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Abstract

This paper deals with the modeling of interactions between the immune system and cancer cells, in the framework of the
mathematical kinetic theory for active particles. The work deepens a previous paper of Belloquid et al. that assumes spatial
homogeneity and discrete values of the activity of cancer and immune cells. A number of simulations are made with the aim
to investigate how the state of the various cell populations evolves in time depending on the choice of the free parameters.
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1. Introduction

Cancer is a large class of very different diseases, all of which grow uncontrollably and have the
ability to spread, or metastasize, throughout the body. A solid basis for tumor and cancer researches was
provided by the seminal article published by Hanahan and Weinberg [1], [2]. These authors argued that
the complexity of cancer can be reduced to a small number of underlying principles.

Normal cells grow and divide, but its growth is kept under control by growth-inhibitors or signals.
These inhibitors act on the cell cycle clock, by interrupting cell division. If normal cells are damaged,
they interrupt its cycle of life, until the damage is repaired. If they can’t be repaired, they commit cell
suicide (apoptosis).

Cancer cells generally have severe chromosomal abnormalities, which worsen as the disease progresses.
They have defects in the control mechanisms that govern how often they divide, and are able to stimulate
their own growth, due to the dominant character of oncogenes. Embryonic stem cells have an innate
programme for self-replication that does not require extrinsic instruction. In a similar way, tumor cells
do not need stimulation from external signals (in the form of growth factors) to multiply. They are
characteristically able to overcome apoptosis to progress. This lead to an uncontrolled cell proliferation,
such as cancer.

Normal cells are part of a tissue structure, and remain where they belong. Cancer cells have the
ability to stimulate the growth of blood vessels to supply nutrients to tumors. They can move away from
their site of origin to invade adjacent tissue or spread to distant sites. Local chronic inflammation have
an important role in inducing many types of cancer.

Recent medical and biological studies give evidence that immune system can recognize and eliminate
malignant tumors. In fact, the immune system plays an important role in these dynamics. The term
immune system identifies a variety of different cells and molecules which provide a strong and effective
defense against pathogenic agents. As a matter of fact, immune cells have a strategy to learn the presence
of carriers of a pathology and attempt to deplete them. It is a complex process where immune cells,
starting from the innate immunity, improve their action by learning the so-called acquired immunity and
identifies the hallmarks of cancer to escape the immune defence.
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On the modelling of immune-cancer competition

Mathematical models may be useful for a better understanding of the mechanisms that governs the
interaction between immune system and cancer cells. In [3] an important first study was made to put
the ideas of Hanahan and Weinberg in a general mathematical framework. The approach used is based
on the Kinetic Theory of Active Particles [4], [5], [6], [7], [8], [9], that has been specifically developed to
model complex systems [10], [11]. Mostly, this approach was initiated by the pioneer paper [12]. According
to KTAP, the overall system is divided into different populations (functional subsystems) each of them
consisting of entities called active particles which collectively express the same function called activity.
The evolution of each functional subsystem is described by a distribution function and the time evolution
of the subsystem is governed by interactions [13].

The model proposed in [3] to describe the competition between cancer cells and immune system is
characterized by 8 functional subsystems. The first four subsystems contain epithelial (subsystem 1) and
cancer cells (subsystems 2,3,4), the other functional subsystems contain cells of the immune system.
Normal epithelial cells can generate daughter cells with the first hallmark of cancer. These newborn cells
can generate, despite the contrast of the immune system, daughter cells with the subsequent hallmarks.
The dynamics of the competition may end up either with the suppression of cancer cells or with their
indefinite growth, with aggregation into tumor structures, characterizing the passage from the microscopic
to the macroscopic scale.

In this paper, a detailed analysis of the model proposed in [3] is made, and a number of simulations
is presented, aiming at investigating how the state of the various functional subsystems evolve in time,
depending on the choice of the free parameters. In several cases the learning action of the immune system
is sufficient to contrast this process. However, for some values of the free parameters present in the model,
tumor cells may continue to grow. The goal of this analysis is to determine the critical values of the free
parameters that characterize the transition to a malignant tumor (black swan).

