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Abstract: The goal of this work is to explore the applicability of fuzzy logic in multi-
agent systems for choosing the best bidding strategy in electronic auction. To find 
the multi-criterion ordering, agents use a fuzzy algorithm ARAKRI2 with direct 
aggregation operators MaxMin and MinAvg. The key difference between this new 
approach and known from the literature solution FTNA is in the lack of weighted 
coefficients. Despite the difference both algorithms give results that are similar. 
Therefore, the proposed approach can successfully solve the task for multi criteria 
selection of bidding strategy.  
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1. Introduction 

Multi-Agent Systems (MAS) have been successfully applied to modeling the 
process of decision-making in electronic commerce. On one hand, on an individual 
level, they allow the study of decision-making process of single agent participants. 
On the other hand, on collective level, they also allow the study of agents’ 
capabilities to react to ongoing changes in the system. This paper presents 
empirically the problem of choosing a bidding strategy in an electronic auction on 
individual level. In literature various ways for finding next bids on an individual 
level have been described. For example, in many simultaneous English auctions for 

                                                 
1 This paper was sponsored as a part of project SR11 FESS 003/30.05.2011 at the Scientific Research 
Fund of the University of Plovdiv “Paisii Hilendarski”. 
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the same good and with large volumes of historical data, methods taken from 
functional analysis [7] are used for forecasting next bids. In other examples of 
multi-agent modeling of online auctions, agents (virtual participants) use pre-
defined bidding strategies. In this case the next bid depends only on the strategy and 
its parameters [2, 3, 13]. There are different methods for choosing the best strategy, 
such as adaptive actualization of bidding strategies, genetic algorithms [14], 
heuristics [5], etc. G o y a l  et al. [4] for the first time suggest the idea of generating 
the next bid via an algorithm for multi-criterion ordering using fuzzy numbers. 
Their algorithm with Fuzzy Techniques and Negotiable Attitude (FTNA), however, 
needs a huge amount of input data. For example, in a task of n alternatives and m 
criteria, n criteria comparison m × m matrices are needed just to estimate the criteria 
weight coefficients. This not only increases the algorithm complexity, but also 
brings subjectivity to any obtained ordering. Comparison matrices are filled-in 
based on expert knowledge, which in itself creates problems related to future 
actualization. This paper proposes an original fuzzy approach to solving the 
problem of choosing a strategy by direct aggregation without using weight 
coefficients. The fundament of the approach is the fuzzy logic capability to solve 
real problems in complicated dynamical and undetermined systems with variable 
and uncertain parameters [1]. Two varieties of algorithms for direct aggregation of 
fuzzy sets without weighted coefficients (ARAKRI2) – MaxMin and MinAvg have 
been implemented. The ARAKRI2 algorithms use the aggregation operators and 
operations between fuzzy numbers to fuse the fuzzy numbers by all criteria 
corresponding to the separate alternatives [11]. The results obtained in the 
conducted experiments have been compared to those of FTNA algorithm. 
Conclusions have been drawn describing the pros and cons of the method. 
Directions of future work concern further application of ARAKRI2 as a new module 
into MAS for bidding agents modeling in MASECA [6]. This module could extend 
the approach for multi-criterion decision making with “classical” algorithms of 
Map-Cluster [12]. It could also enhance the fuzzy solutions, coded in WindPro [11] 
with an alternative way for input of evaluations. 

2. Defining the problem of bidding strategy selection by direct 
aggregation of fuzzy sets 

After preliminary analysis of bidding strategies described in literature, the choice 
has been limited to the following ten agent bidding strategies in a Continuous 
Double Auction (CDA): 

– snipping strategy (Snipping);  
– strategy with fixed markup (L); 
– three strategies with different historical prices treatments H1, H2, H3; 
– Zero-Intelligence Unconstrained (ZIU); 
– Zero-Intelligence with budget Constraints (ZIC); 
– Zero-Intelligence Plus (ZIP);  
– Risk-Based strategy (RB) and  
– strategy with a Genetic Algorithm (GA). 
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The selected strategies vary in type. One part of them are “static”, other – 
adaptive with regard to changes during auctions. 

