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Abstract

Updating preconditioners for the solution of sequences of large and sparse saddle-

point linear systems via Krylov methods has received increasing attention in the last few

years, because it allows to reduce the cost of preconditioning while keeping the efficiency

of the overall solution process. This paper provides a short survey of the two approaches

proposed in the literature for this problem: updating the factors of a preconditioner

available in a block LDLT form, and updating a preconditioner via a limited-memory

technique inspired by quasi-Newton methods.
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1. Introduction

We provide a short presentation of recent research on preconditioning
sequences of large and sparse saddle-point linear systems of the form

(1) Mixi = bi, Mi =

[
Hi AT

A −Ci

]
, i = 1, . . . , `,

where Hi ∈ Rn×n and Ci ∈ Rm×m, with m ≤ n, are symmetric and posi-
tive semidefinite, and Mi ∈ R(n+m)×(n+m) is nonsingular. These sequences
appear, e.g., in interior-point methods for quadratic programming and in
Lagrangian approaches for the solution of PDE problems, with applications
to optimal control, elasticity, polycrystalline aggregates, etc. [1–5].
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We focus on the efficient solution of sequence (1) by preconditioned
Krylov subspace methods. Preconditioning a single linear system of the se-
quence is a deeply investigated topic (see, e.g., [1,6,7]), but the computation
from scratch of a preconditioner for each linear system may be very expen-
sive in a large-scale setting. On the other hand, given a preconditioner for
some matrix Mi, performing a low-cost update of it for preconditioning
a subsequent matrix of the sequence, Mj , has received attention only in
the last few years and offers new perspectives in the iterative solution of
saddle-point systems. An efficient preconditioning procedure for the whole
sequence (1) is expected to build preconditioners which are less effective
than those computed from scratch in terms of linear iterations, but more
convenient in terms of computational cost for the overall solution process.

To the best of our knowledge, two approaches have been proposed for
updating preconditioners for sequence (1). One of the approaches, presented
in Section 2, has been developed for updating constraint preconditioners,
i.e., preconditioners of the form

Pc
i =

[
Gi AT

A −Ci

]
,

where Gi is a symmetric positive definite approximation to Hi [1,6].a This
approach assumes that Pc

i is available in a suitable factorized form for a
matrix Mi of the sequence, and then builds preconditioners for the subse-
quent matrices Mj , with j > i, through low-rank corrections of the Schur
complement of the (1,1) block of Pc

i [8,9]. The other approach, presented in
Section 3, consists in updating a preconditioner available forMi by means
of a small number of independent vectors, usually gathered during the ap-
plication of a Krylov solver toMixi = bi or to a subsequent matrix. It has
been applied to constraint preconditioners, to block diagonal and triangular
preconditioners, i.e., preconditioners of the form

Pd
i =

[
Fi 0
0 Wi

]
, Pt

i =

[
Fi κAT

0 −Wi

]
,

where Fi and Wi are suitable symmetric positive definite matrices and κ is a
scalar [6,7], and to sparse approximate factorizations ofMi. This updating
technique is inspired by limited-memory quasi-Newton methods and the
resulting preconditioners are called limited-memory preconditioners [2,4,
10,11]. The reader is referred to [1,6,7] for details on the blocks of Pc

i , Pd
i

and Pt
i and the spectral properties of the preconditioned matrices.

aActually, the assumption of positive definiteness of Gi can be relaxed; for example,
when C = 0, Gi is required to be positive definite only in the nullspace of A (see [1,6] for
details).
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2. Updating constraint preconditioners via low-rank corrections
of the Schur complement

We focus on the update of a constraint preconditioner Pc
i where the

(1,1) block is defined as Gi = diag(Hi). This is a common choice when se-
quence (1) comes from interior point methods for quadratic programming,
where Hi is positive definite (see, e.g., [1]). In order to enhance readability,
we denote by Pc

seed the seed preconditioner Pc
i , i.e., the preconditioner that

has to be updated, and by Mseed the corresponding matrix Mi; further-
more, for j > i, we remove the index j from any matrix associated with the
jth system of the sequence.

