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Abstract: The problem of finding reducts plays an important role in processing 
information on decision tables. The objective of the attribute reduction problem is 
to reject a redundant attribute in order to find a core attribute for data processing. 
The attribute reduction in decision tables is the process of finding a minimal subset 
of conditional attributes which preserve the classification ability of decision tables. 
In this paper we present the time complexity of the problem of finding all reducts of 
a consistent decision table. We prove that this time complexity is exponential with 
respect to the number of attributes of the decision tables. Our proof is performed in 
two steps. The first step is to show that there exists an exponential algorithm which 
finds all reducts. The other step is to prove that the time complexity of the problem 
of finding all reducts of a decision table is not less than exponential.  
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1. Basic concepts 

Let us give some necessary concepts that are used in this paper. The concepts and 
facts given in this section can be found in [1, 3]. 

Firstly, we summarize some basic concepts in rough set theory [3]. An 
Information System (IS) is defined as ( )IS , , ,U A V f=  in which U is the finite 
and non-empty set of objects; A  is the finite and non-empty set of attributes; 

,a
a A

V V
∈

=U  where Va  is the value range of the attribute ;a A∈  : af U A V× →  is an 
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information function, where , ,a A u U∀ ∈ ∈  ( ), af u a V∈  hold.  

For any ,u U a A∈ ∈ , we will denote the value of the attribute a on the 
object u by ( )a u  instead of ( ), .f u a  If { }1 2, ,..., kB b b b A= ⊆  is a subset of 

attributes, then the set of ( )ib u  is denoted as ( ).B u  Therefore, if u, v are two 

objects in U, then ( ) ( )B u B v=  if and only if ( ) ( )i ib u b v=  for any 1,...,i k= . 
Definition 1.1. A Decision table is an information System 
( )DS , , ,U A V f=  where ,A C D= ∪  C  is the set of condition attributes,  D is 

the set of decision attributes and .C D∩ =∅    
Without loss of generality, suppose that D consists of only one decision attribute 

d. Therefore, from this time we consider the decision table 
{ }( )DS , , , ,U C d V f= ∪  where { }∉d C . A decision table  DS  is consistent if 

and only if the functional dependency { }C d→  is true; it means that for any 

,u v U∈  if ( ) ( )C u C v=  then ( ) ( )d u d v= . Conversely, DS is inconsistent. 

Definition 1.2. Let { }( )DS , , ,U C d V f= ∪  be a consistent decision table. 

If R C⊆  satisfies the conditions below: 
1)  for any ,u v U∈  if ( ) ( )R u R v=  then ( ) ( );d u d v=  

2) for any B R⊂ , there exist ,u v U∈  such that ( ) ( )B u B v=  and 

( ) ( )d u d v≠ , then R  is called a reduct of C.  
According to P a w l a k [3], the reduct of Definition 1.2 is called a REDuct 

based on a positive region (RED). Let ( )RED C  be the set of all reducts of C. In 
the view point of relation database theory, R  is a reduct of C, if R  satisfies the 
functional dependency { }R d→  and ,B R∀ ⊂ B→{ }d . 

In the next content, we introduce some basic concepts of relational database 
theory [1]. 

Let { }1,..., nR a a=  be a finite set of attributes and let ( )iD a  be the set of all 

possible values of attribute ia , the relation r over R is the set of tuples { }1,..., mh h  

where ( ): , 1 ,
i

j i
a R

h R D a j m
∈

→ ≤ ≤U   is a function that ( ) ( )j i ih a D a∈ . 

Let  { }1,..., mr h h=  be a relation over { }1,..., nR a a= . Any pair of attribute 

sets ,A B R⊆  is called Functional Dependency (FD) over R, and it is denoted by 
A B→  if and only if  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ),i j i j i jh h r a A h a h a b B h b h b∀ ∈ ∀ ∈ = ⇒ ∀ ∈ = . 
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The set ( ){ }, : , ,rF A B A B R A B= ⊆ →  is called a full family of functional 

dependencies in r. Let ( )P R  be the power set of the attribute set R. A family 

( ) ( )F P R P R= ×  is called an f-family over R if and only if for all subsets of the 

attributes , , ,A B C D R⊆  the following properties hold: 
(1) ( ), .A A F∈  

(2) ( ) ( ) ( ), , , , .A B F B C F A C F∈ ∈ ⇒ ∈  

(3) ( ) ( ), , , , .A B F A C D B C D F∈ ⊆ ⊆ ⇒ ∈  

(4) ( ) ( ) ( ), , , , .A B F C D F A C B D F∈ ∈ ⇒ ∪ ∪ ∈  

Clearly, rF  is an f-family over R. It is also known that if F  is an f-family 

over R, then there is a relation r  such that .rF F=  Let us denote by F +  the set of 
all FDs, which can be derived from F  by using rules (1)-(4). 