Three criteria have been used for strategies’ evaluation: 
 – time complexity; 
 – price prediction;  
 – risk attitude. 
Ten comparison matrices (one matrix for each strategy) have been filled in 

based on experts’ opinions, according to the degree of importance of paired criteria. 
Evaluations vary from 1 up to 9: 1 being insignificant; 3 − more important; 5 − 
equally important; 7 − substantially more important; 9 − absolutely more important, 
and ranks 2, 4, 6, 8 represent values that are between the given ones. Filling-in the 
matrices has been done according to statistical data on bidding strategies’ qualities. 
After normalization of the evaluations, criteria weights were estimated. The weight 
of each criterion was given as the geometric mean of the corresponding row in the 
comparison matrix. If we let w be a set of weights and w={w1, w2, ..., wm}, then here 

we will also have wi∈[0, 1] for i =1, 2, .., m and 1
1

=∑
=

m

i
iw

 
(Table 1). After averaging 

w={0.4, 0.38, 0.22}. 
Table 1. Paired strategy comparison matrices for each strategy 

Snipping t h r   L t h r H1 t h R H2 t h r H3 t h r 
t 5 9 10   5 9 9  5 5 9  5 4 9  5 3 9 
h 1 5 5   1 5 5  5 5 9  6 5 9  7 5 9 
r 0 5 5   1 5 5  1 1 5  1 1 5  1 1 5 
                     
ZIU     ZIC    ZIP    RB    GA    
t 5 5 10   5 6 5  5 8 5  5 2 1  5 0 5 
h 5 5 5   4 5 5  2 5 9  8 5 4  10 5 1 
r 0 5 5   5 5 5  5 1 5  9 6 5  5 9 5 

The individual matrices of strategy-criterion relationships for five bidding 
agents, participants in an electronic auction, have been given. Here the term 
“relationship” describes the preference of an agent k to choose strategy i at given 
criterion j. Evaluations of relationships aij

k (i = 1, 2, .., n; j=1, 2 , .., m; k = 1, 2, ..., l 
for n = 10, m = 3, l = 5) have been presented by “linguistic” terms as “very low”, 
“low”, “average”, “high” and “very high”. Fuzzy agents’ attitudes between 
strategies and criteria are filled in the relationship matrices based on historical data 
on deals made in the auction up to this moment. Linguistic variables are then 
transformed into fuzzy triangular numbers ranging from “Very Low“ =  
=VL= (0, 0, 0.1) to “Very High“=VH=(0.9, 1, 1) evaluations (Table 2). 

The sum of matrices with individual evaluations of alternative-criterion 
becomes input information for filling in a summary matrix with fuzzy evaluations 
of strategies.  

The problem is to find a descending ranking of bidding alternatives, according 
to algorithm ARAKRI2. 
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Table 2. Strategy-criterion relationship matrices 

A1 t h r  A2 t h r A3 t h r A4 t h r A5 t h r 
Snip VH VL VL   ML VL L  ML VL VL  M VL VL  VL VL VL 
L VL VL VL   ML VL L  ML VL VL  VL VL VL  VL VL VL 
H1 ML M VL   M VL L  M L VL  L MH VL  L H VL 
H2 M  M VL   M L L  M L L  L MH L  LM H VL 
H3 MH M VL   M L ML  M ML L  L H L  M H VL 
ZIU H M L   M L ML  MH L L  ML MH L  M H VL 
ZIP VH VL VL   MH ML ML  MH VL L  M VL VL  M VL VL 
ZIC H H VL   MH M ML  MH VL L  ML VL VL  ML VL VL 
RB L VH VH   MH H H  H H VH  M VH VH  M VH VH 
GA VL VH VH   MH VH VH  MH VH VH  MH VH VH  M VH VH 

3. Solving the problem using ARAKRI2 algorithm with MaxMin and 
MinAvg aggregations 

The evaluations of the ten strategies on the three criteria are summarized in Table 3. 
As can be seen, the evaluations are trapezoidal fuzzy numbers: 

.3,2,1,10...,,1,),,,,(~ 324321 ==== jiaaaaaaA ijijijijijijij  
To arrange the strategies in a descending order according to their evaluations, 

we follow the three phases − uniform, aggregation and exploitation phase [1] in the 
next four steps [10, 8, 9]: 

Step 1. As evaluations can differ in scale and not fit into [0, 1] interval, 
unification and normalization of the fuzzy numbers are needed. For this purpose, a 
procedure which does not change the ranking of the numbers by value is applied. 

