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Abstract: To tackle a multi-attribute decision making problem, rough set and case-
based reasoning are often combined. However, the reduction in a rough set is 
always complex. In this paper we provide a new relative importance measure about 
the unitary attributes values by ranking the relative importance of the attributes in 
the rough set theory. A new rough set model based on ranking the relative 
importance of the attributes is built and its properties are studied. Then unitary 
attributes values are utilized to compute the similarity of rules in case-based 
reasoning, for there might be incompletely match or miss values. A new multi-
attribute decision making based on case-based reasoning and a rough set based on 
the ranking relative importance of the attributes is constructed, which obtains rules, 
avoiding reduction and rule extraction.  

Keywords: Multi-attribute decision-making, case-based reasoning, rough set, 
relative position region, attribute importance. 

1. Introduction 

Decision making is choosing a strategy among many different projects in order to 
achieve some purposes. With different attitude of the decision makers for different 
types of decision models, the decision criteria are formulated as five different 
models: optimistic-decision criterion, pessimistic-decision criterion, evenness-
decision criterion, minimum-risk-decision criterion, compromise-decision criterion. 
According to various decision criteria, the decision making problem is formulated 
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as three different models: high risk decision, usual risk decision and low risk 
decision. These different decision problems can be handled with a different method. 

Case-Based Reasoning (CBR) is the process of solving new problems (cases) 
by retrieving the most relevant ones from an existing knowledge-base (called case-
base) and adapting them to fit new situations [1]. CBR systems have been used in a 
wide variety of fields and applications. One example is its use in prediction and 
classification. CBR systems are well known for their ability to successfully tackle 
rich and complex domains. CBR is often used when generalized knowledge is 
lacking. Nevertheless, a CBR system is sensitive to noisy and unreliable data which 
may contribute negatively to its classification accuracy [2]. In fact, this problem 
may appear in CBR even if the domain contains few features and/or cases. 
Additionally, CBR classifiers suffer from the curse of dimensionality problem [3]. 
This is also the case for other learning approaches; nevertheless they showed that 
CBR is more dependent on the actual sample distribution than on the dimensions of 
the problem. 

In CBR literature, these problems have been faced by two areas of research: 
feature selection and instance selection. The first one alleviates these problems by 
identifying as much of the irrelevant descriptive information (features) of a case as 
possible. On the other hand, instance selection – known as case-base maintenance 
in CBR – aims at reducing the number of unnecessary or redundant cases. 

Some works focus on feature weighting and instance selection methods based 
on Rough Set Theory (RST) [4-6]. They have been proven to offer a good trade-off 
between reduction and problem solving efficiency. 

Nevertheless, some data sets may also contain irrelevant features (attributes in 
CBR) in addition to irrelevant cases. Thus, it becomes necessary to reduce the 
number of features (rather than just weighting them) that is considered when 
solving new cases [7, 8].  

Many algorithms within Artificial Intelligence literature deal with feature 
selection. These algorithms can be placed in two main categories: wrappers and 
filters. The wrapper methods use the performance algorithm itself as an evaluation 
function to estimate the accuracy of attribute subsets. Thus, wrappers tend to be 
computationally expensive because the learning algorithm is called on repeatedly. 
On the other hand, filter methods filter out undesirable attributes before learning 
takes place. Therefore, filters have been proven to be much faster than wrappers and 
hence they can be efficiently applied to large data sets containing many attributes. 

In these 4 steps of case-based reasoning, “retrieve” is the most important step 
in complete systems. Here a complete system means that all solutions of the 
problems are in the system.  

