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Heat rectification in He II counterflow in radial geometries
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1Unità di Ricerca INdAM, Università degli Studi di Palermo,
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Abstract

We consider heat rectification in radial flows of turbulent helium II, where heat flux is not described by Fourier’s law,
but by a more general law. This is different from previous analyses of heat rectification, based on such law. In our simplified
analysis we show that the coupling between heat flux and the gradient of vortex line density plays a decisive role in such
rectification. Such rectification will be low at low and high values of the heat rate, but it may exhibit a very high value at an
intermediate value of the heat rate. In particular, for a given range of values for the incoming heat flow, the outgoing heat
flow corresponding to the exchange of internal and external temperatures would be very small. This would imply difficulties
in heat removal in a given range of temperature gradients.
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1. Introduction

Heat rectification has become a very active topic of research in the so-called phononics [1–4]. The
phenomenon of rectification consists of a difference in the value of the heat flux when a same temperature
gradient, but in opposite directions, is imposed on a system. This phenomenon is observed in inhomoge-
neous systems (inhomogeneities of composition or of geometry), and it is characterized by the value of
the rectification coefficient R ≡ qR/qD (with qD and qR the respective absolute values of the heat flux in
two opposite directions, usually called direct and reverse directions). Alternatively, it may manifest itself
as a different temperature gradient for the same absolute value of the heat flux for opposite directions of
the flux. Thermal rectification has been studied in many systems [5–16], but we are not aware of similar
analyses in superfluid helium (He II), which is known to have a very peculiar behaviour in heat transfer.

Helium II has a very interesting behaviour, due to its quantum nature. The most remarkable aspects
are its vanishingly small viscosity, and its extremely high thermal conductivity, several order of magnitude
larger than high-conductivity liquids or solids. Further, He II is unable to boil and temperature waves can
propagate in it. One of the most typical effects in liquid helium II is the so-called counterflow superfluid
turbulence, whose physical picture is a tangle of vortices of equal circulation κ = h/m, with h the Planck
constant and m the mass of helium atom [17]. This kind of turbulence is generated thermally, applying
a heat flux, exceeding a critical value qc [18–20].

In usual materials and for a given value of heat flux, the temperature distribution is obtained by
integrating Fourier’s law

(1) q(z) = −λ[T (z), X(z)]
dT

dz

where q(z) is the heat flux, λ the thermal conductivity, T the temperature, and X may be a composition
of geometry parameters which changes along the length of the system, whose position along it is described
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by the value of z. In one–dimensional problems and in steady state Q̇(z) is constant, with Q̇(z) being
the total heat flow across the system at position z, namely Q̇(z) = q(z)A(z), with A(z) the transverse
area at position z. If λ depends only on T , no rectification is found, but if it depends also on some other
variable, rectification may be achieved in principle.

The interest of exploring heat rectification in superfluid He II goes beyond a relatively trivial extension
of previous works because, in difference to solids, the behaviour of heat transport in He II is much richer
and complex. In particular, heat flux does not follow Fourier’s law (1), but more complicated expressions
which will be commented in Section 2. Further, in this quantum fluid a new type of turbulence takes place,
the so-called counterflow superfluid turbulence, that is due to the formation of quantized vortex lines in
the superfluid. The simplest way to describe the vortex tangle is in terms of a single scalar quantity L,
the total length of vortex lines per unit volume (vortex line density, for short). There are different kinds
of turbulence, depending on the intensity of the heat flux and on the form and dimension of the channel.
As illustrated in [21] the presence of a superfluid vortex tangle modifies the effective heat conductivity
of this fluid. This suggests to explore the possibility of rectification in heat transport in tubes filled with
turbulent superfluid helium.

A new aspect of our analysis is the cylindrical geometry with radial heat flux, in contrast to usual
analyses related to heat flow along a channel. After presenting in Section 2 the starting equation for our
analysis, describing the heat flux in He II, which was derived in previous papers, in Section 3 we apply
it for the first time to the study of heat rectification. In the concluding remarks we discuss the several
contributions to the rectification.