The procedure proposed in [8] assumes that a seed constraint precondi-
tioner is available for Mseed in the following factorized form:

Pc
seed =

[
I 0

AG−1
seed I

] [
Gseed 0

0 −Sseed

] [
I G−1

seedA
T

0 I

]
,

where I denotes the identity matrix of any appropriate size and Sseed is
the negative Schur complement of the (1,1) block in Pc

seed. A Cholesky
factorization of Sseed is also assumed to be available:

(2) Sseed = AG−1
seedA

T + Cseed = LDLT .

The updating procedure builds a preconditioner Plr for M in the form

Plr =

[
I 0

AG−1 I

] [
G 0
0 −Slr

] [
I G−1AT

0 I

]
,

where Slr is a low-rank update of Sseed aimed at providing a suitable ap-
proximation to the Schur complement S = AG−1AT + C of Pc.

It can be shown that the real and imaginary parts of the eigenval-
ues of the P−1

lr M can be bound essentially in terms of the minimum and
maximum eigenvalues of S−1

lr S and other quantities depending on how G
approximates H (see [8, Theorem 2.1]). The update of Slr is driven by the
spectral properties of the preconditioned matrix.

We briefly illustrate how Slr is defined for the case Cseed = C = 0. Slr
takes the following form:

(3) Slr = Sseed + ĀK̄ĀT = A(G−1
seed +K)AT ,

where K ∈ Rn×n is a diagonal matrix with q � n nonzero entries (K)jj on
the diagonal, K̄ ∈ Rq×q is the principal submatrix of K containing these
nonzero entries, Ā ∈ Rm×q is made of the corresponding q columns of A,
and G−1

seed +K accounts for major changes from Gseed to G. As mentioned
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above, the eigenvalue distribution of P−1
lr M depends on the minimum and

maximum eigenvalues of S−1
lr S, which are, in turn, bounded respectively

by the minimum and maximum values of the ratios (G−1
seed + K)−1

jj /(G)jj .
Hence, the q nonzero entries (K)jj are defined by selecting the indices j
corresponding to the q1 smallest and the q2 largest ratios (Gseed)jj/(G)jj ,
with q1 + q2 = q, and setting (K)jj = (G−1)jj − (G−1

seed)jj . This choice
provides bounds on the eigenvalues of S−1

lr S that are between the bounds
obtained by setting Slr = Sseed, i.e., reusing the preconditioner P c

seed for
M, and those obtained by setting Slr = S, i.e., computing Pc from scratch
(see [8] for details). The low-rank update (3) is performed by updating
the Cholesky factorization (2). Although the value of q must be small for
limiting the cost of the factorization update, the preconditioning strategy
is efficient because of the effect of tightening the eigenvalue bounds, espe-
cially when the q selected ratios (Gseed)jj/Gjj are well separated from the
remaining ones. Numerical experience shows that in general the quality of
the updated preconditioner deteriorates as the distance between M and
Mseed increases, and that periodically recomputing Pseed from scratch is
beneficial for the overall performance of the updating strategy [8].

The previous technique can be easily extended to the case where Cseed 6=
0, C 6= 0 and the positions of the nonzero entries of Cseed and C are the
same [8]. Furthermore, an improvement of the updating strategy is proposed
in [9] for this case. Here the low-rank correction of the Schur complement
is enriched by performing a further update of Slr, which takes into account
information not included in the first update and expressed as Slr + D,
where D is a diagonal positive definite matrix. The procedure proposed
in [12] is applied to obtain a cheap approximation of the LDLT factorization
of Slr + D, starting from the factorization of Slr. Theoretical results and
numerical experiments show that the new strategy can be more effective
than the procedure based on the low-rank modification alone [9].

Finally, we observe that the previous updating techniques can be ap-
plied starting from an inexact Cholesky factorization of Sseed, including
approximate factorization techniques applicable when the Schur comple-
ment is not explicitly available, but matrix-vector products involving it
are computable (see, e.g., [13,14]). However, preliminary experiments have
shown that starting from inexact factorizations may significantly reduce the
robustness of the overall updating procedure [9].