Traditionally, researchers always obtain retrieve cases utilizing the nearest 
neighbour subtraction algorithm. The nearest neighbour subtraction algorithm 
firstly computes the similarity between every attribute. Then it obtains unitary 
similarity by adding all similarities of the attributes. However, every attribute has a 
different role in the relations. So that we should consider the weight of an attribute 
when obtaining unitary similarity. The weight of an attribute is often presented by 
people, which causes subjective judgments.  
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A rough set is a methodology built on data structures, which avoids 
subjectiveness. Rough set theory [9, 10], a new mathematical approach to deal with 
inexact, uncertain or vague knowledge, has recently received wide attention in the 
research areas both of real-life applications and theory itself. Real-life applications 
speed up the theory research about a rough set. Rough set theory is an extension of 
set theory, in which a subset of a universe is described by a pair of ordinary sets 
called the lower and upper approximations. Rough set theory is emerging as a 
powerful theory dealing with imperfect data. It is an expanding research area which 
stimulates explorations on both real-world applications and on the theory itself. It 
has found practical applications in many areas, such as knowledge discovery, 
machine learning, data analysis, approximate classification, conflict analysis, and so 
on. The theory of rough sets has been successfully applied to diverse areas, such as 
pattern recognition, artificial intelligence, machine learning, knowledge acquisition, 
economy forecast, data mining and so on [11, 12]. Rough set theory adopts the 
concept of equivalence classes to partition the training instances according to some 
criteria. Two kinds of partitions are formed in the mining process: lower 
approximations and upper approximations, from which certain and possible rules 
are easily derived. It operates only on the data and does not require any added 
information; it is completely data-driven. 

But there are still some defects in Pawlak rough set. Classification must be 
absolutely correct in a Pawlak rough set model, so the classical model cannot deal 
efficiently with datasets which have noisy data. Some latent useful knowledge may 
be abandoned. Researchers have put forward many extended rough set models 
combined with other soft computing theories, such as dominance-based rough set 
[13], rough fuzzy set [14] and fuzzy rough set [15], etc. Probabilistic rough set [16], 
variable precision rough set [17], and Bayesian rough set [18] are one of the most 
important branches. A variable precision rough set model was aimed at handling 
uncertain and noisy information and was directly derived from the original rough 
set model without any additional assumptions [17]. It integrated the concept of 
rough inclusion relation into Pawlak rough set model, thus being able to allow some 
degree of misclassification in the mining process.  

Probabilistic rough set approximations can be formulated based on the notions 
of rough membership functions [19] and rough inclusion [20]. Also, we have a 
research rough set over dual-universe studied in [21, 22]. 

Since introduction of the extended models, they have been successfully used in 
many research fields. In these models, decisions about new problems are made 
according to the rules extracted. However, some attributes of the new problems are 
inconsistent with the rules completely. In this situation, how to make a decision 
might well repay investigation. 

In this paper we combine a rough set and case-based reasoning to build an 
Multi-Attribute Decision Making (MADM) model. Considering the complexity of 
attribute reduction, we compute the sum of some attributes from specific rules. 
Firstly, we discuss the progress and research status of MADM. Secondly, we 
present the basic concept of a rough set and case-based reasoning. Then we provide 
a new concept about the importance of the attribute and a new MADM model is 
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built. An example is proposed to illustrate the practicability and efficiency of this 
MADM model.    

2. Preliminaries 

2.1. Pawlak rough set 

The rough set theory, firstly introduced by Pawlak in 1982, is a valuable 
mathematical tool for dealing with vagueness and uncertainty [10, 11]. A rough set 
is a formal approximation of a crisp set (i.e., a conventional set) in terms of a pair of 
sets which give the lower and the upper approximation of the original set.  

Let ( , )I U A=  be an information system (attribute-value system), where U is 
a non-empty set of finite objects (the universe) and A  is a non-empty, finite set of 
attributes, such that : aa U V→  for every a A∈ ; aV  is the set of values that 
attribute a  may take. The information table assigns a value ( )a x  from aV  to each 
attribute a  and object x  in the universe U.With any P A⊆  there is an associated 
equivalence relation  
(1)   2IND( ) {( , ) | , ( ) ( )}.P x y U a P a x a y= ∈ ∀ ∈ =   

The relation IND( )P  is called a P-indiscernibility relation. The partition of U 
is a family of all equivalence classes of IND( )P  and is denoted by IND( )U P  (or 
U/P). If ( , ) IND( )x y P∈ , then x  and y  are indiscernible (or indistinguishable) 
by attributes from P. 

