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Abstract: This paper provides an overview of a design space exploration 
methodology for customizing or tuning a candidate OCI architecture, given a 
resources budget and independent of a particular application traffic pattern. Three 
main approaches are introduced. The first approach allows customizing the On-
Chip Interconnect by adding strategic long-rang links, while the second consists in 
customizing the buffer sizes at each switch according to the traffic. The third 
approach uses a feedback control-based mechanism for dynamic congestion 
avoidance. Some results are presented to shed more light on the usefulness of these 
approaches for System-on-Chip design. 
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1. Introduction 

Network-on-Chip (NoC) has emerged as a solution of non-scalable shared bus 
schemes currently used in SoC design [2, 5]. The On-Chip Interconnect 
infrastructure (OCI) represents one of most important components in determining 
the overall performance (e.g., latency and throughput), reliability and cost (e.g., 
energy consumption and area overhead) of future SoCs. Furthermore, the increasing 
complexity of OCI infrastructures makes their design extremely challenging. OCI 
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topology is a very important feature in the design of NoC because the router design 
depends on its characteristics (e.g., diameter, average distance, clustering degree).  

Many studies have shown that OCI architectures must be customized at design 
time in order to improve the performance of a specific application domain [1, 15]. 
These approaches are generally tailored for a specific application by providing a 
customized SoC. They deal with the selection of OCI architecture to accommodate 
an expected application-specific data traffic pattern. The customizing approaches 
can be classified based on the level, at which the customization is carried out, i.e., at 
application level, at communication level or at physical level, as illustrated in  
Fig. 1. At physical level, the on-chip interconnect configuration, bandwidth 
allocation, and buffer minimization are three main issues that should be addressed. 
At the communication level, switching, network flow control, and data routing 
techniques should be carefully designed. At the application level, mapping and 
scheduling application tasks while optimizing the cost and performance metrics 
constitute the main issues. 

 
Fig. 1. Classification of customizing approaches [1] 

2. Related work 

Recent studies have shown that none of OCIs could provide the best performance 
for a wide range of applications. In other words, several SoC studies have chosen 
2D mesh as underlying topology because of its regularity and low hardware 
complexity [2]. Other topologies (e.g., FT, BFT, Spidergon, WK) have been 
adapted for SoC design [3-5, 13], however, there is no universal OCI, which could 
support all SoC application traffic patterns. 

Recently, there has been a great deal of interest in the development of 
analytical performance models for NoC design. The approaches proposed in 
literature can be classified in four main categories: deterministic approaches, 
probabilistic approaches, physics based approaches, and system theory based 
approaches. In the first category, the approaches are mainly based on graph theory 
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used successfully in many software and computer engineering domains. 
Deterministic approaches assume that the designer has thorough understanding of 
the pattern of communication among cores and switches. Most of the work to date 
using probabilistic approaches, is based on queuing theory, quantum-like approach, 
statistical physics and information theory [11, 17]. The fourth category uses the 
system theory that is successfully applied to design electronic circuits. Network 
Calculus is derived from system theory and has attractive features, such as the 
ability to capture all traffic patterns with the use of bounds, which allows the 
designers to capture some dynamic features of the network [10, 18]. 

In our recent studies, a design space exploration methodology is introduced in 
[6-9] for customizing or tuning a candidate OCI architecture, given a resources 
budget and independent of a particular application traffic pattern. This paper 
provides an overview of this work and highlights the main results.  

The remainder of this paper is organized as follows. Section 2 describes the 
links insertion approach and its evaluations. In Section 3, a buffer-space allocation 
approach is presented. Section 4 describes the congestion avoidance approach. 
Conclusions and future work are given in Section 5. 

3. Links insertion approach 

Numerous studies have shown that in order to improve the performance and reduce 
the energy consumption for a specific application domain, the network architecture 
could be customized by inserting a number of links between routers. Several OCI-
based (e.g., 2D mesh, Spidergon) architectures are recently studied and adapted for 
SoCs. These OCIs have different features based on different criteria [3], which are 
defined as follows: 

• The Diameter is the largest number of hops among all shortest paths. 
• The Average Distance is the average number of hops between all nodes.  
• The Degree is the number of direct neighbours of a node in the OCI.  
• The Bisection is the minimum number of links to be removed to separate 

the network into two equal portions.  
• The Number of Links is the number of bidirectional links in the OCI.  
• The Clustering Degree is used to specify how nodes are interconnected to 

each other.  
These criteria could provide an initial insight on some performance metrics. 

For example, a small diameter and a low average distance allows fast 
communication between farthest nodes. A high degree allows many close 
neighbours perform fast communications. A higher clustering degree indicates that 
nodes close to each other are strongly connected. Thus, if an OCI architecture has a 
small diameter, a high degree, and a high clustering degree, then it could support 
various data traffic patterns. 

In order to show the efficiency of the inserting links between the strategic 
nodes, a theoretical evaluation has been first conducted using MatLab. Indeed, 
many topologies (Ring, 2D Mesh, Torus, WK, X-Mesh and Spidergon) have been 
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respectively when using a Transpose traffic pattern. The results obtained show that 
FracNoC outperforms 2D mesh and Torus topologies. However, it provides similar 
results for other traffic patterns when compared to Torus.   