2. Heat transport in laminar and turbulent He II.

Heat transport in superfluid He II is not described by Fourier’s law but it requires a much more
general law, considering the long relaxation time τ1 of the heat flux q (first term of Equation (2)),
nonlocal effects (fourth term of Equation (2)) related to the long coherent length of the superfluid (a
macroscopic quantum coherence), and nonlinear effects (third term and last term of Equation (2)) related
to quantized vortices forming a turbulent tangle of lines described by the vortex length per unit volume
L [22–24]. Such generalized equation takes the form [24,25]:

(2)
1

ζ

dq

dt
+∇T +

χ

ζ
∇L− β̃2T 3∇2q = − 1

λ1
q− KL

ζ
q

where β̃ = −1/(ST 2), with S the entropy per unit volume and T the absolute temperature, ζ = λ1/τ1,
with λ1 the intrinsic thermal conductivity of the superfluid, and τ1 the relaxation time of the heat flux,
χ a coupling parameter between q and ∇L, and K the mutual friction coefficient between the vortex
lines and the heat carriers, mainly phonons and rotons, through their corresponding collisions. Equations
like (2) may be analyzed in general by using extended thermodynamics [26–28] and have been applied
to the description of heat transport in several concrete situations [21,29,30]. A detailed discussion on
the sign of coefficient χ was made in [22]. We have seen that both thermodynamical considerations and
diffusion effects lead to χ < 0. Note that Equation (2) would reduce to Fourier’s law (1) if the terms in
L, in τ1 and in β disappear.

The coefficients λ1 and τ1 are very high, but the ratio ζ = λ1/τ1 is finite, and it is related to the speed
of the second sound through V 2

2 = ζ
ρcV

(of the order of 20 m/s at 1.5 K [18]), with ρ the mass density
and cV the specific heat per unit mass [26,27]. L is the vortex line density of the quantized vortex tangle
which is formed when the heat flux exceeds some critical values, and it must be described by means of
its own evolution equation. The term q/λ1 in Equation (2) may usually be neglected as compared to
(β2T 3∇2q) and to (KL/ζ)q. Indeed, in a cylindrical channel of radius R the first of these two latter
terms is of the order of (S2TR2)−1q; the inequality λ1 � S2TR2 is widely satisfied at low T and small
R; furthermore, referring to the friction term, λ1 � ζ/(KL) for sufficiently high values of L.
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For inhomogeneous systems we have for the evolution equation of L [19,20,24].

(3)
dL

dt
= −βκL2 +

[
α0Vns − ω′

βκ

d

]
L3/2 +D∇2L

where κ = h/m is the quantum of circulation (9.9 ∗ 10−8 m2/s), β, α0 and ω′ parameters depending on
T , with β (of the order of 0.16 at 1.5 K [31]) and α0 (of the order of 3.2 ∗ 10−8 at 1.5 K [32]) describing
the rate of vortex destruction and vortex generation per unit volume, and ω′ describing the influence
of the walls on the vortex generation and d the channel diameter. D is the vortex diffusion coefficient
describing the flow of vortex lines from zones of higher L to zones of lower L, and whose value is of the
order of κ (times a numerical factor between 1 and 5), depending on temperature, but which is not yet
known in detail. According to [33] D = 2.2κ cm2/s at T = 1.5K. In Equation (3), wall effects are simply
described by the term in κ/d in the right hand side. However, more detailed recent analyses indicate the
rich and complex behaviour of the superfluid in boundary layers close to the walls [34,35].

Vns = | < vn − vs > | = |q|/(ρssT ) is the so-called counterflow velocity (here |q| is the modulus of
the heat flux), and vn and vs are normal fluid and superfluid velocity, ρs is the density of the superfluid
component and s the specific entropy [24]. For ω′ = 0 and D = 0 Equation (3) reduces to the usual Vinen
equation [19,20,36], which describes fully developed turbulence in homogeneous wide channels.