Let X U⊆  be a target set that we wish to represent using the attribute subset 
P; that is, we are told that an arbitrary set of objects X comprises a single class, and 
we wish to express this class (i.e., this subset), using the equivalence classes 
induced by attribute P. 

However, the target set X can be approximated using only the information 
contained within P by constructing the P-lower and P-upper approximations of X: 
(2)   { :[ ] } {[ ] :[ ] }R R RRX x U x X x x X= ∈ ⊆ = ⊆∪ ,  

(3)    { :[ ] } {[ ] :[ ] }R R RRX x U x X x x X= ∈ ≠∅ = ≠∅∩ ∪ .  
The P-lower approximation, or positive region, is the union of all equivalence 

classes in [ ]Px  which are contained by (i.e., are subsets of) the target set. The lower 
approximation is the complete set of objects in U/P that can be positively (i.e., 
unambiguously) classified as belonging to target set X. 

The P-upper approximation is the union of all equivalence classes in [ ]Px  
which have a non-empty intersection with the target set. The upper approximation is 
the complete set of objects that in U/P cannot be positively (i.e., unambiguously) 
classified as belonging to the complement (X) of the target set X. In other words, the 
upper approximation is the complete set of objects that are P. 

In summary, the lower approximation of a target set is a conservative 
approximation consisting of only those objects which can positively be identified as 
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members of the set. (These objects have no indiscernible “clones” which are 
excluded by the target set.) The upper approximation is a liberal approximation 
which includes all objects that might be members of the target set. (Some objects in 
the upper approximation may not be members of the target set.) From the 
perspective of U P , the lower approximation contains objects that are members of 
the target set with certainty (probability = 1), while the upper approximation 
contains objects that are members of the target set with non-zero probability 
(probability > 0).  

An interesting question is whether there are attributes in the information 
system (attribute-value table) which is more important to the knowledge 
represented in the equivalence class structure than other attributes. Often we 
wonder whether there is a subset of attributes which can, by itself, fully characterize 
the knowledge in the database; such an attribute set is called a reduction. 

Formally, a reduction is a subset of attributes RED P⊆ , such that 
(1) RED[ ] [ ]Px x= , that is, the equivalence classes induced by the reduced 

attribute set RED are the same as the equivalence class structure induced by the full 
attribute set P. 

(2) the attribute set RED is minimal, in the sense that (RED { })[ ] [ ]a Px x− ≠  for 
any attribute REDa∈ ; in other words, no attribute can be removed from set RED 
without changing the equivalence classes [ ]Px . 

A reduction can be thought of as a sufficient set of features – sufficient, that is, 
to represent the category structure. 

One of the most important aspects of database analysis or data acquisition is 
the discovery of attribute dependencies; that is, we wish to discover which variables 
are strongly related to which other variables. Generally, it is these strong 
relationships that will warrant further investigation, and that will ultimately be of 
use in predictive modelling. 

In rough set theory, the notion of dependency is defined very simply. Let us 
take two (disjoint) sets of attributes, set P  and set Q , and inquire what degree of 
dependency is obtained between them. Each attribute set induces an 
(indiscernibility) equivalence class structure, the equivalence classes induced by P  
given by [ ]Px , and the equivalence classes induced by Q  given by [ ]Qx . 

Let 1 2[ ] { , , , }Q Nx Q Q Q= " , where iQ  is a given equivalence class from the 

equivalence-class structure induced by attribute set Q . Then, the relative position 
region is given by 

/

PosP
X U Q

Q PX
∈

= ∪ . 