Let minmax

,,2,1

min

,,2,1

max },{min},{max jjijnijijnij aаdaaaaа −===
==

. Then the unified and 

normalized fuzzy number 3,2,1,10...,,1),,,,(~ 4321 === jizzzzZ ijijijijij is estimated 
by the formula: 

.3,2,1,10...,,1,)~(~ min ==−= jidaaAZ jijij  

Table 3. Alternative-criterion matrix 

Snip 
t h r 

1.4 2.1 2.8 0.0 0.0 0.5 0.0 0.1 0.7
L 0.2 0.6 1.3 0.0 0.0 0.5 0.0 0.1 0.7

H1 0.7 1.5 2.5 1.5 2.2 3.0 0.0 0.1 0.7

H2 1.0 1.9 2.9 1.5 2.3 3.2 0.0 0.3 1.1

H3 1.4 2.3 3.3 1.8 2.7 3.5 0.1 0.5 1.3
ZIU 1.9 2.9 3.8 1.5 2.3 3.2 0.1 0.6 1.5
ZIP 2.5 3.4 4.2 0.1 0.4 1.1 0.1 0.4 1.1
ZIC 1.9 2.9 3.8 1.0 1.4 2.0 0.1 0.4 1.1
RB 1.8 2.7 3.6 3.2 3.9 4.3 4.3 4.9 5.0
GA 1.8 2.6 3.5 4.5 5.0 5.0 4.5 5.0 5.0
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For example, for a fuzzy number  
),3.3,3.2,4.1(~

51 =A 0.4,2.0,2.4 min
1

max
1 === daaа , 

,78.00.4/)2.03.3(

,53.00.4/)2.03.2(,3.00.4/)2.04.1(

,/)~(~

4
51

3
51

2
51

1
51

min
15151

=−=

=−===−=

−=

z

zzz

daaAZ
 

i.e., )78.0,53.0,3.0(~
51 =Z  [7, 8, 9]. 

Thus, Table 4 which consists of the new evaluations was obtained. 
Table 4. Normalized alternative-criterion matrix 

Snip t h r 
0.30 0.48 0.65 0.00 0.00 0.10 0.00 0.02 0.14

L 0.00 0.10 0.28 0.00 0.00 0.10 0.00 0.02 0.14
H1 0.13 0.33 0.58 0.30 0.44 0.60 0.00 0.02 0.14
H2 0.20 0.43 0.68 0.30 0.46 0.64 0.00 0.06 0.22
H3 0.30 0.53 0.78 0.36 0.54 0.70 0.02 0.10 0.26
ZIU 0.43 0.68 0.90 0.30 0.46 0.64 0.02 0.12 0.30
ZIP 0.58 0.80 1.00 0.02 0.08 0.22 0.02 0.08 0.22
ZIC 0.43 0.68 0.90 0.20 0.28 0.40 0.02 0.08 0.22
RB 0.40 0.63 0.85 0.64 0.78 0.86 0.86 0.98 1.00
GA 0.40 0.60 0.83 0.90 1.00 1.00 0.90 1.00 1.00

Step 2. If the criteria are of the same type, i.e., they all need to be maximized, 
the process can continue from Step 3. If some of the criteria need to be maximized 
and others minimized, or if all need to be minimized, then, for all criteria that need 
to be minimized, the complements of the fuzzy numbers to the fuzzy number  
(1, 1, 1, 1) are estimated, so that the criteria can be of the same type. For this 
purpose, the definition of difference between two fuzzy numbers is used. 

BABA ~)1(~~~
−+=− , where ),,,(~)1(),1,1,1,1(~

1234 aaaaBA −−−−=−= . 
Here, all three criteria are maximizing and estimating the complements of the 

fuzzy numbers to unit fuzzy numbers is not needed. 
Step 3. The optimistic index is calculated  

(1)  
2
1

2
34

2314
11

]1)[(

1.
2

)()(
)~(

+−

−+−
+=

aa

aaaa
aAF . 

