
 34

BULGARIAN ACADEMY OF SCIENCES 
 
 
CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 15, No 1 
 
Sofia • 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.1515/cait-2015-0004 
 
 
 
 
 
 
 
 
 
Adaptive Fuzzy H∞ Robust Tracking Control  
for Nonlinear MIMO Systems  

Sanxiu Wang1,2, Kexin Xing2, Zhengchu Wang1 
1College of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, Zhejiang, China  
2College of Information Engineering, Zhejiang University of Technology, Hangzhou 150001, 
Zhejiang, China  
Emails: wsx8188@163.com      kexinxing163@163.com      17527563@qq.com  

Abstract: In this paper an adaptive fuzzy H∞ robust tracking control scheme is 
developed for a class of uncertain nonlinear Multi-Input and Multi-Output (MIMO) 
systems. Firstly, fuzzy logic systems are introduced to approximate the unknown 
nonlinear function of the system by an adaptive algorithm. Next, a H∞ robust 
compensator controller is employed to eliminate the effect of the approximation 
error and external disturbances. Consequently, a fuzzy adaptive robust controller is 
proposed, such that the tracking error of the resulting closed-loop system converges 
to zero and the tracking robustness performance can be guaranteed. The simulation 
results performed on a two-link robotic manipulator demonstrate the validity of the 
proposed control scheme.  
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1. Introduction 

Considering a class of uncertain nonlinear MIMO systems, controller design has 
attracted great attention and has achieved significant development during the recent 
decades. Many control algorithms have been proposed, such as the feedback 
linearization methods [1], the variable structure control [2, 3], the adaptive control 
[4, 5], the fuzzy control and others. The feedback linearization methods have lead to 
great success in the development of controllers for nonlinear systems. However, 
these control schemes can only be applied to nonlinear systems whose dynamics are 
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well known. Unfortunately, some kinds of uncertainties, such as uncertain plant 
parameters, modelling errors and unknown external disturbances, always exist in 
the actual application system, which will significantly degrade the control 
performance of the feedback linearization control method. An adaptive control 
algorithm can be applied to deal with the unknown dynamics of a nonlinear system. 
But in this control method, the unknown parameters must be of a linear structure 
and are assumed to be constant and slowly varying. For a highly uncertain nonlinear 
system, the performance of the adaptive control scheme may not be guaranteed. The 
variable structure control is widely accepted as a powerful control tool for solving 
the control problem of uncertain nonlinear systems. This approach is one of the 
efficient robust control methods to compensate the uncertainties, but it will cause 
the undesired phenomenon of chattering due to the switching signal.  

Fuzzy logic control [6-8], as one of the important intelligent techniques, 
provides an efficient approach to handle a nonlinear system with unmolded 
dynamics and unknown disturbances. The universal approximation property shows 
that any nonlinear function over a compact set can be approximated by a fuzzy 
system with arbitrary accuracy, which makes fuzzy control so widely employed to 
modelling or controlling uncertain nonlinear systems. But usually fuzzy control 
systems would be affected by uncertainties, such as various parameters and 
unknown external disturbances, which may deteriorate the control performance or 
even cause the closed-loop system instability. And just H∞ robust compensate 
controller is an efficient control method to reject these uncertainties, which have 
been widely discussed for the robustness and its capability of disturbance 
attenuation in nonlinear control systems. Thus in this paper an adaptive fuzzy H∞ 
tracking control scheme, comprised by an adaptive fuzzy controller and an 
additional H∞ compensation controller is proposed for the uncertain MIMO 
nonlinear systems. 

The structure of the paper is organized as follows. The problem formulation 
and some theoretical preliminaries are discussed in Section 2. The description of a 
fuzzy system is given in Section 3. The design procedure of the control scheme and 
the stability analysis are given in Section 4. Simulation results, performed on a two-
link robot manipulator validate the efficiency of the proposed control method in 
Section 5. Finally, some conclusions are considered in Section 6. 

