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Abstract: In this paper a novel face recognition algorithm, based on wavelet kernel 
non-negative matrix factorization (WKNMF), is proposed. By utilizing features 
from multi-resolution analysis, the nonlinear mapping capability of kernel non-
negative matrix factorization could be improved by the method proposed. The 
proposed face recognition method combines wavelet kernel non-negative matrix 
factorization and RBF network. Extensive experimental results on ORL and YALE 
face database show that the suggested method possesses much stronger analysis 
capability than the comparative methods. Compared with PCA, non-negative matrix 
factorization, kernel PCA and independent component analysis, the proposed face 
recognition method with WKNMF and RBF achieves over 10 % improvement in 
recognition accuracy. 

Keywords: Face recognition, non-negative matrix factorization, RBF network, 
kernel method. 

1. Introduction 

Face recognition has received ever-increasing attention for applications, such as 
identity authentication, information security, video surveillance, human-computer 
interface, and so on. However, the major challenge of face recognition is that the 
captured face images often lie in a high dimensional feature space. Generally, the 
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dimensions of these spaces are too high to allow effective and efficient face 
recognition [1, 2]. 

During the past decades, many useful techniques of dimensionality reduction 
have been developed. The most well known techniques for dimensionality reduction 
are the Principal Component Analysis (PCA) [3, 4], and Linear Discriminant 
Analysis (LDA) [5]. Many face recognition methods, such as Eigenfaces [6] and 
Fisherfaces [7], are built on these two techniques or their variants. PCA generates a 
set of orthonormal basis vectors aiming at maximizing the variance over all 
samples. It computes the eigenvectors of the sample covariance matrix and 
approximates the original data by linear combination of the leading eigenvectors. 
PCA is optimal in terms of representation and reconstruction, but not in 
discriminating one face class from others.  

Unlike the PCA method which is unsupervised, LDA is a supervised 
dimensionality reduction method. LDA seeks for an embedding transformation, 
such that the between-class scatter is maximized and the within-class scatter is 
minimized. The optimal transformation (projection) of LDA can be computed by 
applying an eigen-decomposition on the scatter matrices of the given training data. 
As for pattern classification, it is generally believed that LDA-based algorithms 
outperform PCA-based algorithms. However, one major drawback of LDA is that it 
suffers from a small sample size or is under-sampled when the number of samples 
is smaller than the dimensionality of samples [8, 9].  

It was shown by L e e  and  S e u n g  [10, 11] that positivity or non-negativity 
of a linear expansion is a very powerful constraint that also seems to yield sparse 
representations. Their technique, called Non-negative Matrix Factorization (NMF), 
was shown to be a useful technique in approximating high dimensional data, where 
the data are comprised of nonnegative components. However, NMF and many of its 
variants are essentially linear, and thus they cannot discover the nonlinear structures 
hidden in the face data. Besides, they can only deal with data with attribute values, 
while in many applications we do not know the detailed attribute values and only 
relationships are available. Thus, NMF cannot be directly applied for relation data. 
Furthermore, one requirement of NMF is that the values of the data must be non-
negative, however in many real world problems the non-negative constraints cannot 
be satisfied. 

Since the middle of 1990-ies, the kernel method has been successfully applied. 
Many nonlinear feature extraction methods based on the kernel method have been 
proposed [12-15]. 

In this paper a novel algorithm is proposed for face recognition by using 
Wavelet Kernel Non-negative Matrix Factorization (WKNMF), which can 
overcome the above limitations of NMF. Face recognition is achieved by 
combining WKNMF feature extraction and radial basis function. The proposed 
method is evaluated on ORL and YALE face database. Compared with other state-
of-the-art algorithms, the classification accuracy of the method proposed can be 
increased by 10 %. The outline of this paper is as follows. Section 2 presents the 
proposed feature extraction based on WKNMF. Experimental results are reported in 
Section 3. Finally, conclusions are given in Section 4. 
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2. Methodology 

2.1. Non-negative matrix factorization 

NMF imposes the non-negativity constraints in learning the basis images. Both the 
values of the basis images and the coefficients for reconstruction are all non-
negative. The additive property ensures that the components are combined to form a 
whole in a non-negative way, which has been shown to be the part based on 
representation of the original data. However, the additive parts learned by NMF are 
not necessarily localized [8, 9]. 