This paper will be divided into four sections which follow this introduction. Specifically: Section 2,
briefly outlines the paper of Bellouquid, De Angelis and Knopof [3], which is the starting point of this
paper. Section 3 presents a variety of simulations to investigate how the different parameters influence
the dynamical behavior of the system. In Section 4, the results of the previous section will be discussed.

2. Modeling immune-cancer competition

This section provides a concise description of the model proposed by Bellouquid et al. [3]. As it is
known, the cancer is a kind of cellular disorder which allows certain cellular populations to manifest
deviant characteristics. When abnormal cells are recognized by immune cells, a competition starts and
may end up either with the destruction of tumor cells or with the inhibition and depression of the immune
system. To put in a mathematical framework this process, Bellouquid et al. [3] make use of the KTAP,
identifying the following eight different cell populations (functional subsystems).

• i = 1 Normal epithelial cells. It is supposed that the organism is a source of epithelial cells, so
their quantity can be regarded as constant in time;

• i = 2 Cancer cells of the first hallmark that have the ability to thrive in a chronically inflamed
micro-environment;
• i = 3 Cancer cells of the second hallmark, that have the ability to evade the immune recognition;
• i = 4 Cancer cells of the third hallmark that have acquired the ability of suppressing the immune

reaction;
• i = 5 Cells of the innate immune system which have the ability to acquire, by a learning process,

the capacity of contrasting the development of cancer cells of the first hallmark (labeled by i = 2);
• i = 6 Cells of the adaptive immune system which have the ability of contrasting the development

of cancer cells labeled by i = 2;
• i = 7 Cells of the adaptive immune system which have the ability of contrasting the development

of cancer cells labeled by i = 2 and i = 3;
• i = 8 Cells of the adaptive immune system which have the ability of contrasting the development

77



N. M O. Dabnoun, M. S. Mongiovı̀

of cancer cells labeled by i = 2, i = 3 and i = 4.

In this model the activity variable attains values in a discrete set as follows:

u ∈ Iu = {0 = u1, · · · , uj , · · · , um = 1} with uj < uj+1

The overall state of the system is described by the discrete generalized distribution functions fij =
fi(uj , t) = fij(t), i = 1, · · · , 8,j = 1, · · · ,m. The index i labels each subsystem, j labels the activity
variable, and fij(t) represents the number of active particles of the functional subsystem i which have
the state uj at time t. The number density of the i-th population is given by:

(1) ni[f](t) =

m∑
j=1

fij(t), i = 1, · · · , 8

2.1. Dynamics of Cellular Interactions

In the KTAP, the interactions involve three types of particles: test, field and candidate. The interaction
rule is as follows: candidate particles can acquire, in probability, the state of the test particles, after an
interaction with field particles, while test particles lose their state after interactions. The time evolution
of the distribution functions fij can be described with the following system of balance equations:

(2)
dfij(t)

dt
= Cij [f](t) +Mij [f](t) + Pij [f](t)−Dij [f](t)− Lij [f](t)

with Cij , Mij , Pij , Dij and Lij suitable operators acting over the whole set of distribution functions and
f = (fij). Specifically,

• Cij [f](t) is the net flux, at time t ∈ [0, T ], into the state uj of the functional subsystem i, due to
conservative interactions that only modify the micro-state;
• Pij [f](t) is the gain, at time t ∈ [0, T ], into the state uj of the functional subsystem i, due to

proliferative events that occur within the same functional subsystem;

• Mij [f](t) is the gain, at time t ∈ [0, T ], into the state uj of the functional subsystem i, due to
mutation events, where a daughter cell occurs in a subsystem different from that of the mother
cell;
• Dij [f](t) (i = 2, 3, 4) is the loss, at time t ∈ [0, T ], in the state uj of the functional subsystem i,

due to destructive events;
• Lij [f](t) (i = 5, 6, 7, 8) model the natural relaxation (of the immune system) to a given healthy

state.