2. Problem formulation 

Consider a class of n-th order MIMO nonlinear system described by [9] 

(1)   ( ) ( ) ( ) ,nx F X G X u d= + +   

where: T T ( 1)T T[ , , , ]n mnX x x x R−= ∈& L  denotes the state vector of the system, which is 
assumed to be available; T

1[ , , ] m
mx x x R= ∈L , T

1[ , , ] m
mu u u R= ∈L  are the system 

outputs and control inputs, respectively; m  is the number of the system inputs and 
outputs; ( ) mF X R∈  and ( ) m mG X R ×∈  are nonlinear uncertainty functions; d  is the 
unknown external disturbance. 
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Control objectives. The control object in this paper is to design a suitable 
control scheme u  for the nonlinear system given by (1), such that the state X can 
track any given bounded desired trajectory T T ( 1)T T[ , , , ]n mn

d d d dX x x x R−= ∈& L  in the 
presence of uncertainties and external disturbances, with all the signals in the 
resulting closed-loop switched system remaining bounded. 

Assumption 1. The unknown external disturbance of system (1), d is assumed 
to belong to 2[0, ]L ∞ , and the upper bound is assumed as d , i.e., d d≤ . 

Assumption 2. The matrix ( )G X , as previously defined is nonsingular, i.e., 
1( )G X− exists. 

Assumption 3. The desired trajectories dx  and their time derivatives up to the 
-thn  order are continuous and bounded. 

Define the following tracking error 
(2)    .de x x= −  

If the knowledge of the system dynamics is complete and assuming that the 
external disturbances are ignored,  i.e., the nonlinear functions ( )F X  and ( )G X  are 
both known and the external disturbance is 0,d =  according to the feedback 
linearization techniques, the following control law can be obtained: 
(3)   1 ( ) ( 1)

1( )[ ( )],n n
d nu G X x k e k e F X− −= − − − −L  

where the coefficients 1, , nk kL  must be chosen so that 1( ) n n
nh S S k S −= + +L  

2 1k S k+ +  is a Hurwitz polynomial, all roots being in the open left-half of the  
S-plane, in which S  is a complex Laplace transform variable. 

Substituting (3) into (1) leads to  

(4)    
1

( ) ( ) ( )
1

0

.
n

n n i
d i

i

x x k e
−

+
=

= −∑   

That equation can be written as 

(5)    
1

( ) ( ) ( ) ( 1)
1 1

0

0.
n

n i n n
i n

i

e k e e k e k e
−

−
+

=

+ = + + + =∑ L   

So lim 0
t

e
→∞

= , the system is globally asymptotically stable if the coefficients 

1, , nk kL  in (5) are symmetric and positive definite constant matrices. The control 
objective is achieved. 

However, the precise values of the nonlinear functions ( )F X  and ( )G X  are 
difficult to be acquired, due to the parameters measurement errors and time varying 
uncertainties. The external disturbance is also inevitable in actual practical 
engineering .Therefore, the unmolded dynamics and the external disturbances 
cannot be ignored. Namely, ( )F X  and ( )G X  are usually both unknown and the 
disturbance vector 0d ≠ .Considering the universal approximation ability of fuzzy 
control, in the next step we will use an adaptive fuzzy system as a tool for 
modelling nonlinear functions up to a small error tolerance. 
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3. Design of an adaptive fuzzy H∞ robust tracking controller 

Denote 
T

1( ) [ ( ), , ( )] ,nF x f x f x= L  

11 1

1

( ) ( )
( ) .

( ) ( )

n

n nn

g x g x
G x

g x g x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

 

Since ( )if x  and ( )ijg x  are supposed as unknown, the objective in this section 
is to approximate ( )if x  and ( )ijg x  by using a fuzzy system which inputs are 

1, , .nx xL  
The used Fuzzy Logic System (FLS) performs a mapping from an input vector 

nx Rω∈Ω ∈  to a scale output ry R∈Ω ∈ , where 1 2 ,n i Rω ω ω ω ωΩ = Ω ×Ω × ×Ω Ω ∈L .  
The fuzzy rule base comprises a collection of the following IF-THEN rule: 