The dependency of attribute set Q  on attribute set P  is defined as  
Pos

( ) 1.P
P

Q
Q

U
γ = ≤   
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2.2. Case-based reasoning 

Case-based reasoning has been formalized for the purposes of computer reasoning 
as a four-step process. 

(1) Retrieve: Given a target problem, retrieve from the memory cases the 
relevant ones to solve it. A case consists of a problem, its solution, and, typically, 
annotations about how the solution was derived. For example, suppose Fred wants 
to prepare blueberry pancakes. Being a novice cook, the most relevant experience 
he can recall is the one, in which he successfully made plain pancakes. The 
procedure he followed for making the plain pancakes, together with justifications 
for decisions made along the way, constitutes Fred’s retrieved case. 

(2) Reuse: Map the solution from the previous case to the target problem. This 
may involve adapting the solution as needed to fit the new situation. In the pancake 
example, Fred must adapt his retrieved solution to include the addition of 
blueberries. 

(3) Revise: Having mapped the previous solution to the target situation, test 
the new solution in the real world (or a simulation) and, if necessary, revise. 
Suppose Fred adapted his pancake solution by adding blueberries to the batter. 
After mixing, he discovers that the batter has turned blue – an undesired effect. This 
suggests the following revision: delay the addition of blueberries until after the 
batter has been ladled into the pan. 

(4) Retain: After the solution has been successfully adapted to the target 
problem, store the resulting experience as a new case in memory. Fred, accordingly, 
records his new-found procedure for making blueberry pancakes, thereby enriching 
his set of stored experiences, and better preparing him for future pancake-making 
demands. 

3. A new attribute importance degree 

Different attributes have variable affection on the problems. We consider the 
importance of an attribute in a different way from reduction. 

Definition 1. Relative importance degree of attribute. In information system 
( , )I U A= , A C D= ∪ , R C⊆ . a C R∀ ∈ − , the importance degree of a  is 

defined as 

(4) 
( { }, ) ( , ),

sig( , , )
({ }, ),
R a D R D R

a R D
a D R

γ γ
γ

− ≠ ∅⎧
= ⎨ =∅⎩

∪
.  

In information system ( , )I U A= , A C D= ∪ , ic C∀ ∈ . We just consider the 
relative importance of an attribute: sig( , , )ic C D  (for short).  

From the definition of the relative position region, we know 
PosC

UX D

D CX
∈

= ∪ . That is, for each equivalence class iY  in [ ]Dx , we add up the 

size of its lower approximation by the attributes in C , i.e., iCY . This 
approximation (as above, for the arbitrary set Y ) is the number of objects which on 
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attribute set C  can be positively identified as belonging to target set iY . Added 
across all equivalence classes in [ ]Dx , the numerator above represents the total 
number of objects which – based on the attribute set C  – can be positively 
categorized according to the classification induced by attributes D . The dependency 
ratio therefore expresses the proportion (within the entire universe) of such 
classifiable objects. The dependency ( )C Dγ  “can be interpreted as a proportion of 
such objects in the information system for which it suffices to know the values of 
attributes in C  to determine the values of attributes in D ”. 0 ( , ) 1C Dγ≤ ≤ . 

Similarly, we comprehend ( { }, )R a Dγ ∪  and ( , )R Dγ . 
Then sig( , , )a R D is a relative importance degree of a . 
Theorem 1. In information system ( , )I U A= , A C D= ∪ , R C⊆ . 

a C R∀ ∈ − , the importance degree of a sig( , , ) 0a R D ≥ . 

P r o o f: (1) If R = ∅ ,  sig( , , ) ({ }, )a R D a Dγ= = { }Pos
0a D

U
≥  

obviously. 
(2) If R ≠ ∅ ,  let assume proof  ( { }, ) ( , )R a D R Dγ γ≥∪ , which equals to 

{ }Pos PosR a RD D≥∪ . 

For a C R∈ − , { }R R a⊂ ∪ . 