In general, a different modeling approach has to be considered for cells of the various different functional
subsystems. Briefly, the addends in (2) are modeled as follows:

Cij [f] =
8∑

k=1

m∑
p=1

m∑
q=1

ηik[f ]Bpqik (j)[f] fipfkq − fij
8∑

k=1

m∑
q=1

ηikfkq,(3)

Pij [f] =
8∑

h=1

8∑
k=1

m∑
p=1

m∑
q=1

ηhk[f]Ppq
hk(ij)fhpfkq,(4)

Mij [f] =
8∑

h=1

8∑
k=1

m∑
p=1

m∑
q=1

ηhk[f]Mpq
hk(h=i+1)(ij)fhpfkq,(5)

Dij [f] = fij

8∑
k=1

m∑
q=1

ηik[f]Djq
ikfkq, (i = 2, 3, 4),(6)

Lij [f] = λi(fij − f0ij), (i = 5, 6, 7, 8).(7)

The quantities related to the interaction terms above are defined as follows:
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• ηhk = ηhk[f ](up, u
q) is the encounter rate between the hp candidate-cell, with state up, of the h-th

subsystem and the kq field-cell, with state uq, of the k-th subsystem;
• Bpqik = Bpqik [f ](j) is the probability density that the ip candidate-cell, with state up, of the i-th

subsystem ends up into the state j of the test-cell of the same subsystem after the interaction
with the kq field-cell, with state uq, of the k-th subsystem. Bpqik satisfies, for all i, k ∈ {1, 2, . . . , 8}
and j = 1, ...,m, the following condition:

(8)

8∑
i=1

8∑
k=1

m∑
p=1

m∑
q=1

Bpqik [f ](up → u|up, uq) = 1, ∀up, uq ∈ Du.

• Ppq
hk = Ppq

hk[f ](ij) models the proliferative events, where generation of a daughter cell occurs in
the same subsystem of the mother cell.
• Mpq

hk =Mpq
hk[f ](ij) models the mutations events, where generation of a daughter cell occurs in a

subsystem different from that of the mother cell.
• Dpq

ik = Dpq
ik [f ](ij) models the destruction events. Interactions can induce net destructive events in

the sense that the immune system has the ability to kill a cancer cell.
• λi (i = 5, 6, 7, 8) refer to the natural tendency of the (acquired) immune system to relax to a

given (primitive) state.

2.2. Encounter Rate

An important concept, that is useful in the definition of the encounter rate, is the introduction of
a distance dhk between the cells of the h-th and the k-th functional subsystems. An hypothesis often
used in the KTAP is that the encounter rate depends on the distance between the interacting particles:
ηhk[f ] = ηhk[f](dhk). Different distances can be chosen depending on the system in consideration [10].
Bellouquid et al. [3] assumed that the distance dhk is a functional of the distributions that characterize
the two interacting populations, and defined the encounter rate ηhk[f ] as follows:

(9) ηhk[f ] = η
(0)
hk [f ] dhk[f],

where

dhk[f] =

exp

(
−τ ‖fh − fk‖
‖fh‖+ ‖fk‖

)
, ‖fh‖, ‖fk‖ 6= 0, τ > 0,

0, ‖fh‖ = ‖fk‖ = 0,
(10)

and τ is a positive real constant. The function η
(0)
hk is assumed proportional to h, for epithelial and cancer

cells, (ηh1[f ] = η0h dh1[f], for h = 2, 3, 4, and with η0 > 0), while is assumed constant for the encounters
between immune and cancer cells (ηhk[f ] = η0σ dhk[f], with σ > 0). The dimensionless parameter η0
corresponds to interaction between epithelial cells and cancer cells and can be included in the time scale.
Thus one gets the following matrix expression for the encounter rate:

(11) ηhk =



d11 2d21 3d31 4d41 0 0 0 0
2d21 0 0 0 σd52 σd62 σd72 σd82
3d31 0 0 0 0 σd63 σd73 σd83
4d41 0 0 0 0 0 σd74 σd84

0 σd52 0 0 0 0 0 0
0 σd62 σd63 0 0 0 0 0
0 σd72 σd73 σd74 0 0 0 0
0 σd82 σd83 σd84 0 0 0 0



79



N. M O. Dabnoun, M. S. Mongiovı̀

2.3. Transition Probability Density

Conservative interactions refer to progression phenomena that lead to an increasing activity within
the same subsystem. Thus, they do not modify the size of the populations. The terms Bpqik (j) represent
the probability density that a candidate-cell with state up, of the i-th subsystem ends up into the state
uj of the test-cell of the same subsystem after the interaction with the field-cell, with state uq, of the k-th
subsystem. The function Bpqik (j) has different expressions for the subsystems i = 1, 2, 3, 4 corresponding
to epithelial and cancer cells and the subsystems k = 5, 6, 7, 8 corresponding to immune system cells.
Following Bellouquid et al. [3], we assume the following matrix expression for the transition probability
density:

(12) Bpqik =



Bpq11 1 1 1 0 0 0 0
Bpq21 0 0 0 0 0 0 0
Bpq31 0 0 0 0 0 0 0
Bpq41 0 0 0 0 0 0 0
0 Bpq52 0 0 0 0 0 0
0 Bpq62 0 0 0 0 0 0
0 0 Bpq73 0 0 0 0 0
0 0 0 Bpq84 0 0 0 0


In particular we have:

• Interactions of subsystem h = 1 with subsystems k = 2, 3, 4. In this case, epithelial cells are
assumed to feed progression of cancer cells without changing their own state:

(13) Bpq1k(p) = 1.

• Interactions of subsystems h = 1, 2, 3, 4 with subsystem k = 1. We will assume that the probability
of transition depends on the interacting populations and decrease with the activity state of the
candidate-cell. So we assume the following:

(14) Bpqh1(j) =


α (1− up) , j = p+ 1, α ∈ (0, 1],

1− α (1− up) , j = p,

0 otherwise.

• Interactions of subsystems h = 5, 6, 7, 8 with subsystems k = 2, 3, 4. Immune cells acquire progres-
sively the ability to identify functional subsystems of cancer cells. Thus, we assume:

Bpq52(j) = Bpq62(j) = Bpq73(j) = Bpq84(j) =


α (1− up) , j = p+ 1,

1− α (1− up) , j = p,

0, otherwise.

and α ∈ (0, 1].

2.4. Modeling Proliferative Events

The proliferative events dynamics is modeled as follows: A candidate-cell (mother cell) of subsystem
h with state p, by interacting with a field-cell from subsystem k, with state q, proliferate a daughter
cell of the same subsystem, and with the same activity. Following Bellouquid et al. [3], these events are
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modeled by the following matrix expression:

(16) Phk =



0 0 0 0 0 0 0 0
Ppq
21 0 0 0 0 0 0 0
Ppq
31 0 0 0 0 0 0 0
Ppq
41 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 Ppq

62 0 0 0 0 0 0
0 Ppq

72 P
pq
73 0 0 0 0 0

0 Ppq
82 P

pq
83 P

pq
84 0 0 0 0


In particular we assume the following:

• Proliferation in Cancer Subsystems is related with the encounters with cells of the subsystem
k = 1. In this case, the proliferation increases with the hallmarks of cancer cells. So, we assume:

Ppq
h1(hj) =

{
β1hup, with j = p, β1 > 0,

0, otherwise.
(17)