( )kR : If 1x  is 1
kA , and 2x  is 2

kA , , and nx  is k
nA  then y  is kB ,  1, , ,k N= L  

where { }1, , , 1, , ,k n
i i iA A A i n∈ =L L  and kB  denote the linguistic variables of the 

input and output of the fuzzy sets, defined respectively for ix  and y. Besides, 

1

n
ii

N n
=

=∏  is the total number of rules. 
Through singleton fuzzification, product inference engine and center average 

defuzzification, the final output of the fuzzy logic system can be expressed as 
follows: 
(6)   Tˆ ( , ) ( ) ,y f x xθ ξ θ= =  

where 1 2 T[ , , , ]Nθ θ θ θ= L  is called a parameter vector and T
1( ) [ ( ), , ( )]Nx x xξ ξ ξ= L  is 

a set of fuzzy basis functions defined as 

(7)    1

1 1

( )
( ) ,

( ( ))

k
i

k
i

n

iA
i

k nN

iA
k i

x
x

x

μ
ξ

μ

=

= =

=
∏

∑ ∏
    1, , ,k N= L   

where ( )k
i

iA
xμ  is the membership function of the linguistic variables ix and it 

represents the fuzzy meaning of the symbol k
iA ; kθ corresponds to the value of a 

singleton which is the fuzzy meaning of kB . 
Lemma 1. FLS in (6) is a universal function approximator, i.e., for any given 

real continuous function ( )f x  on a compact set D and an arbitrary small constant 

0fε >  there exists a FLC system such that ˆsup ( ) ( , )D ff x f xω θ ε∈ − < , where 
nD R⊂  is an approximation region.  

Then the fuzzy logic system is used to approximate the unknown nonlinear 
functions ( )if x  and ( )ijg x  in the following form: 

(8)   ˆ ( , ) ( )fi
T

i fi fif x xθ ξ θ= ,  1, , ,i n= L  
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(9)   Tˆ ( , ) ( ) ,ij gij gij gijg x xθ ξ θ=  1, , ,j n= L  

where fiξ  and gijξ  are fuzzy basis vectors from (7); fiθ  and gijθ  are the 
corresponding adjustable parameter vectors of the fuzzy system which is tuned on-
line. 

Let us define the following variables: 

(10)   * ˆarg min sup ( ) ( , ) ,
fi

fi i i fi
D

f x f x
ω

θ ω
θ θ

∈

⎧ ⎫= −⎨ ⎬
⎩ ⎭

 

(11)   * ˆarg min sup ( ) ( , ) ,
gij

gij ij ij gij
D

g x g x
ω

θ ω
θ θ

∈

⎧ ⎫= −⎨ ⎬
⎩ ⎭

 

(12)   * ,fi fi fiθ θ θ= −%  
(13)   * ,gij gij gijθ θ θ= −%  
(14)   *ˆ( ) ( ) ( , ),fi i i fix f x f xε θ= −  
(15)   *ˆ( ) ( ) ( , ),gij ij ij gijx g x g xε θ= −  

where *
fiθ  and *

gijθ  are the optimal approximation parameters of fiθ  and gijθ ; fiθ%  and 

gijθ%  are the parameters approximation errors; ( )fi xε  and ( )gij xε  denote the minimum 
approximation errors, which correspond to the approximation errors obtained when 
optimal parameters are used. 

Assumption 4. We assume that the approximation errors ( )fi xε  and ( )gij xε  are 
bounded, i.e., ( )fi fixε ε≤ , ( )gij gijxε ε≤ , where fiε  and gijε  are both positive known 
constants. 

Denote 
T

1[ ( ), , ( )] ,f f fnx xε ε ε= L  
11 1

1

( ) ( )
( ) .