For small enough Vns the flow is laminar (L = 0). For quantum Reynolds number Rey ≡ Vnsd
κ such

that Rey ≥ α0
ω′β in (3), the L = 0 solution becomes unstable and turbulence TI appears (a mild form of

turbulence with relatively low vortex line density). This happens for Rey ≡ Vnsd
κ ≥ 127 (T = 1.5 K) or

96 (T = 1.7 K). For Rey ≡ Vnsd
κ ≥ 219 (T = 1.5 K) or 186 (T = 1.7 K), appears TII turbulence, namely

a stronger form of turbulence, with considerably higher values of L. The stable solution of (3) becomes:

(4) L1/2d =
α0

β
Rey − ω′

thus yielding L 6= 0, and increasing with Rey = |q|d
(ρssT )κ

. Note that expression (4) for L is valid both in the

TI and in the TII regimes, but with different values of α0 and ω′ [21,22]. In our analysis in Section 3 we
will assume high values of Rey, so that ω′ will be neglected. In wide channels may yet appear an additional
form of turbulence, dubbed as TIII turbulence, in high–aspect ratio channels with an accumulation of
vortices, which cannot be fully grasped by the present simple approximation.

When these results are introduced in (2), one obtains equations relating q to ∇T , ∇L and L, which
are strongly nonlinear and considerably different from Fourier’s law.

3. Heat rectification in radial turbulent flow.

Normally, heat flow in He II is considered in longitudinal tubes with constant cross section. However,
we have also focused a part of our analyses in inhomogeneous situations where L changes with posi-
tion [37]. An especially, relevant and simple situation is that of cylindrical radial flows [29,30,37], which
is relevant, for instance, in the cooling of cylindrical systems through superfluid helium.

In a previous paper on inhomogeneous vortex tangles [30] we considered a radial counterflow from
a cylindrical wall of radius R0 at temperature T0 to another concentric cylinder of radius R1 > R0

at temperature T1 < T0, or viceversa. In this situation, the behavior of L is no longer homogeneous
because it depends on the radial distance r to the central axis. The origin of inhomogeneity of vortex
line density is the inhomogeneity of the heat flux itself according to (4). Because of the geometry of
the flow, the heat flux is maximum near the center and decreases towards the external wall, as the
total heat flow Q̇ is constant. The source of vortices is everywhere (corresponding to the source term
of the local Vinen’s equation), but more intense in the inner region. In particular, in [30] we found
the possibility of hysteresis, namely, a different behaviour of q for increasing and decreasing (in time)
radial temperature gradients. Here we consider steady–state situations and compare the behaviour of the
system for outwards and inwards temperature gradients (or heat flows), instead of the behaviour for time
increasing and decreasing temperature gradients.
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Figure 1. The heat flux q can flow from the inner cylinder at temperature T0 to the outer cylinder at lower temperature
T1, or viceversa, if the temperatures T0 and T1 of the inner and outer cylinders are mutually exchanged. Heat rectification
means that the corresponding inwards and outwards heat flows have different absolute values.

In the steady case the heat flux goes from one to the other cylinder as the inverse of the radius

r, namely qr ≡ Q̇
2πr , with Q̇ being the total heat flowing radially per unit time and unit length of the

cylinder; then the vortex line density also depends on r, because the source of vortices is related to the
heat flux. Note that here we have assumed q = qrr̂. The form qr ∼ r−1 comes from the steady–state
condition ∇ · q = 0, applied to cylindrical geometry.

If we consider the heat flux going from the inner cylinder to the outer we have Q̇ > 0, qr > 0 and
dqr
dr < 0, (viceversa if the heat flux goes from the external cylinder to the inner we have Q̇ < 0, qr < 0

and d|qr|
dr < 0).

The heat transport Equation (2) in steady-state after neglecting the term q/λ1, and recalling that χ
is a negative coefficient [22], reduces to:

(5)
∂T

∂r
=
|χ|
ζ

∂L

∂r
− K

ζ
L
Q̇

2πr
+
l2

r

∂

∂r

[
r
∂qr
∂r

]
with l2 ≡ β̃2T 3.

Neglecting ω′ in (4) (or, equivalently, assuming that Rey is high enough, as in well developed TII

turbulent regime), the expression for the vortex line density is L = γ′2 Q̇
2

r2
, with γ′ = α0/(4π

2β). Then we
obtain

(6)
∂T

∂r
= − 1

r3

[
2
|χ|
ζ
γ′2Q̇2 +

K

ζ
γ′2

Q̇3

2π
− l2 Q̇

2π

]
.

