
CAIM
ISSN 2038-0909

Commun. Appl. Ind. Math. 9 (1), 2018, 121–140 DOI: 10.2478/caim-2018-0016
Research Article

On the linear stability of some finite difference schemes for nonlinear
reaction-diffusion models of chemical reaction networks

Nathan Muyinda1*, Bernard De Baets2, Shodhan Rao1

1Ghent University Global campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea
2KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653,

B-9000 Gent, Belgium

*Email address for correspondence: Nathan.Muyinda@Ugent.be

Communicated by Luca Formaggia

Received on 10 03, 2017. Accepted on 10 08, 2018.

Abstract

We identify sufficient conditions for the stability of some well-known finite difference schemes for the solution of the
multivariable reaction-diffusion equations that model chemical reaction networks. Since the equations are mainly nonlinear,
these conditions are obtained through local linearization. A recurrent condition is that the Jacobian matrix of the reaction
part evaluated at some positive unknown solution is either D-semi-stable or semi-stable. We demonstrate that for a single
reversible chemical reaction whose kinetics are monotone, the Jacobian matrix is D-semi-stable and therefore such schemes
are guaranteed to work well.
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1. Introduction

Reaction-diffusion (RD) equations are mathematical models that have proven to be a powerful tool
for describing a broad class of phenomena in physics, chemistry and biology. These equations describe
how the time evolution of the concentration density of species in space varies under the influence of two
processes; local interaction of species and diffusion which causes the spread of species in space.

R.A. Fisher in 1937 [1] was the first to propose a reaction-diffusion equation, which is now called the
classic Fisher equation, as a model for the spread of a new recessive advantageous gene through a popula-
tion. Since then RD equations have found applications in the field of population genetics (e.g. [2,3]). J.G.
Skellam in 1951 , in his pioneering paper [4] used a similar framework for theoretical studies of population
dispersal and introduced the RD equation in ecology. The seminal paper of A. Turing in 1952 [5] demon-
strated how a simple model system of two coupled RD equations could be used as a model for biological
pattern formation via a mechanism known as diffusion-driven instability. Turing’s theory sparked a wide
range of research in morphogenesis, notable among which the works of Gierer and Meinhardt [6] and
Murray [7,8]. RD equations have also been applied in the study of spatio-temporal patterns produced by
the Belousov-Zhabotinsky chemical reaction [9], in the modelling of calcium dynamics [10–14] and in the
theory of wave propagation in excitable media [15], among others.

The simplest RD model can be described by an equation

∂u

∂t
= D∇2u + f(u) ,(1)

where u is a vector of species concentration densities, D is a constant matrix of diffusion coefficients
which, if there is no cross-diffusion among the species, is simply a positive diagonal matrix, ∇2 is the
Laplacian, and f(u) is a vector of functions representing reaction kinetics. The problem is fully specified
once the appropriate initial conditions u(x, 0) = u0(x) and boundary conditions are known.
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In many problems, the reaction term f(u) is mainly nonlinear, arising, for example, from the use of
the law of mass action or Michaelis-Menten kinetics which makes Equation (1) nonlinear (also called
semilinear). This nonlinearity makes it, in most cases, very difficult (if not impossible) to solve the
equation analytically and justifies the frequent use of numerical methods such as finite difference schemes.

A usual first step in the application of numerical methods is the use of the method of lines (MOL)
[16] which reduces the RD system to a semi-discrete form, consisting of nonlinear ordinary differential
equations (ODEs)

ut = Cu + F(u) .(2)

Here C is a constant matrix arising out of the discretization of the Laplacian plus boundary conditions
and F(u) is a vector of the nonlinear reaction terms evaluated at the grid points. An ODE integration
technique can now be used to integrate the problem. However, there are two drawbacks about this ODE
system:

• the dimension of the system is huge, especially if the partial differential equation (PDE) in Equa-
tion (1) is in three spatial dimensions and for reaction networks involving many reacting species.
This puts a constraint on the use of standard implicit difference schemes since, at every time
step, an iterative solver like Newton’s method or Picard iteration has to be employed to solve a
nonlinear system of equations.
• the system is stiff. There is no precise mathematical definition for stiffness. However, the notion of

stiffness is characterized by the appearance of different time scales in the solutions [17]. Stiffness
commonly arises due to the approximation of the diffusion term by finite differences, but it
is also prevalent in RD equations for reaction networks which often involve different chemical
reactions taking place on vastly differing time scales. The reactions can vary in time scales from
microseconds to days due to large reaction constants. Thus, in order to ensure stability of the easy-
to-use explicit schemes, one will be restricted to using very small time steps that are determined
by not only the Courant-Friedrichs-Lewy (CFL) condition but also by the smallest time constant.
However, the time for all chemical species to reach near equilibrium values depends on the largest
time constant. As a result, these methods may require excessive amounts of computer time to
solve stiff systems of ODEs [18].