( ) ( )

g g n

g

gn gnn

x x
x

x x

ε ε
ε

ε ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

 

Then, from the above analysis we have 
(16)   *ˆ ˆ ˆ( ) ( , ) ( , ) ( , ) ( ),f f f fF x F x F x F x xθ θ θ ε− = − +  

(17)   *ˆ ˆ ˆ( ) ( , ) ( , ) ( , ) ( ).g g g gG x G x G x G x xθ θ θ ε− = − +  
So, based on the above fuzzy control system, the uncertain functions  

( )F X  and ( )G X  are estimated by ˆ ( )F x  and ˆ ( )G x respectively. Then the feedback 
linearization control term of (3) can be rewritten as 
(18)   1 ( ) ( 1)

0 1
ˆ ˆ( )[ ( )].n n

d nu G X x k e k e F X− −= − − − −L  
The parameter adaptive control laws are given by 

(19)    ,fi fi fi isθ η ξ= −&  

(20)   0 ,
jgij gij gij is uθ η ξ= −&  



 39

where s E= Λ , T T ( 1)T T[ , , ] ,n mnE e e e R−= ∈&  the adaptive gains fiη , gijη  are both 
positive constants. 

Furthermore, considering the presence of external perturbation, the controller 
can be chosen as follows: 
(21)    0 ,hu u u= +  
where 0u  is the adaptive feedback linearization term (18), hu  is a H∞ robust control 
term, which is introduced to compensate the effect of the fuzzy system 
approximation error and of the external disturbance, thereby it enhances the 
tracking error attenuation quality and satisfies the H∞ tracking error performance 

The design procedure of the H∞ robust control term is as follows:  
Substituting (18) and (21) in (1), we obtain 

(22)   ( ) ( 1)
1 0

ˆ ˆˆ( ( ) ( )) ( ( ) ( )) ( ) .n n
n he k e k e F x F x G x G x u G x u d−+ + + = − + − − −L  

The derivative of the tracking error is defined as 
(23)    T T ( 1)T T[ , , ] .n mnE e e e R−= ∈&  

Then the output tracking error dynamic equation of the uncertain nonlinear 
system (1) can be described by  

(24)  0
ˆˆ[( ( ) ( )) ( ( ) ( )) ] ,h hE AE B F x F x G x G x u u d AE Bu Bw′= + − + − + − = + −&  

where 

1 2 1

0 1 0 0
0 0 1 0

,

n n

A

k k k k−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
− − − −⎣ ⎦

L

L

M M M M M

L

 

0
0

.

1

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 

Suppose that there exist matrices T 0,P P= >  T 0Q Q= >  for the output 
tracking error dynamic equation (24), such that  
(25)   T 2 1 T( 2 ) 0,A P PA Q PB R B Pγ − −+ + + − =  

where the given positive constant γ  denotes the attenuation level, R  is a positive 
gain matrix, satisfying 22 Rγ ≥ . 

Then the robust H∞ controller can be chosen as 
(26)   1 T ,hu R B PE−= −   

which satisfies the H∞  control performance. 
Theorem 1. Consider the nonlinear MIMO system (1), satisfying Assumptions 

1-4, the proposed hybrid controllers (21), the feedback linearization control term 
(18), the nonlinear functions ( )if x and ( )ijg x  estimated by (8), (9), the adaptive 
parameters updated laws (19), (20), and H∞ robust compensate control law (26) can 
guarantee that the tracking error closed-loop system is robustly stable, i.e., the 
tracking error satisfies lim 0

t
e

→∞
= , and all the variables of the closed-loop system are 

bounded. 
P r o o f: Consider a Lyapunov function candidate as follows: 
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(27)   T T T1 1 1 1 1 .
2 2 2f f g g

f g

V s s θ θ θ θ
η η

= + +% % % %

 
Then the time derivative of Lyapunov function is given by 

(28) 

 

T T

( 1) ( ) T T

1

* * T T
0

T T

1 1

1 1[ ( ) ( ) ]

1 1ˆˆ[ ( , ) ( , ) ( ) ( ) ]