If one neglects for simplicity the temperature dependence of χ, ζ, γ′ and K, and one considers a
steady–state situation with Q̇ constant in time, Equation (6) may be written as ∂T

∂r = − α
r3

, with α the
corresponding quantity in parentheses in the right–hand side of (6). By integrating (6) we obtain:

(7) T (R1)− T (R0) =
α

2

[
1

R2
1

− 1

R2
0

]
.

If we consider the same total absolute value of heat flux |Q̇| but in opposite directions we obtain
different values of the temperature gradient, i. e. for the difference T (R1)− T (R0).

An interesting consequence of this kind of flow is heat rectification, i. e. the value Q̇out of the outwards
heat flow for T0 = T (R0), T1 = T (R1) may be compared with the value Q̇in when the temperatures T0,
T1 are applied to the outer and the inner cylinders, respectively.
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• For Q̇ > 0 (outgoing flux) we have:

(8) T (R1)− T (R0) =
αout

2

[
1

R2
1

− 1

R2
0

]
with T (R1) < T (R0), and

αout = K
ζ
γ′2

2π |Q̇out|
3 + 2 |χ|ζ γ

′2|Q̇out|2 − l2

2π |Q̇out|.

• For Q̇ < 0 (ingoing flux) we have:

(9) T (R1)− T (R0) =
αin
2

[
1

R2
1

− 1

R2
0

]
with T (R1) > T (R0), and

αin = −K
ζ
γ′2

2π |Q̇in|
3 + 2 |χ|ζ γ

′2|Q̇in|2 + l2

2π |Q̇in|

Note that the signs of the terms in odd powers of |Q̇| have been changed, in difference to the sign of
the term in |Q̇|2.

For a same absolute value of Q̇, i.e. for |Q̇out| = |Q̇in| = |Q̇|, the effective temperature gradients
(T (R1)− T (R0)) /(R1 −R0) in the outward direction and in the inner direction are related as:

(10)
(T (R1)− T (R0))out /(R1 −R0)

(T (R1)− T (R0))in /(R1 −R0)
= −K|Q̇|

2γ′2 + 4π|χ|γ′2|Q̇| − l2ζ
K|Q̇|2γ′2 − 4π|χ|γ′2|Q̇| − l2ζ

.

This result is obtained by taking the ratio of (8) and (9), and taking into account that the ratio of
(∂T/∂R)out
(∂T/∂R)in

is the same as the ratio of (∂T/∂(1/R2))out
(∂T/∂(1/R2))in

, and considering small the difference (R1 −R0).

Note that when χ = 0, the second member of (10) becomes −1, which corresponds indeed to the
mutual exchange of the values of T (R1) and T (R0) in the inner and outward situations.

According to (10), the absolute value of the quantity (∂T/∂R)out
(∂T/∂R)in

is close to 1 when Q̇ is zero or ∞,

instead it has very high values (in fact, it diverges) when the denominator is zero. Then, it is seen that
rectification disappears for very high or very small values of |Q̇|, but that it may be very high for |Q̇|
close to:

(11) |Q̇∗| = 2π|χ|
K

[√
1 +

l2ζK

4π2χ2γ′2
+ 1

]

For high values of |Q̇| expression (10) may be approximated as:

(12)
(∂T/∂R)out
(∂T/∂R)in

= −
[
1 +

8π|χ|
K

1

|Q̇|

]
.

The limit of small values of |Q̇| may also be mathematically considered, but if |Q̇| is too small the system
will be in laminar state, without quantized vortices. Since here we are paying special attention to the
influence of vortices, we will not consider this limit.

It would also be possible to obtain the more usual rectification coefficient R ≡ |Q̇out|/|Q̇in| (note that
this definition is more suitable than qR/qD for inhomogeneous flows) by imposing a same temperature
gradient in modulus |∂T/∂r| but going outwards and inwards.