A number of researchers propose the use of implicit schemes, e.g. the Crank-Nicolson (CN) scheme [19]
and fractional step θ-scheme (FSTS) [20,21], given the fact that such schemes have already been proven
to be unconditionally stable for the linear diffusion equation without the reaction term. The belief is
that this unconditional stability extends to the full RD equation with the (in general) nonlinear reaction
term, although, as far as we know, this has not been explicitly established. The main drawback of implicit
schemes, especially for nonlinear RD systems, is the computational complexity in their implementation. In
this regard, a number of researchers have also devoted time to proposing explicit schemes that are efficient
enough to match the implicit schemes, e.g. the exponential time-differencing fourth order Runge-Kutta
(ETDRK) [22], Implicit-Explicit (IMEX) schemes [23,24], which approximate the linear diffusion terms
implicitly and the nonlinear reaction terms explicitly. Others have come up with semi-implicit schemes
that are linearly unconditionally stable and may be easier to implement than the fully implicit schemes.
Examples include the second-order semi-implicit backward differentiation formula (2-SBDF) [25] and the
implicit integration factor (IIF) method [26,27].

In this paper, we establish sufficient conditions for the stability of some popular finite difference
schemes for the nonlinear multivariable RD system (1). The motivation for this is the fact that stability
plays a major role in deciding which numerical method to use for the solution of Equation (1) and yet
not many studies have been devoted to such a stability analysis. Many stability conditions for finite
difference schemes in the literature have been established based on an analysis of scalar equations or in
the case of systems, the linear diffusion equation (see e.g. [28]). One notable paper on stability of finite
difference schemes for the nonlinear RD equations is by Hoff [29]. However, Hoff’s analysis makes use of
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deep theoretical concepts from functional analysis which may not be embraced by many users of finite
difference schemes for practical purposes. Other related work can be found in e.g. [30,31]. The methods
used in this paper are similar to the method used by Li et al. [32] to analyze the stability of an explicit
finite difference method applied to a scalar nonlinear RD equation in two spatial dimensions. However,
chemical reaction networks involving only a single chemical species are hard to find in practice. Most
chemical reaction networks involve at least two chemical species and thus the RD models of such networks
are multivariable. We thus believe that from a practical point of view, there is still a need for a rigorous
study of stability of finite difference schemes, particularly for nonlinear RD equations in the multivariable
case. This paper is therefore aimed at contributing towards this cause.

The paper is organized as follows. A linearization of Equation (1) is performed in Section 2. Some
mathematical concepts and theorems are given in Section 3. In Section 4, a local stability analysis of
some popular difference schemes applied to the linearized system is carried out. We show in Section 5
that for RD systems whose reactions are governed by a variety of enzyme kinetic rate laws, some of the
established sufficient conditions are naturally satisfied implying that these implicit schemes are expected
to work for the solution of such RD systems. In Section 6, we perform numerical experiments on the
Brusselator RD system and finally present our conclusions in Section 7.

2. Linearization

Investigating stability of a numerical scheme for a nonlinear problem like (1) can be a complicated
task because the exact analytical solution is not known. For this reason, we investigate stability of differ-
ence schemes for the localized linear version. It should however be noted that although the linearization
substantially simplifies the stability analysis, the conclusions of a linear stability analysis may not nec-
essarily apply to the nonlinear problem. The stability analysis of the locally linearized system applies
approximately and locally. This is due to the fact that linear stabilty is a necessary condition for nonlinear
problems but is certainly not sufficient [33].

To carry out a linearization, suppose u and v are two analytical solutions to Equation (1) that are
close to each other. Then their difference satisfies

∂

∂t
(u− v) = D∇2(u− v) + f(u)− f(v) .

Define z := u− v. A Taylor expansion of f(u) about v leads to

∂z

∂t
= D∇2z +Az +O(z2) ,

where A is the Jacobian matrix of f evaluated at v, and so at any instant in space and time, it is a
matrix of constants. When z is small, which corresponds to the two solutions u and v being near each
other, such that the O(z2) terms are small compared to the linear term Az, the difference between the
two solutions satisfies:

∂z

∂t
≈ D∇2z +Az .(3)

Equation (3) is the local linear approximation (or linearization) of Equation (1) about the solution v. In
all the analyses of this paper, we assume that the Jacobian A is real with finite entries in the space and
time domains under consideration.

3. Some mathematical concepts

We now explain some mathematical concepts related to the linear stability of difference schemes for
PDEs. For simplicity, we restrict Equation (3) to one spatial dimension although the results analogously
hold in three spatial dimensions. A general two-level difference scheme for Equation (3) takes the form

(4) Qzn+1
j = Pznj ,
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where n + 1 and n denote the time level, while j denotes the spatial grid position. For a network
with m distinct chemical species, Q and P are m × m matrices involving shift operators defined by
S±zn := (znj±1)j∈Z.