A pair ( ), ,s R F=  where R  is a set of attributes and F  is a set of FDs on 

R , is called a relation scheme. For any A R⊆ , the set { }{ }:A a A a F+ += → ∈ is 

called the closure of A on s . It is clear that A B F +→ ∈ if and only if B A+⊆ .  

Similarly, { }{ }:rA a A a F+ += → ∈  is called the closure of A on relation r. 

Let ( ),s R F=  be a relation scheme over R and a R∈ . The set 

{ }: ,s
a A R A a= ⊆ → ∃K { }( )( ){ }:B B a B A→ ⊂  

is called a family of minimal sets of the attribute a over s. Similarly, the set 

{ }: ,r
a A R A a= ⊆ → ∃K { }( )( ){ }:B R B a B A⊆ → ⊂  

is called a family of minimal sets of the attribute a over r. 
Recall that a family ( )P R⊆K  is a Sperner-system on R if for any 

,A B∈K implies A B⊄ . It is clear that s
aK , r

aK  are Sperner-systems over R. Let 

K  be a Sperner-system. We defined the set 1−K , as follows: 
( ) ( ){ }1 :A R B B A− = ⊂ ∈ ⇒ ⊄K K  and if ( ) ( )( )A C B B C⊂ ⇒ ∃ ∈ ⊆K . 

It is easy to see that 1−K  is a Sperner-system on R, too. If K  is a Sperner-
system over R as a set of all minimal keys of relation r (or the relation scheme s), 
then 1−K  is the set of subsets of R, which does not contain the elements of K  and 
which is maximal for this property, 1−K  is called antikey. If K  is a Sperner-
system over R as the family of minimal sets of the attribute a over r (or s); in other 

words r
a=K K  (or s

a=K K ), then { } 11 r
a

−− =K K  (or { } 11 s
a

−− =K K )  is the 
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family of maximal subsets of R which are not the family of minimal sets of the 
attribute a, defined as [1]: 

{ } { } { }{ }1
: ,r

a r rA R A a F A B B a F
− + += ⊆ → ∉ ⊂ ⇒ → ∈K , 

{ } { } { }{ }1
: ,s

a A R A a F A B B a F
− + += ⊆ → ∉ ⊂ ⇒ → ∈K . 

2. Results 

In real problems, the decision tables often contain inconsistent objects which have 
the same values on the conditional attribute, but different values on the decision 
attribute. These decision tables are called inconsistent decision tables. However, 
based on a data preprocessing step, we can convert the inconsistent decision tables 
to consistent decision tables by deleting inconsistent objects in an inconsistent 
decision.  

Algorithm 2.1 [1]. Finding a minimal key from the set of antikeys. 
Input: Let K  be a Sperner-system, H  be a Sperner-system and 
{ }1,..., mC c c R= ⊆ , such that 1H K− =  and there exists :B K B C⊆ ⊆ . 
Output: .D H⊆  
Step 0. We set ( )0 .T C=  
Step i+1. Set 

( )
( ) ( )
( )

if , ,
1

otherwise.
i iT i c B K T i c B

T i
T i

⎧ − ∀ ∈ − ⊄⎪+ = ⎨
⎪⎩

 

Then set  ( )D T m=  

Lemma 2.1 [1].  If K is the set of antikeys, then ( )T m H∈ . 

Theorem 2.1 [1].  Let H  be a Sperner-system over R and { }1
1,..., mH B B− =  

is a set of antikeys of H, T H∈ . Then ,T H T⊂ ≠∅  if and only if there exists 
B R⊆  such that  1, iB T B B−⊆ ⊄  for any 1 i m≤ ≤ . 

Based on Lemma 2.1 and Theorem 2.1 we have the following  
Algorithm 2.2 [1]. Finding the set of minimal keys from the set of antikeys. 
Input: Let { }1,..., mK B B=  be a Sperner-system over R. 