In this way, if we impose that
(T (R1)−T (R0))out/(R1−R0)
(T (R1)−T (R0))in/(R1−R0)

= −1, i.e., from (8) and (9), αout = −αin, we
get

K

ζ

γ′2

2π
|Q̇out|3 + 2

|χ|
ζ
γ′2|Q̇out|2 −

l2

2π
|Q̇out| =

K

ζ

γ′2

2π
|Q̇in|3 − 2

|χ|
ζ
γ′2|Q̇in|2 −

l2

2π
|Q̇in|.(13)
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For a given |Q̇out| this equation yields the corresponding |Q̇in| and the rectification coefficient R may be
found.

Then, dividing (13) by |Q̇in|, we get for R the following equation

(14) |Q̇in|2Kγ′2R3 − 4π|χ|γ′2|Q̇in|R2 − l2ζR = |Q̇in|2Kγ′2 + 4π|χ|γ′2|Q̇in| − l2ζ.

For a given |Q̇in| (14) yields the value of the rectification coefficient R. If χ = 0, one obtains from (14)
R = 1, and there is no rectification, as already mentioned in the paragraphs below Equation (10).

For the value of |Q̇in| for which the right-hand side of (14) is 0 we have the solution R = 0 and

(15) R =

√
1 + l2ζK

4π2χ2γ′2 − 1√
1 + l2ζK

4π2χ2γ′2 + 1

which tend to 1 (no rectification) when χ → 0. There is also a negative solution without physical
meaning. The values of R close to zero indicate a very high rectification, because exchanging the internal
and external temperatures, the value of the heat flux is very different. In particular, |Q̇out| becomes much
smaller that the corresponding |Q̇in|. However, for too small values of the heat flux the system will not
be turbulent, and the contributions in L should be cancelled, thus modifying Equation (5). This makes
that in our analysis in the present paper, the solution R = 0 should not be taken into account as a
truly physical solution, because it does not correspond to the hypothesis of a turbulent system, so that
solution (15) is the physical solution.

4. Concluding remarks.

Our analysis of heat rectification in Section 3 has started from an equation for the heat flux more
general than Fourier’s equation, namely Equation (2); this is an original aspect of this paper, because
previous analyses of heat rectification in the literature always start from Fourier’s equation.

Our analysis has shown that the rectification depends on the coefficient χ coupling the heat flux to
the gradient in L, as seen in Equation (10); note however that our analysis has been simplified in that we
have neglected the temperature dependence of the coefficients. However, despite this simplification (that
will be removed in future analyses), this has been sufficient to show rectification in this situation, thus
pointing a proof of concept of interest of this system.

In expression (10) it has been seen that rectification arises in this case because of the coupling between
the heat flux and the gradient of L. Indeed the terms in q and Lq change sign when q is reversed but
since L depends on q2, ∇L does not change sign under such reversal. For an homogeneous system,
with L constant, one would not have rectification because such term would be zero, but in our radial
case L changes with the position. Therefore, this situation may be compared to that arising in so-called
”graded systems” in solid systems [38]. Such systems are characterized by a composition depending on
the position, for instance GexSi1−x, with the stoichiometric index x changing with position z along the
system. In our case, what is changing with the radial position is the value of the vortex line density L.
This analogy should not make us forget that the starting equation for heat transport in our case was not
Fourier’s equation, but a more general one.

A particularly interesting result is that the rectification ratio (10) may be very high close to value of
|Q̇| given by (11). Analogously, the usual rectification coefficient R becomes close to zero for values of
|Q̇in| close to the value given by (11). In this case |Q̇out| becomes much smaller than |Q̇in|. This could
have deep conseguences in cooling a cylinder by a radial heat flow through superfluid helium, because
|Q̇out| small means that the heat removal would be very low, in contrast to predictions based on Fourier’s
theory. This does not mean that in usual practical situations the value of (10) is high or the value of R
is low. The most relevant point is that considering rectification is a stimulus for a deeper understanding
of the several nonlinear factors contributing to inwards and outwards heat flow, which are of natural
interest in cryogenic.
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Other situations worth of analysis would be a) to explore heat rectification for relatively small values
of the quantum Reynolds numbers, in such a way that turbulence is not completely developed; b) to
consider heat rectification in longitudinal channels with varying cross section; or c) to analyze heat
rectification in longitudinal flows in troncoconical channels by considering the reversal heat transport
regimes (laminar, turbulent, laminar–to–turbulent, laminar–to–ballistic).
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