Our stability analysis is performed by making use of the discrete Fourier transform defined according
to [28, p. 264] by;

ẑn(ξ) =
1√
2π

∑
j∈Z

e−ijξznj , where i =
√
−1 and ξ ∈ [−π, π].

The discrete Fourier transforms of the shift operators is given by Ŝ±zn(ξ) = e±iξẑn(ξ). Taking the
discrete Fourier transform of the left- and right-hand side of Equation (4), the difference scheme can be
transformed to the form ẑn+1 = G(ξ)ẑn, where the quantity G(ξ) is known as the amplification matrix
of the difference scheme. We have the following theorem.

Theorem 3.1 ( [28, Theorem. 6.2.1]). The difference scheme (4) is stable if and only if there exist
positive constants ∆x0 and ∆t0 and a non-negative constant C independent of ∆x,∆t and ξ so that

|||G(ξ)|||2 ≤ 1 + C∆t ,(5)

for 0 < ∆x ≤ ∆x0, 0 < ∆t ≤ ∆t0 and ξ ∈ [−π, π].

The norm used on G in Equation (5) is the matrix 2-norm defined by |||G|||2 = max
‖u‖2=1

‖Gu‖2 =
√
µmax,

where µmax is the largest eigenvalue of G∗G and G∗ is the conjugate transpose of G [34]. The spectrum
of G, denoted by σ(G), is the set of all eigenvalues of G. The spectral radius of G, denoted by ρ(G) is
defined as: ρ(G) = max{|λ| : λ ∈ σ(G)}. From linear algebra, it is known that ρ(G) ≤ |||G|||2 . Thus a
necessary criterion for stability is the celebrated von Neumann condition stated in Theorem 3.2.

Theorem 3.2 ( [28, Theorem. 6.2.2]). If the difference scheme (4) is stable, then there exist positive
constants ∆x0, ∆t0 and C independent of ∆x,∆t and ξ so that

ρ(G(ξ)) ≤ 1 + C∆t ,(6)

for 0 < ∆x ≤ ∆x0, 0 < ∆t ≤ ∆t0 and ξ ∈ [−π, π].

In the single variable case, the von Neumann condition (6) is both a necessary and sufficient condition for
stability. However, in the multivariable case, it is a necessary but not a sufficient condition for stability.
This is because the relationship between spectral radius and norm is an inequality instead of an equality.
However, if G is a normal matrix, that is, G∗G = GG∗ or in particular, G is Hermitian or symmetric,
then ρ(G) = |||G|||2 and the von Neumann condition is both necessary and sufficient for stability [35].

Sufficient conditions are established by making use of the next two propositions and lemma.

Proposition 3.1 ( [35, p. 84]). Suppose that the amplification matrix G associated with the difference
scheme (4) satisfies the von Neumann condition. Then, if G is “uniformly diagonalizable”, that is, for
each G, there exists a matrix S such that S−1GS = Λ is diagonal and S and S−1 are bounded independent
of ξ and ∆t , then the scheme is stable.

Proposition 3.2 ( [34, p. 368]). There is a matrix norm |||·|||s such that |||A|||s = ρ(A) if and only if
every eigenvalue of A of maximum modulus is semisimple. That is, for all λ ∈ σ(A) such that |λ| = ρ(A),
the algebraic multiplicity of λ is equal to its geometric multiplicity. We call |||·|||s the spectral radius norm.

Lemma 3.1. Let B be an n-square matrix. Suppose that B is diagonalizable such that S−1BS is a
diagonal matrix, for some nonsingular matrix S. Then the matrices S and S−1 are bounded.
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Proof. Since B is diagonalizable, the columns of the matrix S are the linearly independent eigenvectors
of B. Assume that the eigenvectors are normalized. The norm of any n-square matrix does not exceed n
times the absolute value of its largest element [35]. Thus |||S|||2 ≤ n. Define 42 := det (S∗S), where S∗ is
the conjugate transpose of S. Then |(S−1)ij | ≤ 1/4 [35] and

∣∣∣∣∣∣S−1∣∣∣∣∣∣
2
≤ n/4. Thus the matrices S and

S−1 are bounded.

We shall also make use of the following definitions in our analysis.

Definition 3.1. An n-square matrix A is said to be semi-stable if every eigenvalue of A has a non-
positive real part. It is said to be D-semi-stable if for all positive diagonal matrices D, the matrix DA is
semi-stable.

Note that if the matrix A is D-semi-stable, then IA = A is semi-stable, where I is the identity matrix.
Thus D-semi-stability implies semi-stability.

For the remainder of this paper, since we have assumed that the matrix A in Equation (3) is real
with finite entries, then any matrix norm of A is bounded by the size of A times the absolute value of its
largest element [35]. Thus matrix A is bounded. We shall make use of this fact. We are now in a position
to analyze stability of some common difference schemes.