{ }
UX R a∀ ∈ ∪  UY R∃ ∈  and X Y⊆ . 

Based on definition of PosC D , we obtain Pos ( )R
U U UZ Z YD D R

D RZ Y Z
∈ ∈ ∈

= = ⊆∪ ∪ ∪  and  

{ }

{ }

Pos { } ( )R a
U U UZ Z XD D R a

D R a Z X Z
∈ ∈ ∈

= = ⊆∪

∪

∪∪ ∪ ∪ . 

For X Y⊆ , we have { }Pos PosR R aD D⊆ ∪ . 

Then { }Pos PosR a RD D≥∪  and sig( , , ) 0a R D ≥ . 

Definition 2. In information system ( , )I U A= , A C D= ∪ . Let 

1 2{ , , , }nC c c c= " , support 1 2sig( ) sig( ) sig( )nc c c≥ ≥ ≥" . Define  

(5)  1

1

{ }, 1
, 1i

i i

c i
R

R c i−

=⎧
= ⎨ >⎩ ∪

 . 

That is, 1 1{ }R c= , 2 1 2{ , }, ,R c c= "  1 1 2 1{ , , , }n nR c c c− −= " , nR C= . 
Definition 3. In information system ( , )I U A= , A C D= ∪ , iR C⊆ . 

X U∀ ⊆ , we define 
(6)   { | [ ] } {[ ] | [ ] }

i i ii R R RR X x U x X x x X= ∈ ⊆ = ⊆∪ , 
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(7)    { | [ ] } {[ ] | [ ] }.
i i ii R R RR X x U x X x x X= ∈ ≠ ∅ = ≠ ∅∩ ∩∪   

iR X and iR X are lower and upper approximation of X  based on iR . 

Theorem 2. In information system ( , )I U A= , A C D= ∪ , iR C⊆ . 

1 2, ,X X X U⊆ , 

(1) =i iR R∅ ∅ . 

(2) =i iRU RU . 

(3) i iR X X R X⊆ ⊆ . 

(4) If 1 2X X⊆ , then 1 2 1 2,i i i iR X R X R X R X⊆ ⊆ . 

(5) 1 2 1 2( )i i iR X X R X R X=∩ ∩ . 

(6) 1 2 1 2( )i i iR X X R X R X=∪ ∪ . 

P r o o f: (1) From Definition 2 and Definition 3, we know =i iR R∅ ∅  

absolutely. 
(2) From Definition 2 and Definition 3, =i iRU RU  absolutely. 

(3) For [ ]
ii Rx R X x X x X∀ ∈ ⇒ ⊆ ⇒ ⊆ , then iR X X⊆ . 

For [ ]
iR ix X x X x R X∀ ∈ ⇒ ≠∅⇒ ⊆∩ , then iX R X⊆ . 

That is, i iR X X R X⊆ ⊆ . 

(4) For 1 2X X⊆ , then 1 1 2 2[ ] [ ]
i ii R R ix R X x X x X x R X∀ ∈ ⇒ ⊆ ⇒ ⊆ ⇒ ∈ . 

For 1 2X X⊆ , then 1ix R X∀ ∈ ⇒  1[ ]
iRx X ≠ ∅⇒∩  2[ ]

iRx X ≠ ∅⇒∩  

2ix R X∈ . 

That is, 1 2 1 2 1 2,i i i iX X R X R X R X R X⊆ ⇒ ⊆ ⊆ . 

(5) For 1 2 1 2X X X X⊆∩ ∩ and  1 2 1 2( )i i iR X X R X R X⊆∩ ∩  from 

Theorem 1. 
1 2 1 2i i i ix R X R X x R X x R X∀ ∈ ⇒ ∈ ∧ ∈ ⇒∩ 1 2[ ] [ ]

i iR Rx X x X⊆ ∧ ⊆ ⇒  

1 2[ ]
iRx X X⊆ ⇒∩ 1 2( )ix R X X∈ ∩ . 