• Proliferation in immune cells subsystems h = 6, 7, 8. Immune cells proliferate due to the interac-
tions with the cancer cells k = 2, 3, 4, with the following rule:

Ppq
hk(hj) =

{
β2, with j = p, β2 > 0,

0, otherwise.
(18)

2.5. Modeling Mutation Events

Mutation events refer to changing in the genes where a daughter cell occurs in a subsystem different
from that of the mother cell. This event is modeled by the term Mpq

hk(ij), where i = h + 1 with output
into the state j = 1. We will choose for the rate Mpq

hk(ij) the following matrix expression:

(19) Mpq
hk =



Mpq
11 0 0 0 0 0 0 0

Mpq
21 0 0 0 0 0 0 0

Mpq
31 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 Mpq

52 0 0 0 0 0 0
0 0 Mpq

63 0 0 0 0 0
0 0 0 Mpq

74 0 0 0 0
0 0 0 0 0 0 0 0


with the following assumptions [3]:

• Mutations in the cancer subsystems h = 1, 2, 3. These events are related to encounters with cells
of subsystem k = 1. The rate Mpq

h1(ij) is defined as follows:

Mpq
h1(ij) =

{
ε1up, with i = h+ 1, j = 1, ε1 > 0,

0, otherwise.
(20)

• Mutations in immune subsystems h = 5, 6, 7. These are related to an increasing capability of the
immune cells to recognize a specific cancer hallmark k = 2, 3, 4. As in [3], we assume:

Mpq
52(6j) =

{
ε26up, with j = 1, ε26 > 0,

0, otherwise.
(21)
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Mpq
63(7j) =

{
ε27up with j = 1, ε27 > 0

0 otherwise.
(22)

Mpq
74(8j) =

{
ε28up with j = 1, ε28 > 0

0 otherwise.
(23)

2.6. Modeling Destructive Events

The dynamics of the destructive interactions follows the subsequent rules. Only cancer cells can be
destructed because immune cells have the ability to suppress them after they are identified. It is assumed
that this ability increases with increasing activity of immune cells. For the rate Dpq

hk, we assume the
following matrix:

(24) Dpq
hk =



0 0 0 0 0 0 0 0
0 0 0 0 0 Dpq

26 D
pq
27 D

pq
28

0 0 0 0 0 0 Dpq
37 D

pq
38

0 0 0 0 0 0 0 Dpq
48

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


where Dpq

26 = Dpq
27 = Dpq

28 = Dpq
37 = Dpq

38 = Dpq
48 = γuq and γ > 0.

2.7. Modeling the Relaxation Terms

The immune cells in the absence of tumor cells tend to return to their initial state. We will assume
in Equation (7) λi = 0 for i = 2, 3, 4, and λi = λ = constant for i = 6, 7, 8. Thus we have:

Lij [f] = λ(fij − f0ij)(25)

where f0ij refers to the initial value of the distribution fij .

3. Simulations and emerging behaviors

The dynamical equations can be obtained substituting the previous assumptions in the right-hand
side of system (2). They are characterized by 8 × m ordinary differential equations in the unknown
distribution functions fij : R+ → R+, where i = 1, · · · 8, j = 1, · · ·m. The model is characterized by
11 parameters: α, σ, τ, β1, β2, γ, λ, ε1, ε26, ε27, ε28; each one refers to a specific event, in order to clarify
the phenomenon under consideration. In this section, we will make use of simulations for visualize the
behavior of the models, with a detailed quantitative analysis of the role of parameters and of the initial
conditions. Firstly, we will look at the initial value problem related to Equation (2) which can be written
as follows: 

dfij(t)

dt
= Jij [f],

fij(0) = f0ij ,

(26)

where f0ij are the 8×m initial conditions, and

Jij [f](t) = Cij [f](t) +Mij [f](t) + Pij [f](t)−Dij [f](t)− Lij [f](t).