Given a non-negative mn×  matrix V and constant r, the non-negative matrix 
factorization algorithm finds a non-negative rn ×  matrix W and another non-
negative mr×  matrix H, such that they minimize the following optimization 
problem: 

),(min HWf  
(1)   subject to .0,0 ≥≥ HW  
This can be interpreted as follows: each column of matrix W contains a basis vector 
while each column of H contains the weights needed to approximate the 
corresponding column in V using the basis from W. Thus the product WH can be 
regarded as a compact form of the data in V. The rank r is usually chosen as 

),min( mnr << . Function ),( HWf  is a loss function. In this paper, we choose 
the loss function as follows: 
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The convergence of the process is guaranteed [9]. The initialization is 
performed using the positive random initial conditions for matrices W and H. 

2.2. Kernel non-negative matrix factorization 

Given m objects 1 2 3, , , ..., ,mΘ Θ Θ Θ  with attribute values represented as an n × m  
matrix 1 2[ , , ..., ]mω ω ωΩ = , each column of which represent one of the m objects. 
We define the nonlinear map from the original input space Ω  to a higher or infinite 
dimensional feature space Φ  as follows: 
(4)   : ( ) .x xφ φ∈Ω→ ∈Φ  

From the m objects we denote 
(5)    1 2( ) [ ( ), ( ), ..., ( )].mφ φ ω φ ω φ ωΩ =  
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Similarly to NMF, KNMF searches for two non-negative matrix factors Wφ  

and H , such that  
(6)   ( ) W Hφφ Ω = , 

where Wφ  is the basis in the feature space Φ and H is its combining coefficients, 
each column of which now denotes the dimension-reduced representation for the 
corresponding object. It is worth noting that since ( )φ Φ is unknown, it is impractical 
to directly factorize ( )φ Ω . From (6) we obtain 

(7)   ( ) ( )T T( ) ( ) ( ) W Hφφ φ φΩ Ω = Ω .  
A kernel is a function in the input space and at the same time the inner product 

in the feature space through the kernel-induced nonlinear mapping. More 
specifically, a kernel is defined as 
(8)   ( )T( , ) ( ), ( ) ( ) ( ).k x y x y x yφ φ φ φ= =  

From (8), the left side of (7) can be rewritten as 

(9)   ( ) { } { }T T
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Let us denote  
(10)   ( )T( )Y Wφφ= Ω . 

From (9) and (10) equation (7) can be changed as 
(11)   K YH= . 

Comparing (11) with (6) it can be found that the combining coefficient H  is 
the same. SinceWφ  is a learned basis of ( )φ Ω , similarly we call Y  in (11) as basis 

of the kernel matrix K . Equation (11) provides a practical way for obtaining the 
dimension-reduced representation H  by performing NMF in the kernel space. 

For a new data point, the dimension-reduced representation is computed as 
follows: 

(12)  ( ) ( )new newH Wφ φ ω
+

= ( ) ( )( ) ( ) ( )
+T T

new( ) ( )Wφ φ φ φ ω
+

= Ω Ω +
new=Y K . 

Here A+  donates the generalized (Moore-Penrose) inverse of matrix A , and 
( ) ( )T

new new( )K φ φ ω= Ω  is the kernel matrix between the m training instance and 
the new instance. Equations (11) and (12) construct the key components of KNMF 
when used for classification. It is easy to see that the computation of KNMF does 
not need any attribute values of the objects, but only the kernel 
matrices K and newK are required.  

Obviously, KNMF is more general than NMF, because the former can deal 
with not only attribute value data, but also relational data. Another advantage of 
KNMF is that it is applicable to data with negative values, since the kernel matrix in 
KNMF is always non-negative for some specific kernels. 
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2.3. Wavelet kernel non-negative matrix factorization 

The purpose of building a kernel function is to project the observed data from a low 
dimensional space to another high dimensional space. WKNMF method uses the 
kernel function in non-negative matrix factorization and improves it by replacing 
the traditional kernel function by the wavelet kernel function. Using the features of 
multi-resolution analysis, the nonlinear mapping capability of the kernel non-
negative matrix factorization method can be greatly improved. 

Assuming that ( )h x is a wavelet function, the parameter α  represents a 
stretch and β  represents a pan. If there exists , ' Nx x R∈ , then we get a dot product 
form of the wavelet kernel function: 
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Under the condition of translation invariance, (13) can be rewritten as 
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In this paper Morlet wavelet function was selected as a generating function, 
according to the theory of translation invariance wavelet function, the kernel 
function is constructed as 
(15)   

2( / 2)( ) cos(1.75 ) xh x x e −= . 
From (13), (14) and (15), a wavelet kernel function satisfying the requirements 

of Mercer kernel function is built as: 
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By using (16) in kernel non-negative matrix factorization, we can get Wavelet 
kernel non-negative matrix factorization. 

3. Experimental results 
3.1. Experimental setting  
In order to evaluate the efficiency of the algorithm proposed, an extensive 
experimental investigation is conducted on a subset of ORL and YALE face 
database. In this experiment, the face data of the experimental settings are shown in 
Tables 1 and 2. 