4. Difference Schemes

4.1. The Crank-Nicolson Scheme

The CN scheme is a second order accurate in time implicit scheme commonly employed for the time
integration of initial value problems. A CN scheme for the system in Equation (3) in one spatial dimension
is

1

∆t
(zn+1
j − znj ) =

1

2∆x2
D
[(

zn+1
j+1 − 2zn+1

j + zn+1
j−1

)
+
(
znj+1 − 2znj + znj−1

)]
+

1

2
A
(
zn+1
j + znj

)
.(7)

Equation (7) can be rewritten as(
I + rD −

∆t

2
A

)
zn+1
j −

r

2
D(S+zn+1

j + S−zn+1
j ) =

(
I − rD +

∆t

2
A

)
znj +

r

2
D(S+znj + S−znj ) ,(8)

where r :=
∆t

∆x2
. Taking the discrete Fourier transform of Eq. (8) gives(
I + 2r sin2

(
ξ

2

)
D − ∆t

2
A

)
ẑn+1 =

(
I − 2r sin2

(
ξ

2

)
D +

∆t

2
A

)
ẑn .

Thus the amplification matrix for the CN scheme is given by

G =

(
I + pD − ∆t

2
A

)−1(
I − pD +

∆t

2
A

)
,

where p := 2r sin2
(
ξ
2

)
≥ 0 for any ξ ∈ [−π, π]. Rewrite G in the form

G =

(
I − ∆t

2
(I + pD)−1A

)−1
(I + pD)−1

(
I − pD +

∆t

2
A

)
.(9)

Since D is a positive diagonal matrix, (I + pD) and its inverse are both positive diagonal and invertible.
We know that every n-square matrix is similar to a matrix in Jordan canonical form. Let λ1, λ2, . . . , λk
be the distinct eigenvalues of (I + pD)−1A, and let J = diag(Jn1 , Jn2 , . . . , Jnl), l ≥ k , be its Jordan
canonical form, where each Jni is a square Jordan block of size ni having eigenvalue λi on the diagonal,
1’s on the superdiagonal and zeros elsewhere and n1 + n2 + · · · + nl = m, the size of G. There exists a
nonsingular matrix S such that (I + pD)−1A = SJS−1. Thus G in Equation (9) can be written as

(10) G = XY +
∆t

2
XH ,
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where X := S
(
I − ∆t

2 J
)−1

S−1, Y := (I + pD)−1(I − pD) and H := (I + pD)−1A. If D =

diag(d1, d2, . . . , dm), matrix Y is a diagonal matrix with diagonal entries
1− pdj
1 + pdj

, j = 1, 2, . . . ,m. We

now establish sufficient conditions for the stability of the CN scheme.

Theorem 4.1. Suppose that the matrix A is D-semi-stable, matrix G is diagonalizable and matrix X is
such that every eigenvalue of maximum modulus is semi-simple. Then

(i) matrix G satisfies the von Neumann condition, and
(ii) the CN scheme is unconditionally stable.

Proof. (i) Applying the spectral radius norm on Eq. (10), we have

(11) |||G|||s ≤ |||X|||s|||Y |||s +
∆t

2
|||X|||s|||H|||s .

Since Y is a diagonal matrix, Proposition 3.2 implies that |||Y |||s = ρ(Y ). Since pdj ≥ 0, the eigenvalues of

Y given by νj =
1− pdj
1 + pdj

satisfy |νj | ≤ 1 for all j = 1, 2, . . . ,m. Thus ρ(Y ) ≤ 1. The eigenvalues of X are

the same as the eigenvalues of
(
I − ∆t

2 J
)−1

. If A is D-semi-stable, all the eigenvalues of J , which are of

course the eigenvalues of (I+pD)−1A, have non-positive real parts. Thus, for any ∆t, if µ is an eigenvalue

of
(
I − ∆t

2 J
)

, then Re(µ) ≥ 1. This implies that |µ| ≥ 1. Hence any eigenvalue of
(
I − ∆t

2 J
)−1

, given

by 1/µ will satisfy |µ−1| ≤ 1. Thus ρ(X) ≤ 1.
Since G is diagonalizable and X is such that every eigenvalue of maximum modulus is semi-simple,

from Proposition 3.2, we have |||G|||s = ρ(G) and |||X|||s = ρ(X). Thus Eq. (11) reduces to ρ(G) ≤
1 +∆t12 |||H|||s .

Since (I + pD)−1 is a positive diagonal matrix for any p ∈ [0, 2r] and matrix A is bounded, matrix
H = (I + pD)−1A is bounded. Let us denote this bound by 2C for some positive constant C. Then
ρ(G) ≤ 1 + C∆t.

(ii) Since G is diagonalizable and satisfies the von Neumann condition in (i), the proof follows from
Lemma 3.1 and Proposition 3.1.