1 1( ( )) ( ( )) [

f f g g
f g

n
n n

n d f f g g
n f g

f g f f g g
f g

f f f g g g f
f g

V ss

s k e x F x G x u d

s F x G x u F x G x u d

s x s x s

θ θ θ θ
η η

θ θ θ θ
η η

θ θ θ θ θ θ
η η

θ θ ξ θ θ ξ ε
η η

−

=

= + + =

= + − − − + + =

= + − − − + + =

= − + − −

∑

& &% % % %& &

& &% % % %

& &% % % %

% % % %
0( ) ( ) ( ) ].g hx x u G x u dε+ + +

 After that from the parameter update law of the fuzzy system (19), (20), we 
can obtain 
(29)   0[ ( ) ( ) ( ) ] 0.f g hV s x x u G x u dε ε= − + + + ≤&

 
Therefore, the resulting closed-loop system is stable. 
The overall adaptive fuzzy H∞

 robust control scheme is shown in Fig. 1. 

dx
‐

+

e Tracking error    

Eq.(23)

E FLC based on adaptive 

fuzzy control Eq.(18)

adaptive law 
Eq.(19)、(20)

0u u Nonlinear system

Eq.(1)

x

Riccati-like 

eqution Eq.(25)

H      controller

Eq.(26)

∞P

hu

 Fig. 1. Architecture of the proposed adaptive fuzzy robust control
 

4. Simulation results and analysis 

4.1. Simulation results 

In this section, we present a two-link robot manipulator as an example to verify the 
efficiency of the proposed hybrid control scheme. The two-link robot manipulator is 
described by [10] 

1 1 1( )[ ( , ) ( )] ( ) ( ) ( ) ( ) ,x M x C x x x G x M x u M x w F x G x u d− − −′= − + + + = + +&& & &
 

where  
1( ) ( )[ ( , ) ( )]F x M x C x x x G x− ′= − +& & , 1( ) ( )G x M x u−= , 1( ) ,d M x w−=   

2 2 2 2
1 1 2 1 2 1 2 2 2 2 2 1 2 2

2 2
2 2 2 1 2 2 2 2

( 2 cos( ) cos( )
( ) ,

cos( )
m l m l l l l x m l m l l x

M x
m l m l l x m l

⎡ ⎤+ + + +
= ⎢ ⎥+⎣ ⎦

 

2 1 2 2 2 2 1 2 2 2

2 1 2 2 2

2 sin( ) sin( )
( , ) ,

sin( ) 0
m l l x x m l l x x

C x x
m l l x x
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

& &
&

&
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2 2 1 2 1 2 1 1

2 2 1 2

cos( ) ( ) cos( )
( ) ;

cos( )
m l g x x m m l g x

G x
m l g x x
+ + +⎡ ⎤′ = ⎢ ⎥+⎣ ⎦

 

T
1 2[ , ]x x x=  denotes the joint position vector: T T[ , ] ;X X X= &  the torque vector 

T
1 2[ , ]u u u=  is the control input vector; ( )M x  denotes the symmetric and positive 

definite inertia matrix; ( , )C x x&  denotes Coriolis and centrifugal force vector; ( )G x′  
is the gravity vector; w denotes the unknown external disturbances; 1m  and 2m are 
the masses of  link 1 and link 2 respectively; 1l  and 2l  are the lengths of link 1 and 
link 2 respectively; and the acceleration of gravity 29.8 m/sg = . The simulation 
parameters values of this two-link robot manipulator are given as 1 0.5m = , 

2 0.5m = , 1 1l = , 2 0.8l = . 
The design procedure of the proposed controller parameters is in two steps.  
(1) First constructing of the fuzzy logic systems ˆ ( )F x  and ˆ ( )G x  to 

approximate the nonlinear functions ( )F X  and ( )G X  of the feedback linearization 
controller in (18). Three membership functions of ix  are chosen:  

2
1 1.251( ) exp

2 0.6
i

i i
x

F xμ
⎛ ⎞+⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, 
2

2 1( ) exp
2 0.6

i
i i

x
F xμ

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, 

2
3 1.251( ) exp

2 0.6
i

i i
x

F xμ
⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, 1, , 4.i = L  

The adaptive gains ,fiη  gijη  of the fuzzy system parameter adjusted law in 
(18)-(19) are both chosen as 0.5,fiη =  0.5.gijη =  

The other parameter values used in FLC controller are chosen as 
25 0
0 25

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦
, then 25s e e e e= + Λ = +& & , 1 2 2

15 0
15

0 15
k k I⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
. 