The ORL face database contains 400 images of 40 individuals (each individual 
has 10 images). The images were captured at different times and with different 
variations, including expression and facial details. Each image in the database is a 
gray image with a size  92 112× . Part images of ORL face database are shown in 
Fig. 1. 

The Yale face database contains 165 gray scale images of 15 individuals (each 
individual has 11 images). Each image is a gray image and the size is  100 100× . 
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The images demonstrate variations in the lighting condition, facial expression, and 
with/without glasses. Part images of YALE face database are shown in Fig. 2. 

 
Fig. 1. Part images of the ORL face database 

 
Fig. 2. Part images of the YALE face database 

Table 1. Data of experimental setting A 
Training and testing setting 

Face database Samples Training sample Testing sample 
ORL Set I 200 400 

YALE Set I 90 165 

Table 2.  Data of experimental setting B 
Training and testing setting 

Face database Samples Training sample Testing sample 

ORL 
Set I 120 400 
Set II 160 400 
Set III 200 400 

YALE 
Set I 45 165 
Set II 75 165 
Set III 90 165 

3.2. Experimental results  

Depending on the setting of the experimental data in Table 1, the recognition rate 
curves with respect to the number of different sub-dimensional spaces distributed in 
the ORL and YALE database respectively are shown in Figs 3 and 4. From Fig. 3 
and Fig. 4 we can see that the recognition rate of WKNMF is higher than in other 
algorithms, such as PCA, KPCA, NMF and ICA with different subspace 
dimensions. In ORL database, the subspace dimension of the best recognition rate is 
around 30, while in YALE database, the best recognition rate with subspace 
dimension is around 40. We can make the conclusion, that the dimension of the 
subspace is not as high as possible, the subspace separability mainly lies in the 
vicinity of a particular dimension, but this dimension will vary with changes in the 
face database, so that the best estimate of the dimension of the subspace is a subject 
of important work in future. 

PCA, NMF, KPCA (Kernel-PCA), ICA (Independent Component Analysis) 
and WKNMF are respectively employed for feature extraction according to the 
experimental data of setting B. The results of the experiments are shown in Tables 3 
and 4. 
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Fig. 3. Recognition rate (%) influence of the subspace dimension on ORL 

 
Fig. 4. Recognition rate (%) influence of the subspace dimension on YALE 

We can see from Tables 3 and 4, with the same neural network classifier, that 
the proposed method of recognition ability outperforms significantly several other 
classic algorithms. The misclassified images of WKNMF+RBF of ORL database 
faces are shown in Fig. 5, which are mainly due to change in the age, decoration 
and so on in the training image face database. These problems will lead to 
recognition errors. 

 
Fig. 5. Misclassified images of WKNMF+RBF on ORL face database 

The WKNMF+RBF on Yale database achieves better recognition rate than the 
other methods. The misclassified images are shown in Fig. 6. In multiple tests on 
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Yale database the misclassified images have remained the same. The proposed 
method has some influence by the facial expression and illumination. 

 
Fig. 6. Misclassified images of WKNMF+RBF on ORL face database 

In summary, our proposed WKNMF algorithm is an efficient method for face 
recognition. The experimental results on ORL and YALE databases show that the 
proposed algorithm achieves higher recognition performance than the others. 

Table 3. Recognition rate of a different method on ORL data (%) 
Algorithm Set I Set II Set III 
PCA+RBF 86.5 83.25 87.75 
NMF+RBF 89.0 92.0 93.0 

KPCA+RBF 89.7 92.8 94.7 
ICA+RBF 87.3 88.0 92.3 

WKNMF+RBF 93.4 95.2 98.8 

Table 4. Recognition rate of a different method on YALE data (%) 
Algorithm Set I Set II Set III 
PCA+RBF 63.64 74.55 86.06 
NMF+RBF 67.27 78.18 89.09 

KPCA+RBF 71.1 85.8 92.3 
ICA+RBF 62.4 76.3 87.3 

WKNMF+RBF 81.9 96.1 98.2 

4. Conclusions 

In this paper we propose a face recognition algorithm by using WKNMF. The idea 
of using WKNMF is to find a set of basis functions to represent the face image 
where the basis functions enable the identification and classification of intrinsic 
“parts” that make up the object being imaged by multiple observations. The 
experimental results on both ORL and YALE face databases show that WKNMF 
has much stronger analysis capability than the comparative algorithms. In the aspect 
of face recognition accuracy, the method proposed achieves over 10% improvement 
compared to the PCA, NMF, KPCA and ICA methods. The WKNMF balances the 
algorithm efficiency and performance very well. 
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