Then, an thorough comparative study of topologies (2D Mesh, X-Mesh, Torus, 
Spidergon, WK and FracNoC) increased by adding strategic links was presented in 
[8]. Simulations have been conducted using several traffics, such as Transpose, Bit-
Reversal, Shuffle and Uniform. The obtained results showed the efficiency of the 
fractal-like topologies (WK and FracNoC) as a communication fabric for SoC 
design.  

4. Buffer space allocation approach 

The work presented in this section is focused on optimizing the buffer spaces inside 
switches. Using buffers with a fixed size generates congestion at routers, which 
increases the energy consumption and has a significant influence on performance 
(e.g., flits drop). However, we have introduced a technique for customizing the size 
of buffers inside switches [9]. It is a design space exploration approach to allow 
customizing an on-chip interconnects architecture that matches the workload-
specific application of a System-on-Chip. Indeed, only the required resources are 
allocated for each channel based on the traffic pattern of a target application. Fig. 4 
illustrates a given traffic pattern for 2D Mesh.  

 
Fig. 4. A traffic pattern for 2D Mesh 

The approach uses the compartmental Fluid-flow based theory [14] to model 
the system and then allocate the required resource for each buffer. Simulations have 
been conducted and some results are depicted in Fig. 5. These results showed that 
by analyzing and capturing the characteristics of on-chip communication traffic, the 
designer can select and design the on-chip interconnect routers that are optimized 
for a target application. 



 106

5. Conges

The approa
However, t
NoC param
example, th
and to pre
approaches
application
to poor perf

The ap
NoC eleme
buffers size
in our simu

Fig. 5.
simulatio

stion avoid

ach presented
this approac
meters, whic
he design of
edict param
 [1]. More p
s, bottleneck
formance.  
pproach intr

ents adjusting
e defined at d
ulations on Sp

 
0.

00
 

. The buffers siz
on and analysis

dance appro

d in the previ
ch did not c
ch are hard 
f NoCs that 

meters in the
precisely, sin
ks may be cre

roduced in th
g the data flo
design-time [
pidergon OC

Fig. 6. A tr

0.
62

 

1.
20

 

1.
76

 

2.
46

 

3.
06

ze variation ove
s when the injec

oach 

ious section 
onsider the 

to predict 
are able to 
e early dev
nce resource
eated in som

his work incl
ow in order 
[10]. Fig. 6 i

CI. 

raffic pattern fo

3.
06

 

3.
55

 

4.
01

 

4.
57

 

5.
13

 

er time compute
ction rate is 80 

targets the a
run-time co
at early de
handle all a

velopment s
es must be s

me switches, a

ludes a cont
to guarantee
llustrates a g

or Spidergon 

5.
78

 

6.
43

 

6.
90

 

7.
45

 

8.
02

 

 
ed with  
flits per s 

application-sp
onfiguration 
evelopment 
application re
stages requir
shared betwe
and therefore

trol mechani
e the bounde
given traffic p

 

8.
70

 

9.
39

 

pecific SoC. 
of different 
stages. For 
equirements 
re run-time 
een multiple 
e could lead 

sm to allow 
dness of the 
pattern used 



 107

The obtained results showed the efficiency of this control mechanism in 
avoiding congestion inside switches. For instance, Fig. 7 shows the buffer size 
occupancy with a maximum buffer size fixed to 10 flits. The results show the 
viability of this mechanism for congestion avoidance. 

 
Fig. 7. The buffer size variation over time when using the feedback control mechanism with a buffer 

size at each switch fixed to 10 flits and injection rate − 100 flits per s 

We are also investigating the use of this mechanism to develop adaptive 
techniques including dynamic routing data to avoid congested routers.  

6. Towards fractal NoCs 

Fractal architectures are receiving considerable attention in networking community. 
A fractal topology is a geometric structure that demonstrates similarity in properties 
at various scales, i.e., the structure looks similar under different magnification 
levels [16]. In [7], a self-similar fractal-geometry-based triangle topology, called 
FracNoC is proposed for SoCs. Fractal based topologies have attractive properties, 
such as high degree of regularity, efficient communication performance for low 
energy consumption, and ease of extendibility that suits NoC systems. 

A FracNoC network topologies is a fractal, denoted by FracNoC(k), it can be 
described by the expansion level k. It can be obtained from a lozenge, for an infinite 
number of iterations of dividing by two the size of the lozenge and then to juxtapose 
the quadruplicate by their vertices to form a new lozenge (Fig. 8). 

More precisely, a fractal structure reproduces itself iteratively, exhibiting 
invariant structural properties. In other words, the fractal describes a self-organizing 
mechanism. 
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Fig. 8. A FracNoC network with k = 4 

A FracNoC network topology is a fractal, denoted by FracNoC(k), and it can 
be described by an expansion level k (Fig. 9). A FracNoC network is described as 
follows:  

• For k = 0 there are N0 = 1 node with a maximum diameter D0 = 0 and it 
holds P0 = 0 links. 

• For k = 1 there are N1 = 4 nodes with a maximum diameter D1 = 2 and it 
holds P1 = 5 links. 

• For each k > 1 there are Nk = 4Nk–1  nodes, with a maximum diameter  
Dk = 2(Dk–1 +1)  and it holds Pk = 4Pk–1 + 13  links, where Nk  is the total 
number of nodes, Pk  is the total number of links, and Dk  is the maximum 
diameter of FracNoC(k). This family of topologies, starts from a 
FracNoC(k) and recursively expends to any level k as illustrated in Fig. 9.  

 
Fig. 9. A FracNoC network topology expansion (levels k = 0, k = 1, k = 2) 
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