We will make the following assumptions:
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• The discrete microscopic state uj is defined in the interval [0, 1]. We select m = 3, then u = 0
corresponds to the lowest level of activity, while the greatest level corresponds to u = 1, and as
the midpoint we have chosen u = 0.5.
• The dimensionless parameter τ is assumed to be constant and equal to unity for all interacting

pairs.
• In this analysis, we will choose null initial condition except for f01 = (f01j) = (1, 0, 0) and f05 =

(f05j) = (0.2, 0, 0), which refers to absence of cancer cells.
• In the figures, n(4) shows evolution of the number density of cancer cells of the last hallmark
n4 = n41 + n42 + n43 and n(8) shows evolution of the number density of immune cells n8 =
n81 + n82 + n83.

3.1. Numerical analysis

In our analysis, we apply computational methods to obtain simulations through MATLAB program.

• The simulations are developed, starting from the following values of parameters: σ = 0.5, τ = 1,
α = 10−2, λ = 0.02, β1 = 10−3, β2 = 10−1, ε1 = 10−3, ε26 = ε27 = 10−1, and different values
of ε28 = 10−1, 10−2, 10−3, 10−4, that are those which had considered in paper [3]. The results are
shown in the Figure 1. As one sees in the Figure 1, the plots show aperiodic oscillations with
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Figure 1. Plot n(4) and n(8). The two figures are obtained with different values of parameter ε28 and with initial conditions
f01 = (1, 0, 0), f05 = (0.2, 0, 0), at the time t = 10000.

breadth for n(4) in the range [0, 5] and n(8) in the range [0, 1], i.e the number density of cancer
cells of the last hallmark have a definitely oscillating behavior, as the immune cell is not able to
deplete them.
• We first modify the parameters β1 and β2 that characterize the proliferation rate of cancer and

immune system cells of the last hallmark. The best result is shown in Figure 2, it corresponds
to ε1 = 10−3, ε26 = ε27 = 10−1, ε28 = 10−2, α = 10−2, β1 = 10−4 , β2 = 10−1 and λ = 0.02.
Compared with n(4) and n(8) in Figure 1, the plot in Figure 2 shows almost periodic oscillations
with n4 in the range [0, 0.8] and n8 in the range [0, 0.1], with a contraction in the number of
oscillations.
• Now, we continue the analysis by making some changes in the parameter α = 10−2, that charac-

terizes the transition probability density in cancer and immune system cells. The best result is
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Figure 2. Modify β1 and β2. Plot n(4) and n(8), obtained with β1 = 10−4 and β2 = 10−1, with initial conditions f01 =
(1, 0, 0), f05 = (0.2, 0, 0), at the time t = 10000

obtained with α = 10−3 (and again ε1 = 10−3, ε26 = ε27 = 10−1, ε28 = 10−2, λ = 0.02, σ = 0.5,
β1 = 10−4 and β2 = 10−1). The obtained plots are shown in Figure 3. One sees beginning dimin-
ishing oscillations of n4 and n8.
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Figure 3. Modify α. Plot n(4) and n(8), obtained with α = 10−3, with initial conditions f01 = (1, 0, 0), f05 = (0.2, 0, 0), at
the time t = 10000.

• Then we modify the parameter σ characterizing the encounter rate between immune and cancer
cells. We found that the best values of σ are in the interval [0.5, 1] where there are no much
differences among themselves.
In Figure 4, we show the plots obtained when σ = 0.9, α = 10−3, ε1 = 10−3, ε26 = ε27 = 10−2,
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ε28 = 10−2, λ = 0.02, β1 = 10−4 and β2 = 10−1.
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Figure 4. Modify σ. Plot n(4) and n(8), obtained with σ = 0.9, and with initial conditions f01 = (1, 0, 0), f05 = (0.2, 0, 0),
at the time t = 10000.