Thus although the CN scheme has been proven to be linearly unconditionally stable for the linear
diffusion equation, this cannot be established for the full RD equation unless some reasonable assumptions
are made. In our case, we have proved this by making the assumption that the Jacobian matrix A
of the reaction part is D-semi-stable, the amplification matrix is diagonalizable and the matrix X :=(
I − ∆t

2 (I + pD)−1A
)−1

is such that every eigenvalue of maximum modulus is semi-simple. D-semi-

stability will be proved later for a large class of chemical reactions. The assumption of diagonalizability is
reasonable since the set of real matrices that are diagonalizable within Mn(C) is dense in Mn(R) [36, p.
87]. The assumption of the maximum absolute eigenvalue being semi-simple is even less restrictive than
the diagonalizability assumption.

4.2. The Fractional Step θ-Scheme

The fractional step θ-scheme (FSTS) is an operator splitting technique introduced by Glowinski in [20]
for the time integration of initial value problems. The method has also been employed in [21] to solve a
system of RD equations. The scheme is applied to initial value problems of the form

(12) ut = A(u), u(0) = u0 ,

where A is a nonlinear operator that has a nontrivial decomposition

(13) A = A1 +A2 .
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To derive the FSTS, the time step is divided into three portions and over each portion, the operators A1

and A2 are alternately treated implicitly and explicitly. In the case of RD equations, it is natural to take
operators A1 and A2 to be the diffusion and reaction terms, respectively. Let θ ∈ ]0, 1/2[, divide the time
interval [n, n+ 1] into three sub-intervals [n, n+ θ], [n+ θ, n+ 1− θ] and [n+ 1− θ, n+ 1]. An FSTS for
Equation (3) is 

zn+θj −znj
θ∆t

= 1
∆x2

D
(
zn+θj+1 − 2zn+θj + zn+θj−1

)
+Aznj ,

zn+1−θ
j −zn+θj

(1−2θ)∆t
= 1
∆x2

D
(
zn+θj+1 − 2zn+θj + zn+θj−1

)
+Azn+1−θ

j ,

zn+1
j −zn+1−θ

j

θ∆t
= 1
∆x2

D
(
zn+1
j+1 − 2zn+1

j + zn+1
j−1

)
+Azn+1−θ

j .

(14)

Using an eigenvalue analysis and assuming the operator A in Equation (12) to be a constant N × N
matrix, symmetric and positive definite, and where A1,A2 in Equation (13) are given by A1 = αA,
A2 = βA, with α+β = 1, 0 < α, β < 1, Glowinski [20] showed that the FSTS is second order accurate in
time if θ = 1− 1/

√
2, otherwise the scheme is first order accurate in time. This can be confirmed for our

FSTS given in Eq. (14) by multiplying the first and last equations in (14) by θ∆t and the second equation
by (1 − 2θ)∆t, summing up the three equations and carrying out a Taylor series expansion about the
point (n+ 1/2, j). To proceed with a stability analysis of the FSTS in (14), rewrite the three equations
in the form

(I + 2rθD)zn+θj − rθD(zn+θj+1 + zn+θj−1 ) = (I + θ∆tA)znj ,

(I − (1− 2θ)∆tA)zn+1−θ
j = (I − 2(1− 2θ)rD)zn+θj + (1− 2θ)rD(zn+θj+1 + zn+θj−1 ) ,

(I + 2rθD)zn+1
j − rθD(zn+1

j+1 + zn+1
j−1 ) = (I + θ∆tA)zn+1−θ

j ,

where, as before, r = ∆t/∆x2. Taking the discrete Fourier transform of the three equations above and
combining the resulting equations gives

ẑn+1 =

(
I + 4rθ sin2(

ξ

2
)D

)−1
(I + θ∆tA) (I − (1− 2θ)∆tA)−1(

I − 4r(1− 2θ) sin2(
ξ

2
)D

)(
I + 4rθ sin2(

ξ

2
)D

)−1
(I + θ∆tA) ẑn .

The amplification matrix for the FSTS is thus given by

G =

(
I + 4rθ sin2

(
ξ

2

)
D

)−1
(I + θ∆tA) (I − (1− 2θ)∆tA)−1(15) (

I − 4r(1− 2θ) sin2

(
ξ

2

)
D

)(
I + 4rθ sin2

(
ξ

2

)
D

)−1
(I + θ∆tA) .

In the single variable case, the amplification factor takes the form

G =
(1 + aθ∆t)2

(
1− 4rd(1− 2θ) sin2

(
ξ
2

))
(1− a(1− 2θ)∆t)

(
1 + 4rdθ sin2

(
ξ
2

))2 ,
where a is the Jacobian and d the diffusion coefficient. The von Neumann condition |G| ≤ 1 + C∆t is
then necessary and sufficient for stability. Now,

|G| =
∣∣∣∣ 1 + aθ∆t

1− a(1− 2θ)∆t

∣∣∣∣ ·
∣∣∣∣∣∣

1− 4rd(1− 2θ) sin2
(
ξ
2

)
1 + 4rd

(
2θ + 4rdθ2 sin2

(
ξ
2

))
sin2

(
ξ
2

)
∣∣∣∣∣∣ · |1 + aθ∆t| .
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Assume that the Jacobian is semi-stable such that a ≤ 0 and let 1
4 ≤ θ ≤ 1

3 . Then |G| ≤ |1 + aθ∆t| ≤
1+θ|a|∆t ≤ 1+ 1

3 |a|∆t . Hence, in the single variable case, if the Jacobian is semi-stable and θ ∈ [1/4, 1/3],
the FSTS is linearly unconditionally stable.