The dual pessimist index is also found  

(2)  
2
1

2
12

2314
42

]1)[(

1.
2

)()(
)~(

+−

−+−
−=

aa

aaaa
aAF . 

A linear combination of the previous two indices is used as the index of a 
fuzzy number A~  (its G-index): 
(3)  ].1,0[),~()1()~()~( 21 ∈−+= kAFkAkFAF  



 66

Below Table 5 is given with the G-indices of fuzzy numbers for .5.0=k  
Table 5. G-indices of values from Table 4 

0.475 0.050 0.070 
0.137 0.050 0.070 
0.349 0.450 0.070 
0.437 0.470 0.109 
0.537 0.530 0.139 
0.663 0.470 0.159 
0.788 0.120 0.120 
0.663 0.300 0.120 
0.625 0.750 0.930 
0.612 0.950 0.950 

The G-index of a fuzzy number Z51 is  
537.0)~()1()~()~( 5125115151 =−+== ZFkZkFZFZ  for 

)775.0,525.0,525.0,3.0(),,,(~
432151 == aaaaZ . 

Step 4. Fuzzy evaluations are aggregated and calculations are performed with 
operators without weighted coefficients. 

− for the MaxMin operator which has the following mathematical model: 
,3,2,1,10...,,1],1,0[},~{min)1(}~{max~

==∈−+= jiZZZ ijjijji ααα  

the calculations are for 6.0=α . For example, for alternative 1a from the respective 
row from Table 3, the maximum and minimum G-indices are found, which are the 
maximum and minimum fuzzy numbers from the row of evaluations of this 
alternative: 

).43.0,285.0,18.0()1.04.065.06.0,0.04.0475.06.0,0.04.03.06.0(

~4.0~6.0}~{min)1(}~{max~
1211111

=×+××+××+×=

=+=−+= ZZZZZ jjjj
αα

 

Aggregated evaluations, corresponding to the alternatives, are the fuzzy 
numbers ,10...,,1,~

=iZi  from Table 6. 

Table 6. Aggregated evaluations of alternatives using the MaxMin method 

Snip L H1 H2 H3 

0.18 0.285 0.43 0 0.06 0.205 0.075 0.203 0.401 0.12 0.279 0.493 0.224 0.364 0.524 

ZIU ZIP ZIC RB GA 
0.263 0.453 0.66 0.353 0.512 0.688 0.263 0.437 0.628 0.676 0.838 0.94 0.7 0.84 0.93 

In order to rank these fuzzy numbers in a descending order, we have to 
estimate their G-indices, i.e., to perform the calculations from Step 3. For example, 
to a fuzzy number )43.0,285.0,18.0(~ 1 =Z  from (1), (2), (3) for k = 0.5, 
corresponds a G-index = 0.305. After substituting G-indices for the corresponding 
fuzzy numbers, the following ordering of alternatives has been obtained (Table 7). 
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Table 7. Ordering of alternatives using the 
MaxMin method 

GA RB ZIP ZIU ZIC 
0.815 0.809 0.52 0.461 0.445 
     

H3 Snip H1 L H2 
0.373 0.305 0.273 0.102 0.036 

− for the MinAvg operator with a membership function  

3,3,2,1,10...,,1],1,0[},~{min)1(~~

1

===∈−+= ∑
=

mjiZZ
m

Z ij

m

j
jiji λλλ , 

the calculations for 6.0=λ are: 

.)2180,0990,060()040,0,0()1780,0990,060(

~40)~~~(20}{min)601(~
3
60~

121312111

3

1
11

.......

Z.ZZZ.Z.Z.Z j
j

jj

=+=

=+++=−+= ∑
=

 

Aggregated fuzzy numbers 10...,,1,~
=iZi , corresponding to alternatives, are 

filled in Table 8. 
Table 8. Aggregated evaluations of alternatives using the MinAvg method 

Snip L H1 H2 H3 
0.06 0.99 0.218 0 0.024 0.143 0.085 0.165 0.319 0.1 0.213 0.395 0.144 0.273 0.451 

ZIU ZIP ZIC RB GA 
0.157 0.299 0.488 0.131 0.224 0.376 0.137 0.239 0.392 0.54 0.727 0.882 0.6 0.76 0.895 

The ordering of alternatives, corresponding to the ordering of the G-indices of 
the aforementioned fuzzy numbers (Tables 9, 10).  