That is, 1 2 1 2( )i i iR X X R X R X=∩ ∩ . 

(6) For 1 2 1 1 2 2 1 2 1 2, ( )i i iX X X X X X R X X R X R X⊇ ∧ ⊇ ⊇∪ ∪ ∪ ∪  from 
Theorem 1. 

1 2 1 2 1 2( ) [ ] ( ) ([ ] ) ([ ] )
i i ii R R Rx R X X x X X x X x X∀ ∈ ⇒ ≠∅⇒ ≠∅⇒∪ ∩ ∪ ∩ ∪ ∩

1 2([ ] ) ([ ] )
i iR Rx X x X∨ ≠ ∅⇒∩ ∩ 1 2 1 2( )i i i ix R X x R X x R X R X∈ ∨ ∈ ⇒ ∈ ∪ . 



 70

That is, 1 2 1 2( )i i iR X X R X R X=∪ ∪ . 
Theorem 3. In information system ( , )I U A= , A C D= ∪ , iR C⊆ .  

(1) Define ( ) { | ( , ) , }
iR j j if x y x y c c R= ∈ ∀ ∈  and 

i

j i

R j
c R

f c
∈

= ∩ . 

(2) Let (0,1]α∈ , define 

{( , ) | , ( , ) }i j i j
iR x y c R C x y c
nα α= ∀ ∈ ⊆ ∈ ∧ ≥ (7) as α -importance based 

on iR .  
(3) Let (0,1]α∈ , α -importance based on iR  can be denoted as  

{( , ) | ( , ) }i i
iR x y x y R
nα α= ∈ ∧ ≥ . 

(4) 1 2 nR X R X R Xα α α⊇ ⊇ ⊇" and 1 2 nR X R X R Xα α α⊇ ⊇ ⊇" . 

4. A decision-making model 

Multi-attribute decision making (MADM) provides a structured approach to 
decision making. MADM approach requires that the selection must be made among 
decision alternatives described by their attributes. It assumes that the problem has a 
predetermined number of decision alternatives. 

Let us support that the decision making system is a complete information 
system. A complete information system means that all decision rules can be found 
in the rule table. We consider mismatched values in decision alternatives and 
construct a new MADM model. Considering the case-based reasoning theory, the 
steps of decision making are five. 

Step 1. Normalize the information system by discretizing continuous attributes 
and clean repetitive lines.  

Step 2. Compute the relative importance of the attributes and rank them. 
Step 3. Set α . Compute iR X  ( 1, ,i j= … , j n≤ ). Obtain jR Xα . 

Step 4. The elements in jR Xα  are similarity elements with X . Compute the 

similarity of rules based on case-based reasoning. 
Step 5. Judge jR Xα  from an expert and make a decision.  

Steps 2-4 are presented in the following flow chart. 
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Fig. 1. Flow chart of reasoning 

Example 1. In information system ( , )I U A= , A C D= ∪ , 1 10{ , , },U u u= "  

1 2 3 4{ , , , }C c c c c=  and { }D d= . Table 1 is an information system of ( , )I U A= . 

Table 1.  Information system 
U  1c  2c  3c  4c  d  

1u  2 1 2 1 1 

2u  1 2 1 1 1 

3u  1 1 2 2 2 

4u  1 2 1 1 1 

5u  1 1 2 1 1 

6u  1 2 1 2 2 

7u  2 1 1 1 2 

8u  1 2 2 1 1 

9u  2 1 1 1 2 

10u  1 2 2 2 2 
Question. There is a new object, which is denoted by 11u  and its values are  

2, 2, 2, 1 under attributes 1 2 3 4, , ,c c c c  respectively. What decision value should 11u  
have? 