In the multivariable case where G is given in Equation (15), we can only establish linear unconditional
stability for the case when θ = 1

3 . In this case, matrix G reduces to

(16) G = PQR

(
I +

1

3
∆tA

)
,

where P :=
(
I + 4

3r sin2
(
ξ
2

)
D
)−1

, Q :=
(
I + 1

3∆tA
) (
I − 1

3∆tA
)−1

and R :=
(
I − 4

3r sin2
(
ξ
2

)
D
)(

I + 4
3r sin2

(
ξ
2

)
D
)−1

. We establish in Theorem 4.2 sufficient conditions

for the stability of the FSTS.

Theorem 4.2. Consider the amplification matrix G given in Equation (16). Assume that G is diago-
nalizable, matrix A is semi-stable and matrix Q is such that every eigenvalue of maximum modulus is
semi-simple. Then

(i) G satisfies the von Neumann condition, and
(ii) the FSTS with θ = 1

3 is unconditionally stable.

Proof. (i) Taking the spectral radius norm of Equation (16), we have

(17) |||G|||s ≤ |||P |||s|||Q|||s|||R|||s
(

1 +
1

3
∆t|||A|||s

)
.

Since G is diagonalizable, P and R are diagonal and Q is such that every eigenvalue of maximum modulus
is semi-simple, using Proposition 3.2, Equation (17) reduces to

(18) ρ(G) ≤ ρ(P )ρ(Q)ρ(R)(1 +
1

3
|||A|||s∆t) .

Since matrix A is bounded, let us denote this bound by 3C, where C is some non-negative constant.
Equation (18) reduces to

(19) ρ(G) ≤ ρ(P )ρ(Q)ρ(R)(1 + C∆t) .

Matrices P and R are both diagonal with entries and hence eigenvalues µi =
1

1 + 4
3rdi sin2

(
ξ
2

) and

νi =
1− 4

3rdi sin2
(
ξ
2

)
1 + 4

3rdi sin2
(
ξ
2

) , i = 1, . . . ,m, respectively. Since di > 0, it is clear that both |µi| ≤ 1 and |νi| ≤ 1.

Hence

(20) ρ(P ) ≤ 1 and ρ(R) ≤ 1 .

To find ρ(Q), let J be the Jordan canonical form of A. There exists a nonsingular matrix S such that

A = SJS−1. Matrix Q can then be written as Q = S
(
I + 1

3∆tJ
) (
I − 1

3∆tJ
)−1

S−1. The eigenvalues of

Q are the same as the eigenvalues of
(
I + 1

3∆tJ
) (
I − 1

3∆tJ
)−1

. Let λ1, . . . , λk be the distinct eigenvalues

of A. The matrices
(
I + 1

3∆tJ
)

and
(
I − 1

3∆tJ
)−1

are upper triangular with diagonal entries 1 +
1

3
∆tλj

and 1− 1
3∆tλj , respectively. Thus matrix

(
I + 1

3∆tJ
) (
I − 1

3∆tJ
)−1

is also upper triangular with distinct
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eigenvalues δj =
1 +

1

3
∆tλj

1− 1

3
∆tλj

, j = 1, . . . , k. Since matrix A is semi-stable, that is, Re(λj) ≤ 0 for all j,

then |δj | ≤ 1 for all j. Hence

(21) ρ(Q) ≤ 1 .

Combining Equations (19) to (21) leads to ρ(G) ≤ 1 + C∆t .
(ii) Proceeds as in the proof for Theorem 4.1 part (ii).

4.3. The implicit integration factor method

The IIF method is a semi-implicit exponential integrator method due to Nie et al. in [27]. In this
scheme, like in all exponential integrator methods, stiffness arising due to the discretization of the spatial
diffusion term is overcome by evaluating the diffusion term exactly whereas the stiffness due to the
reactions is handled by carrying out an implicit treatment of the nonlinear reaction terms. In the single
variable case, this method has been proven to be linearly unconditionally stable [27].