3. Limited memory preconditioning techniques

Limited Memory Preconditioners (LMPs) are based on the idea of im-
proving a first-level preconditioner, henceforth referred to as seed precon-
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ditioner, with a technique inspired by limited-memory quasi-Newton meth-
ods [15]. Initially developed for symmetric positive definite matrices [10,11],
LMPs have been extended to saddle-point and to general indefinite matri-
ces, and have been used in different applications, either to improve a pre-
conditioner for a single system or to obtain preconditioners for sequences
of linear systems with fixed or varying matrices [2,4,16].

Here we focus on LMPs for sequence (1) and adopt the same nota-
tion as in Section 2, with the difference that Pseed and P denote inverse
preconditioners, i.e., approximations to M−1

seed and M−1, respectively.
Given a symmetric seed preconditioner Pseed, a LMP preconditioner for

a matrix M can be defined as

(4) Plmp = (I − TM)Pseed (I −MT ) + T , T = S (STMS)−1ST ,

where S ∈ R(n+m)×q, q � n+m, is a suitable matrix such that STMS is
nonsingular [16].b When Pseed is nonsymmetric, the LMP can be defined as

P̃lmp = (I −H T̃ HT ) + T̃ HT , T̃ = S (STHTHS)−1ST ,

where H is the preconditioned matrix PseedM [4]. Note that the choice of
a small value for q is driven by the computational cost of computing and
applying STMS or STHTHS. Details on this issue are given in [2,11,16].

Any LMP ensures that the preconditioned saddle-point matrix has at
least q eigenvalues equal to 1. Furthermore, the eigenvalues of the precondi-
tioned matrix enjoy a nonexpansion property with respect to the eigenvalues
of PseedM, provided that the columns of S are the result of projections onto
the invariant subspaces associated with the eigenvalues of PseedM in the
open right half-plane and in the open left one. The columns of S can been
chosen in different ways: they can be linearly independent vectors gener-
ated during the application of a Krylov solver to the current system or to
a previous system of the sequence, as well as eigenvectors or Ritz vectors
associated with the current or a previous system.

In [16] the LMP update (4) is applied to constraint preconditioners
for sequences of saddle-point systems with trailing block Ci = 0 that
arise from interior point methods for quadratic programming. In this case,
S = [ST

1 ST
2 ]T , where S1 ∈ Rn×q is full rank and AS1 = 0. In practice,

these properties are satisfied by choosing the columns of S as suitably nor-
malized conjugate gradient (CG) directions, computed by performing q CG
iterations on the previous system of the sequence or on the current one,

bThe definition given in [2] is equivalent to (4) if Pseed is symmetric positive defi-
nite and the preconditioners are applied as split preconditioners by using their Cholesky
factorizations.
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using an available constraint preconditioner. The updated preconditioner
is still a constraint preconditioner, has an eigenvalue at 1 with multiplicity
at least 2m + q and enjoys the aforementioned nonexpansion property of
the eigenvalues. Pseed is periodically recomputed to keep the effectiveness
of the updated preconditioner.

In [2,4] updates are used to precondition sequences of saddle-point lin-
ear systems arising in structural mechanics applications. The saddle-point
matrices are either constant or varying through the sequence, with Ci = 0 in
both cases. Augmented block-diagonal and block-triangular precondition-
ers, as well as preconditioners resulting from sparse factorizations of filtered
saddle-point matrices, are used as seed preconditioners. The motivation for
choosing augmented preconditioners is the high nullity of the leading block
Hi of the saddle-point matrices. A fixed S is generally used throughout the
sequence; its columns are suitable Ritz vectors of the matrix of the first
linear system M1x1 = b1, recovered during the solution of that system
by GMRES(`). However, if the number of GMRES iterations increases too
much, recomputing Pseed and S from the current system is beneficial [4].

For completeness we report that limited-memory techniques are also
used to update preconditioners for sequences of saddle-point systems with
varying off-diagonal blocks, arising in data assimilation [5]. In this case,
computations with the off-diagonal blocks are expensive; hence, given a seed
inexact constraint preconditioner with approximated off-diagonal blocks,
updated preconditioners are obtained by applying to these blocks quasi-
Newton techniques satisfying suitable secant and least-change properties.
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