Let us handle this question by the modelling we provided above. 
From the rough set theory we know 

iR X Xα −  is the set 

of similarity cases

End 
1i i= +

If ( ) 1iD R X Xα − =
Yes 

No 

Compute αiR X  

1i =

Choose α  

Rank attributes  

Compute relative importance 
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1 2 4 5 8 3 6 7 9 10{{ , , , , },{ , , , , }}{ }
U u u u u u u u u u ud = , 

1 2 4 3 5 6 7 8{{ },{ , },{ },{ },{ },{ },{ },U u u u u u u u uC = 9 10{ },{ }}u u , 

1 5 2 4 3 6 7 9
1

{{ , },{ , },{ },{ },{ , },{ }
U u u u u u u u uC c =− 8 10{ },{ }}u u , 

1 2 4 3 10 6
2

{{ },{ , },{ , },{ },{ }
U u u u u u uC c =− 7 9 5 8{ , },{ , }}u u u u , 

1 7 9 2 4 8 3 5
3

{{ , , },{ , , },{ },{ },{ }
U u u u u u u u uC c =− 10 6{ },{ }}u u , 

1 2 4 6 3 5 7 9
4

{{ },{ , , },{ , },{ , }{ }
U u u u u u u u uC c =− 8 10{ , }}u u . 

Similarly, { , }i j

U
C c c−  and { , , }i j k

U
C c c c−  can also be computed as above, 

, , 1,2,3,4i j k = , i j k≠ ≠ . 
Let us compute the relative set of condition attributes and the decision 

attribute, 
1 2 3 4 5 6 7 8 9 10Pos { , , , , , , , , , }C D u u u u u u u u u u= . 

1{ } 1 2 3 4 5 6 7 8 9 10Pos { , , , , , , , , , }C c D u u u u u u u u u u− = . 

2{ } 1 2 4 5 6 7 8 9Pos { , , , , , , , }C c D u u u u u u u u− = . 

3{ } 2 3 4 5 6 8 10Pos { , , , , , , }C c D u u u u u u u− = . 

4{ } 1 7 9Pos { , , }C c D u u u− = . 
From (4):  

1 1 1sig( , , ) ( , ) ( { }, ) 0cW D c R D C D C c Dγ γ= = − − = . 

2 2 2sig( , , ) ( , ) ( { }, ) 0.2cW D c R D C D C c Dγ γ= = − − = . 

3 3 3sig( , , ) ( , ) ( { }, ) 0.3cW D c R D C D C c Dγ γ= = − − = . 

4 4 4sig( , , ) ( , ) ( { }, ) 0.7cW D c R D C D C c Dγ γ= = − − = . 

We rank the attributes 1 2 3 4' { ' , ' , ' , ' }C c c c c= =  4 3 2 1{ , , , }c c c c  According to 
the size of 

4 3 2 1c c c cW D W D W D W D> > > . 

From the decision model above, let 1 1{ }R c= , 11X u= . 

From (6): 1 1 2 4 5 7 8 9 11{ , , , , , , , }R X u u u u u u u u= , 2 1 5 11{ , , }R X u u u= , 3 11{ }R X u= . 

Let 0.5α = . From Equation (7),  2iR Rα = . 

In 2R X ,  for 2 11( { }) 1D R X u− = , iR X Xα −  are similarity cases with X .  

Here, 11 1 5( ) ( ) ( ) 1D u D u D u= = = . 
The answer of the question is “if 11u ’s values are 2, 2, 2, 1 under attributes 

1 2 3 4, , ,c c c c  respectively, then its decision value is 1”. 
Concerning this question, we did not operate the attribute reduction or extract 

the decision rules, which simplify the decision-making reasoning process.  
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5. Conclusion 

The MADM model in this paper has the following advantages in a few points. 
(1) This is a new rough set model, which considers the order based on the 

relative importance degree.  
From the Example in this paper, we know that the new rough set model 

considering the order based on the relative importance degree has important 
significance to deal with uncertainty information.  

(2) Decision making model based on attribute importance degree and case-
based reasoning avoids the complexity of reduction in rough set theory, which 
facilitates the decision process.  
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