• Finally, we modify the parameter λ, characterizing the relaxation terms in the immune system
cells. The best value for the parameter λ is obtained when λ = 0.01 and again α = 10−3,
β1 = 10−4, β2 = 10−1, σ = 0.9, ε1 = 10−3 ε28 = 10−2, ε26 = ε27 = 10−1.
The plot of n4 and n8 are shown in Figure 5. One sees that, immune system cells are always
present, that are able to kill cancer cells. Thus, they suppress them as soon as they appear.
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Figure 5. Modify λ. Plot n(4) and n(8), obtained with λ = 0.01, and with initial conditions f01 = (1, 0, 0), f05 = (0.2, 0, 0),
at the time t = 10000.

After the satisfactory results that are shown in Figure 5, we have compared them with the result
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obtained by choosing different initial conditions. We have compared the previous results (initial conditions
f01 = (f01j) = (1, 0, 0) and f05 = (f05j) = (0.2, 0, 0)) with the conditions f01 = (f01j) = (1, 0, 0) and

f05 = (f05j) = (0.1, 0.05, 0.05), and with the initial conditions f01 = (f01j) = (0.4, 0.3, 0.3) and f05 = (f05j) =
(0.4, 0.3, 0.3). The plots are shown in Figure 6. As one sees the values of the parameters we have found
lead to a complete suppression of the cancer cells, also when the initial conditions are modified.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

t

n
(4
)

 

 

f 0
1 = (1, 0, 0), f 0

5 = (0.2, 0, 0)

f 0
1 = (0.4, 0.3, 0.3), f 0

5 = (0.4, 0.3, 0.3)

f 0
1 = (1, 0, 0), f 0

5 = (0.1, 0.05, 0.05)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

t

n
(8
)

 

 

f 0
1 = (1, 0, 0), f 0

5 = (0.2, 0, 0)

f 0
1 = (0.4, 0.3, 0.3), f 0

5 = (0.4, 0.3, 0.3)

f 0
1 = (1, 0, 0), f 0

5 = (0.1, 0.05, 0.05)

Figure 6. Modify the initial conditions. Plot n(4) and n(8) obtained varying the initial conditions.

On the other hand, it is encouraging to see the competition between the evolution of n2 and n3 with
the development in n6 and n7, which will be shown in Figures 7 and 8.
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Figure 7. Plot of n(2) and n(6), with initial conditions f01 = (1, 0, 0), f05 = (0.2, 0, 0), at the time t = 10000.
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Figure 8. Plot n(3) and n(7), with initial conditions f01 = (1, 0, 0), f05 = (0.2, 0, 0), at the time t = 10000.

3.2. Some more simulations

The results we have obtained showed that the immune system is able to suppress cancer cells by
selecting the parameters α = 10−3, β1 = 10−4, β2 = 10−1, σ = 0.9, λ = 0.01, ε1 = 10−3, ε28 = 10−2,
ε26 = ε27 = 10−1. We complete our analysis going back to make some changes on these final values for
some of the free parameters with the aim to observe the effect of these changes on the behavior of the
system.

λ = 10−2 is the last parameter we have modified and played an active role in stability of the behavior
of the system as shown in Figure 5. We will see the effects of selecting larger and smaller values than
10−2 on the behavior of the system. The results obtained are illustrated in Figure 9. One observes that
the behavior of the system began to change for λ = 0.016. More precisely, for values of λ ≤ 0.016 the
immune cell population remains in its active state unlike cancer cells that tend to decay to 0, instead
λ ≥ 0.016 leads to growing of the number of cancer cells which starts to oscillate dramatically.

Consider now the parameter σ. In the previous section, we have selected σ = 0.9. Now we shall see the
effect of smaller values on the system behavior, choosing σ = 0.2 and σ = 0.3, and comparing this with
σ = 0.5 and σ = 0.9. The results are in Fig. 10. One sees persistent oscillations of tumor and immune
cells when σ = 0.3 and σ = 0.2 (values less than 0.5). We deduce that, the critical value of σ is 0.5.