Output: H  such that 1H K− = . 
Step 1. Using Algorithm 2.1, we calculate 1A . We set 1 1K A= . 

Step i+1. If there is a 1
iB K −∈  such that B ⊆ ( ):1 ,jB j j m∀ ≤ ≤  then using 

Algorithm 2.1 we calculate Ai+1, where 1 1, .i iA H A B+ +∈ ⊆  We set 

1 1i i iK K A+ += ∪ . In the converse case we set iH K= . 
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Lemma 2.2 [1]. The set H, obtained by Algorithm 2.2 satisfies 1H K− =   
and the time complexity of  Algorithm 2.2  is exponential to the number of 
attributes of R.  

Algorithm 2.3 [5]. Finding the set of all reducts in a consistent decision table. 
Input: Let { }( )DS , , ,U C d V f= ∪  be a consistent decision table, 

{ }1 2, ,..., ,nC c c c=  { }1 2, ,..., .mU u u u=  

Output: ( )RED .C  

Let us consider the decision table DS as the relation { }1 2, ,..., mr u u u=  over 

the set of attributes { }R A d= ∪ . 

Step 1. From r  we construct the equality system { }:1r ijE i j m= ≤ < ≤E  

where  ( ) ( ){ }: .ij i jE a R a u a u= ∈ =   

Step 2. From rE  we construct 

:d rA d A= ∈ ∉ ∃M E{ }: ,rB d B A B∈ ∉ ⊂E . 

Step 3. Using Algorithm 2.2, we calculate K  from ( )1
d d

−=M M K . 

Step 4. We set ( ) { }RED C d= −K . 

Lemma 2.2 [5]. The set ( )RED C  obtained by Algorithm 2.3 satisfies 

( ) { }RED C d= −K . The time complexity of  Algorithm 2.3  is exponential to the 
number of conditional attributes of the decision tables. 

Lemma 2.3 [4]. Let { }( )DS , , ,U C d V f= ∪  be a consistent decision table 

where { }1 2, ,..., nC c c c= , { }1 2, ,..., mU u u u= . Let us consider { }1 2, ,..., mr u u u=  

on the attribute set { }.R C d= ∪  

We set { }:1r ijE i j m= ≤ < ≤E  where ( ) ( ){ }: .ij i jE a R a u a u= ∈ =   

We set : ,d rA d A= ∈ ∉ ∃M E{ }: ,rB d B A B∈ ∉ ⊂E . 

Then we have ( ) 1r
d d

−
=M K  where r

dK  is called a family of minimal sets of 

the attribute d  over relation r. 
Lemma 2.4.  If { }( )DS , , ,U C d V f= ∪  is a consistent decision table then 

( ) 1r
dK

−
 is a Sperner-system over C. Conversely, if K is a Sperner-system over C 

then there esists a consistent decision table  { }( )DS , , , ,U C d V f= ∪  such that 

( ) 1r
dK K

−
= . 
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P r o o f: We have { } { } { }{ }1
: ,r

a r rA R A a F A B B a F
− + += ⊆ → ∉ ⊂ ⇒ → ∈K . 

It is obvious that ( ) 1r
dK

−
 is a Sperner-system. Conversely, if K is a Sperner-system 

over C, supposing that { }1,..., mK A A= , we construct a decision tables 

{ }( )DS , , ,U C d V f= ∪  as follows. 

We set { }0 1, ,..., ,mU u u u=  { } :R C d= ∪  

1) for all c C∈  we set ( )0 0;u c =   set ( )0 0;u d =   

2) for all 1,...,i m=  we set ( ) 0iu c =  if ic A∈ ; ( )iu c i=  otherwise; set 

( )iu d i=  for all 1,..., .i m=  

We set { }:1 ,r ijE i j m= ≤ < ≤E  ( ) ( ){ }: .ij i jE a R a u a u= ∈ =   

We set : ,d rA d A= ∈ ∉ ∃M E{ }: , .rB d B A B∈ ∉ ⊂E . 

We can see that { }1,...,d mA A=M . According to Lemma 2.3 we have 

( ) 1
.r

d dK
−

=M   Consequently, ( ) 1
.r

dK K
−

=  

Lemma 2.5. Given { }1,..., nR a a=  be a non-empty attribute set. Then there 
exists a Sperner-system K over R such that the number of elements in K is 
exponential with respect to n  and the number of elements in 1K −  is polynomial 
with respect to n. 