(2) Second, designing the H∞  robust compensating controller of (26). Let 

Hurwitz matrix 2 2

2 2

0
15 15

I
A

I I
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
; choosing parameters 430Q I= , 2R I= , 0.2γ =  

and obtain the H∞ gain matrix P from the Riccati-like (25) 
2 2

2 2

30.9985 0.9986
.

0.9986 1.0649
I I

P
I I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The control objective of this section is to force the system actual output to 
track the desired trajectories, which are given as 1 sin( ) sin(2 )dx t t= + , 

2 0.5sin( ) cos(2 )dx t t= +  respectively, with the initial conditions 

1 2(0) (0) 0.1 radx x= = , 1 2(0) (0) 0 rad/sx x= =& & . The external disturbance is chosen 
as 1.5 2 5 .w e e= + + &  

The simulation results are shown in Fig. 2 and Fig. 3. Fig. 2 shows the 
Membership function degree of the fuzzy logic systems ˆ ( )F X  and ˆ ( )G X . With the 
proposed adaptive fuzzy robust control scheme, Fig. 3 denotes the tracking 
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performance of link 1 and link 2 respectively, Fig. 3a presents the position tracking 
of link 1, Fig. 3b is the position tracking of link 2, Fig. 3c and d denote the speed 
tracking performance of  link 1 and link 2 respectively, Fig. 3e and f show the 
control input of  link 1 and link 2 respectively. 
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Fig. 2. Membership function degree of fuzzy logic systems ˆ ( )F X and ˆ ( )G X  
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(e)                                                       (f) 

Fig. 3. Simulation results of the proposed adaptive fuzzy robust control: Position tracking of link 1 (a);   
position tracking of link 2 (b); velocity tracking of link 1  (c); velocity tracking of link 2  (d); control 

input of link 1 (e);  control input of link 2  (f) 
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4.2. Analysis and discussion 

From the above simulation results it is observed that the actual output signal can 
track the reference trajectory with good position and velocity tracking performance, 
the tracking errors going to a small value after some transient. The effect of 
uncertainties and disturbances is also successfully compensated by H∞ robust 
controller. The simulation results demonstrate that the proposed adaptive fuzzy H∞ 
robust controller can deal efficiently with a nonlinear system with uncertainties. 

In order to better demonstrate the superiority of the proposed control method, 
simulation results based on variable structure control are also conducted, shown in 
Fig. 4. 
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(e)                                                               (f) 

Fig. 4. Simulation results of the variable structure control: Position tracking of link 1 (a); position 
tracking of link 2  (b); velocity tracking of link 1 (c); velocity tracking of link 2 (d); control input of 

link 1 (e);  control input of link 2 (f) 
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After comparison of the simulation results between the proposed adaptive 
fuzzy robust control and the variable structure control, it can be easily concluded 
that the tracking performance of the proposed controller is superior to the variable 
structure control. Under control of the variable structure control, the system has 
obvious position and velocity tracking errors, and the control input signal has a 
significant buffeting. So for uncertain robot manipulator systems, using just 
variable structure control is not enough, it also needs another control theory to 
further eliminate buffeting. 

5. Conclusion and discussion 

This paper presents an adaptive fuzzy H∞ robust tracking control scheme for 
uncertain nonlinear MIMO systems. The control idea is comprised by a feedback 
linearization controller based on adaptive fuzzy logic control and a H∞ robust 
compensate controller. The feedback linearization controller acts as the main 
controller; fuzzy logic systems are introduced to approximate the unknown 
nonlinear function of the system by an adaptive algorithm. The H∞ robust controller 
is used to eliminate the effect of the approximation error and external disturbances 
and improve the tracking performance. The simulation results performed on a two-
link robotic manipulator demonstrate the robustness and efficient tracking control 
performance of the proposed control scheme. Finally, by comparing with the 
control performance of variable structure control, we highlight the advantages and 
superiority of the proposed control method. 
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