40 52 44.6 62 108 112 1.3988×10 1.0813×104 
 
As indicated in Table 2 for the SPP and the GGS networks, we note that the 

PSOSB algorithm demonstrates significantly better computational performance than 
the MemeSB algorithm for the EGFR and Yeast networks as well. For these more 
complex networks, PSOSB not only obtains smaller H(s) values than does 
MemeSB, but the computational time is significantly faster than that of MemeSB. 
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Fig. 9. Actual community structure of the GGS network, where the solid and dotted lines indicate 

positive and negative edges, respectively 

 
Fig. 10. Balanced structure of the GGS network after changing the imbalanced edges, given by the 

black dashed lines, where the solid and dashed lines indicate positive and negative edges, respectively 

To highlight the relative convergence speeds of the PSOSB and MemeSB 
algorithms, Figs 11 and 12 respectively show the convergence curves of the two 
algorithms when operating upon the EGFR and Yeast networks for 100 iterations. 
The convergence results indicate that the PSOSB algorithm essentially 
convergences after about 40 iterations, while the MemeSB algorithm roughly 
requires 80 iterations to attain convergence. 

In addition to employing PSO, where the globally optimal particle guides the 
population rapidly to approximate to the optimal solution of the problem, we have 
made full use of the network structure information to design our algorithm. The 
proposed particle status update rules can accelerate the particle search. Although the 
MemeSB algorithm used for comparison relies upon a local search strategy, the 
strategy is based on a greedy mechanism, which easily falls into a local optimum. 
Moreover, the greedy mechanism is computationally expensive. 
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Because PSOSB and MemeSB algorithms are random search algorithms, i.e, 
the results for each independent trial of the algorithm are different, it is necessary to 
discuss the stability of the algorithm. Figs 13(a) and (b) show boxplots of the results 
obtained by PSOSB and MemeSB on the EGFR and the Yeast networks, 
respectively, after 30 independent trials. 

0 20 40 60 80 100
180

190

200

210

220

230

240

250

Algorithm Iteration Number

E
ne

rg
y 

Fu
nc

tio
n 

V
al

ue

 

 
PSOSB
MemeticSB

 
Fig. 11.  Comparison between the convergence of PSOB and MemeSB algorithms for the EGFR 

network 
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Fig. 12.  Comparison between the convergence of PSOB and MemeSB algorithms for the Yeast 

network 

A boxplot reflects the statistical distribution of the results obtained by an 
algorithm after many trials, and the length of the box reflects the stability of the 
algorithm. For a stable algorithm, the length of the box is relatively short. It can be 
observed from Fig. 13 that the length of the box obtained by PSOSB is shorter than 
that of MemeSB for the two networks considered, which suggests that PSOSB 
algorithm is relatively more stable than MemeSB algorithm. The experiments on 
real-world networks again verify the efficiency of the algorithm proposed in this 
paper. 
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(a) EGFR                             (b) Yeast 

Fig. 13. Comparison between the stability of PSOSB and MemeSB algorithms on the EGFR (a) and 
the Yeast (b) networks, as demonstrated by boxplots 

6. Conclusion 

The study of the structural balance of social networks is of great importance. To 
achieve a balanced social network structure, the present study transformed the 
network structural balance problem into an optimization problem, and proposed an 
algorithm based on particle swarm optimization to estimate its solution. The 
proposed algorithm not only achieves a balanced structure for a network, but also 
discloses the hidden network community structure. The efficiency of the proposed 
algorithm was validated using synthetic and real-world network data sets. 
Subsequent work will focus on two aspects: on one hand, we will conduct research 
on designing efficient local learning strategies to enhance the global searching 
abilities of the algorithm; and on the other hand, we will seek to realize the 
parallelization of the algorithm so that be able to address large scale networks. 
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