P r o o f: We partition R into groups, each group consists of two elements. So 
we have: 

1 2 ... mR X X X W= ∪ ∪ ∪ ∪   where [ ]2, , / 2i i jX X X m n= ∩ =∅ = , 

0 if even,
1 if odd.

n
W

n
⎧

= ⎨
⎩

 

Let us consider: 
{ }: 1,iH A A X i= ∩ = ∀  if 0,W =  and 

( ){ }: 1 if 1 1, and 1i mH A A X i m A X W= ∩ = ≤ ≤ + ∩ ∪ =  

if 1.W =  

We can see that [ ]/2n
nH C= . We know that [ ]/2n

nC  is approximately 

2(n+1)/2/(3.14 × n1/2). So we can conclude that [ ]/42 nH > .    

We set { }: 2, for any ,1iK B B n B X i i m= = − ∩ =∅ ≤ ≤  if 0W =  

and 
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{ : 2, for any , 1iK B B n B X i i m= = − ∩ =∅ ≤ ≤  

( ) }or 3, mB n B X W= − ∩ ∪ =∅  if  1.W =  

We have 1K m≤ −  and  1.K H −=  

Theorem 2.2.   Let { }( )DS , , ,U C d V f= ∪  be a consistent decision, then 

the time complexity of the problem of finding all reducts of DS  is exponential with 
respect to the number of attributes of DS. 

P r o o f: We prove two steps.  
1) There exists an exponential algorithm which finds all reducts of a decision 

table. According to Algorithm 2.3, we obtain all reducts of a decision table. The 
time complexity of Algorithm 2.3 is exponential with respect to the number of the 
attributes of DS. 

2) The time complexity of the problem of finding all reducts is not less than 
exponential with respect to the number of attributes of DS. Suppose that 

{ }1,..., nC a a= . We construct the partition on C according to Lemma 2.5. We 

construct H and K according to Lemma 2.5. We can see that [ ]/42 nH > ,  

1K m≤ + | and  1K H −=  where m = [n/2]. Suppose that { }1,..., pK A A= . We 

construct a decision table { }( )DS , , ,U C d V f= ∪  where { }0 1, ,..., pU u u u=  as 

follows: 
i)  for all c C∈  we set ( )0 0u c = ; set ( )0 0;u d =   

ii) for all 1,...,i p=  we set ( ) 0iu c =  if ic A∈ ;  ( )iu c i=  otherwise; set 

( )iu d i=  for all  1,...,i p= . 

According to Lemma 2.4 we have ( ) 1
,r

dK K
−

=  so that r
dH K= . 

Consequently, { }RED( ) .C H d= −  
Therefore, according to Lemmas 2.4 and 2.5, for any non-empty attribute set 

{ }A C d= ∪  we always have a consistent decision table 

{ }( )DS , , ,U C d V f= ∪  such that the number of RED( )C is exponential with 

respect to the number of the attributes of A. On the other hand, the number of the 
objects in U is polynomial with respect to the number of the attributes of A. 
Theorem 2.2 was proved.  ■ 

R e f e r e n c e s  

1. D e m e t r o v i c s, J., V. D. T h i. Some Remarks on Generating Armstrong and Inferring 
Functional Dependencies Relation. – Acta Cybernetica, Vol. 12, 1995, 167-180.  



 10

2. D e m e t r o v i c s, J., V. D. T h i, N. L. G i a n g. An Efficient Algorithm for Determining the Set 
of All Reductive Attributes in Incomplete Decision Tables. – Cybernetics and Information 
Technologies, Vol. 13, 2013, No 4, 118-126. 

3. P a w l a k, Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic 
Publishers, 1991. 

4. T h i, V. D., N. L. G i a n g. A Method to Construct Decision Table from Relation Scheme. – 
Cybernetics and Information Technologies, Vol. 11, 2011, No 3, 32-41. 

5. T h i, V. D., N. L. G i a n g. A Method for Extracting Knowledge from Decision Tables in Terms 
of Functional Dependencies. – Cybernetics and Information Technologies, Vol. 13, 2013,  
No 1, 73-82. 

 