To derive an rth order accurate IIF method, Equation (2) is multiplied by an integrating factor e−tC

and then integrated over a single time step from t = tn to t = tn+1 = tn +∆t to obtain

u(tn+1) = e∆tCu(tn) + e∆tC
∫ ∆t

0
e−τCF(u(tn + τ)) dτ .(22)

The integrand, g(τ) := e−τCF(u(tn + τ)), is then approximated by an (r − 1)th degree interpolation
polynomial, P (τ), using interpolation points tn+1, tn, . . . , tn+2−r and a direct integration of the polynomial
is done. Equation (22) can then be written as

un+1 = e∆tCun + e∆tC
∫ ∆t

0
P (τ) dτ .(23)

For the second order IIF scheme (r = 2), P (τ) is linear, and Equation (23) reduces to

un+1 = e∆tCun + e∆tC · ∆t
2

(g(0) + g(∆t)) = e∆tC
(

un +
∆t

2
F(un)

)
+
∆t

2
F(un+1) .(24)

By computing boundaries for the stability region, Nie et al. [27], proved that, in the single variable
case, the second order IIF scheme is linearly unconditional stable. We use a direct approach to establish
sufficient conditions for the linear stability of this scheme in the multivariable case.

Consider Equation (3) in one spatial dimension. If we discretize in space using a central difference
scheme on a grid with N internal grid points and assuming z = 0 at the boundary, we have

∂zk

∂t
=

1

∆x2
D
(
zk−1 − 2zk + zk+1

)
+Azk, k = 1, 2, . . . , N,(25)

where zk = [zk1 , z
k
2 , . . . , z

k
m]>. Here the subscript represents the index of the chemical species whereas the

superscript represents the grid point. The boundary condition implies that z0 = zN+1 = 0. The linear
system in Equation (25) is a system of Nm equations in Nm unknowns. Rearrange the equations in (25)
so that the first N equations are time derivatives of z1 at the N grid points, the next N equations are
for z2, and so on. Then system (25) can be written in matrix form as

Zt = CZ +AZ ,(26)

where Z = [z11 , . . . , z
N
1 , . . . , z

1
m, . . . , z

N
m ]> ∈ RNm, C is an Nm-square block diagonal matrix arising due

to diffusion and is given by

(27) C = diag(B1, B2, . . . , Bm) with Bi =
di
∆x2


−2 1 0

1
. . .

. . .
. . .

. . . 1
0 1 −2


N×N

.
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A is a block matrix with blocks of size N , arising due to reaction, and is given by

(28) A =


a11IN a12IN · · · a1mIN
a21IN a22IN · · · a2mIN

· · · · · ·
am1IN am2IN · · · ammIN

 = A⊗ IN

where IN is the identity matrix of size N , aij is the ij-entry of the Jacobian matrix A and ⊗ denotes the
Kronecker product [37]. We shall make use of the following theorem.

Theorem 4.3 ( [37, p. 141]). Let A ∈ Rn×n have eigen-
values λ1, λ2, . . . , λn and let B ∈ Rm×m have eigenvalues µ1, µ2, . . . , µm. Then the mn eigenvalues of
A⊗B are λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm.

We now proceed to establish sufficient conditions for the stability of the second order IIF scheme.
From Equation (24), it follows that

(29)

(
I − ∆t

2
A
)

Zn+1 = e∆tC
(
I +

∆t

2
A
)

Zn .

Assume that the matrix A is semi-stable. Then the matrix I − ∆t
2 A is nonsingular, and Equation (29)

can be written in the form

(30) Zn+1 =

(
I − ∆t

2
A
)−1

e∆tC
(
I +

∆t

2
A
)

Zn = QZn ,

where Q :=
(
I − ∆t

2 A
)−1

e∆tC
(
I + ∆t

2 A
)

. Since the scheme in Equation (30) does not contain an

amplification matrix, Proposition 3.1 used for the CN and FSTS cannot be applied to establish sufficient
conditions for the stability of the second order IIF scheme. We shall instead make use of the following
proposition.

Proposition 4.1 ( [28, Proposition 3.1.14]). Suppose Q is similar to a symmetric matrix P , i.e.
there exists a nonsingular matrix S such that Q = SPS−1. If |||S||| and

∣∣∣∣∣∣S−1∣∣∣∣∣∣ are uniformly bounded
for any matrix norm |||·|||, a necessary and sufficient condition for the stability of Equation (30) is that
ρ(Q) ≤ 1 + β∆t for some non-negative β, where ρ(Q) is the spectral radius of Q.

Define X :=
(
I − ∆t

2 A
)−1

and Y := e∆tC . Matrix Q can be written as

(31) Q = XY (I +
∆t

2
A), where A = A⊗ IN .

Sufficient conditions for the stability of the scheme are established below.

Theorem 4.4. Suppose that matrix Q in Equation (31) is diagonalizable, the Jacobian matrix A is
semi-stable and matrix X is such that every eigenvalue of maximum modulus is semi-simple. Then

(i) there exists a nonzero constant β such that ρ(Q) ≤ 1 + β∆t, and
(ii) the second order IIF scheme Zn+1 = QZn is unconditionally stable.

Proof. (i) Applying the spectral radius norm on Eq. (31), we have

(32) |||Q|||s ≤ |||X|||s|||Y |||s(1 +
∆t

2
|||A|||s) .