Table 9. Ordering of alternatives, according to the 
MinAvg method 

GA RB ZIU H3 ZIC 
0.748 0.711 0.322 0.297 0.264 

     
ZIP H2 H1 Snip L 

0.253 0.247 0.202 0.139 0.071 

Table 10. Ordering of alternatives, according to the 
FTNA method with weighted coefficients from 
Table 1 

GA RB H1 ZIU H3 
0.450 0.406 0.319 0.266 0.232 

     
ZIP H2 ZIC Snip L 

0.204 0.198 0.198 0.159 0.055 
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4. Comparative analysis of experimental results 
As a result of the described experiments with the ARAKRI2 algorithm with 
aggregated operators MaxMin (Table 7) and MinAvg (Table 9), similar rankings 
have been obtained. The first places are reserved for the most adaptive strategies – 
GA and RB. Last in the rankings come the most “inert” strategies – L, Snip, H1 and 
H2. It is worth noting that the fact that while working with the MinAvg operator, one 
of the qualitative strategies – ZIP strategy has migrated to the second half of the 
ranking list and has been replaced by one of the strategies which take into account 
historical prices H3. Similar peculiarity has been observed also in the ranking list 
generated by the FTNA algorithm. Contrary to expectations, here, too, H1 
dominates ZIC. In both cases, places are exchanged between strategies from the 
same groups – those with increased intelligence (ZIP and ZIC) and those taking into 
consideration deals’ history (H1 and H3).  

A series of experiments has been conducted: with equal value coefficients α 
and γ, which change stepwise in the interval [0, 1]; with coefficients α and γ, whose 
sum equals 1; with a coefficient k, which varies in the interval [0, 1], with 
minimizing and mixed (minimizing and maximizing) criteria t, h and r. The results 
obtained have confirmed the applicability of the described method for solving the 
given problem. For example, when t was considered a minimizing criterion, first in 
the ranking were strategies, using a huge volume of calculations for generating bids 
– GA, RB, H1, H2, and H3. When h was considered a minimizing criterion, first 
were the strategies which do not use historical prices – ZIP, ZIC, L and Snip. When 
r was considered minimizing – H1, H2, H3 and ZIU (which are risk indifferent) were 
in the upper part of the ordering, while GA and RB were at its bottom. When three 
minimizing criteria were used, the obtained ordering was the inverted of that in 
Section 2.  

Experiments were conducted with three different types of agent populations – 
risk averse, risk neutral and risk tolerant, and the first places in the ordering were 
taken by the increased intelligence strategy ZIP, strategies with different historical 
prices treatment H1, H2, H3 and the “riskiest” strategies, RB and GA. 

Analysis of the obtained results indicates that two algorithms – ARAKRI2 with 
operators MaxMin and MinAvg and FTNA generate similar rankings of compared 
strategies. The main differences between FTNA and ARAKRI2 are in their 
complexity in terms of memory and time. While FTNA needs more memory, 
ARAKRI2 falls behind in speed, since it needs a larger volume of calculations. 
Among the chief advantages of ARAKRI2 is the smaller amount of input data 
needed. The fact is that weighted coefficients of input data unnecessary reduces 
complexity in terms of memory and also alleviates subjectivity at the beginning of 
the algorithm. 

5. Conclusion and future work 
Multi-criterion decision making with direct aggregation of fuzzy evaluations can be 
used successfully for choosing a bidding strategy by autonomous software agents in 
a CDA auction. The described approach is useful in those cases when there is a time 
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constraint on choosing a strategy, as it uses matrix calculation. Compared to other 
examples in literature, this approach is innovative in several aspects: it can operate 
without historical data and considers direct aggregation without weighted 
coefficients. There are limitations to the work, however. We have not explained 
how an agent can fulfill the attitude matrices − based on its user preferences, 
experts’ evidence or using its own evidence.  

This work will continue researching the Gamma aggregation operator which 
does not use weighted coefficients. This method will find application in MASECA 
as a specialized module, managing separate agents’ behaviors during the course of 
an auction. Applying the described approach will increase adaptivity and 
effectiveness of agent-participants. 
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