Consider now the parameters that are responsible of the mutations both in the immune system and in
cancer cells, ε26 = ε27 = 10−1 and ε28 = 10−2 are the selected values for the parameters that characterize
the rate of mutations in the immune system. We made some changes in these parameters to determine
the effect of the change on the behavior of the system, see Fig. 11.

One observes that immune system is able to suppress completely the cancer cells in all cases considered.
This means that the rate of mutation in the immune system is not very significant in the suppression of
cancer cells. This is an unexpected result.

ε1 = 10−3: Now we test the effect of change in ε1 (that characterizes the rate of mutation in the
cancer cell population) on the behavior of the system by selecting values smaller and greater than 10−3.
The results are illustrated in Fig. 12.

One notes that the immune system is not able to suppress cancer cells for ε1 = 10−4 and ε1 = 10−5,
i.e. when the rate of mutations in the cancer cells is very small. This result deserves some considerations.
Why immune system is incapable to suppress definitely the cancer cells when they have a very little rate
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Figure 9. Modify λ = 10−2. Plot n(4) and n(8), obtained with different values of λ, and with initial conditions f01 = (1, 0, 0),
f05 = (0.2, 0, 0), at the time t = 50000.
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Figure 10. Modify σ = 0.9. Plot n(4) and n(8), obtained with σ = 0.2, 0.3, 0.5, 0.9, and with an initial condition f01 =
(1, 0, 0), f05 = (0.2, 0, 0), at the time t = 10000.

of mutation? A possible explanation is the following: The immune system is not sufficiently activated to
recognize the cancer cells. So, they have time to re-grow as shown in the plots in figure 12. This could
be due to the fact that in this situation the immune system relaxes too quickly to recognize malignant
cancer cells.
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Figure 11. Modify ε26, ε27, ε28. Plot n(4) of n(4) and n(8), obtained with ε26 = ε27 = ε28 = 10−1, 10−2, 10−3, 10−4, and
with initial conditions f01 = (1, 0, 0), f05 = (0.2, 0, 0), at the time t = 10000.
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Figure 12. Modify ε1. Plot n(4) and n(8), obtained with different values of ε1, and with an initial condition f01 = (1, 0, 0),
f05 = (0.2, 0, 0), at the time t = 50000.

4. Discussion of the results and concluding remarks

In this work, we have followed the paper of Bellouquid, De Angelis and Knopoff [3], where a model
describing immune-cancer competition was proposed.

A variety of calculations and simulations have been made to put in evidence how the state of the
functional subsystems develops in the time, thus, determining critical values of the free parameters that
allow the suppression of cancer cells. The model is characterized by 11 parameters, and we have seen
that each one of them plays a role in the modeling process, and have a significant effect on the behavior
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of the system.
Some results deserve more attention. First, the parameters ε26, ε27 and ε28, that characterize the rate

of production of mutated cells in the immune system do not have a significant meaning in the depletion
of cancer cells. Indeed, simulations made with four different orders of magnitude of these parameters
(from 10−1 to 10−4) do not produce significant modifications of the behaviour of the system and furnish
equivalent results. Second, the parameter ε1, that characterizes the rate of mutation in the cancer cell
population, contrary to what we expected, presents a critical lower bound at εc1 = 10−3.

Instead, our simulations show that in the competition between cancer and immune system other
parameters played an important role, as coefficients β1 and β2, that characterize the rate of production of
cells in the same population. One of the most important parameters seems to be λ, that is the parameter
that characterizes the relaxation time of the immune system. We have found as the upper limit for it
λc = 0.016.

Naturally, the model studied in this paper does not describe phenomena as the angiogenesis, the tissue
invasion and metastasis. However, the results of our simulation show that the importance of the immune
system in the competition with cancer cells cannot be underestimated. This result is in agreement with
recent medical researches that show the importance of the immune system in the therapy of malignant
tumor [14].
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