Since Q is diagonalizable and X is such that every eigenvalue of maximum modulus is semi-simple,
Proposition 3.2 implies that |||Q|||s = ρ(Q) and |||X|||s = ρ(X). To find ρ(X), let λ1, λ2, . . . , λk be the
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distinct eigenvalues of the Jacobian matrix A. From Theorem 4.3, λ1, λ2, . . . , λk will also be the distinct
eigenvalues of A = A⊗ IN . Let J be the Jordan canonical form of A. There exists a nonsingular matrix

S such that A = SJS−1. Matrix X can then be written as X = S(I − ∆t
2 J)−1S−1. The eigenvalues of X

are the same as the eigenvalues of (I − ∆t
2 J)−1. Since matrix A is semi-stable, the distinct eigenvalues

of (I − ∆t
2 J), given by 1− ∆t

2 λ1, 1−
∆t
2 λ2, . . . , 1−

∆t
2 λk, have positive real parts greater than or equal

to 1. Hence |1− ∆t
2 λi| ≥ 1 for all i and for any ∆t. Therefore all the distinct eigenvalues of (I − ∆t

2 J)−1,

which are in fact the eigenvalues of X, and given by (1− ∆t
2 λ1)

−1, (1− ∆t
2 λ2)

−1, . . . , (1− ∆t
2 λk)

−1, have
modulus less than or equal to 1. Thus

(33) ρ(X) ≤ 1 .

Matrix ∆tC is real and block diagonal given by Equation (27) with each Bi multiplied by ∆t. Thus matrix

Y = e∆tC is a real block diagonal matrix given by Y = diag
(
e∆tB1 , e∆tB2 , . . . , e∆tBm

)
. Since each of

the matrices Bj is real symmetric, each of the matrices e∆tBj is also real symmetric and therefore Y is
a real symmetric block diagonal matrix. We know from linear algebra that every real symmetric matrix
is diagonalizable. This implies that every eigenvalue of Y is semi-simple and thus from Proposition 3.2,
|||Y |||s = ρ(Y ). The spectrum of a block diagonal matrix is the union of the spectra of the diagonal blocks

[38]. Thus the set of eigenvalues of Y is the union of the sets of eigenvalues of the e∆tBj , j = 1, . . . ,m.
Note that the matrices ∆tBj are symmetric tridiagonal and thus can be diagonalized. That is, there
exists nonsingular Ej such that ∆tBj = EjΛjE

−1
j , where Λj is diagonal with diagonal entries being the

eigenvalues of ∆tBj . Thus

e∆tBj = Eje
ΛjE−1j and eΛj = diag (eµ1 , eµ2 , . . . , eµN ) ,

where µk is an eigenvalue of ∆tBj , k = 1, . . . , N . The eigenvalues of ∆tBj are given by µk = −2rdj +

2rdj cos (θk) = −4rdj sin2

(
θk
2

)
where θk = kπ

N+1 and r = ∆t
∆x2

. Thus 0 < eµk = e
−4rdj sin2

(
θk
2

)
≤ 1 for

k = 1, . . . , N . Hence

(34) ρ(e∆tBj ) ≤ 1 for j = 1, . . . ,m, which implies ρ(Y ) ≤ 1 .

Combining Equations (32) to (34), we have ρ(Q) ≤ 1 + ∆t
2 |||A|||s .

Since matrix A is a constant matrix of size Nm, |||A|||s is bounded by Nm times the absolute value
of its largest element [35]. Let us denote this bound by 2β. Thus we have ρ(Q) ≤ 1 + β∆t.

(ii) Since Q is diagonalizable and satisfies part (i) above, the proof follows from Lemma 3.1 and Propo-
sition 4.1.

4.4. Implicit-explicit (IMEX) methods

For problems in which stiffness is only due to diffusion and not the reactions, it is reasonable to
use implicit-explicit methods. In these methods, the stiff linear diffusion is treated implicitly, while the
(nonlinear) reaction terms are treated explicitly. This has the advantage that the resulting algebraic
system is linear and can thus be solved without the need for nonlinear iterative solvers which makes the
computation cheaper. For details on IMEX methods, we refer to [23,24].

An IMEX scheme for Equation (3) in one spatial dimension is

1

∆t
(zn+1
j − znj ) =

1

∆x2
D
(
zn+1
j+1 − 2zn+1

j + zn+1
j−1

)
+Aznj .(35)

Equation (35) can be written as

(I + 2rD)zn+1
j − rD(zn+1

j+1 + zn+1
j−1 ) = (I +∆tA)znj ,
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where as before r := ∆t/∆x2. Taking the discrete Fourier transform gives(
I + 4rD sin2 ξ

2

)
ẑn+1 = (I +∆tA)ẑn .(36)

The amplification matrix for the IMEX scheme is given by

G = (I + pD)−1 (I +∆tA) ,(37)

where p := 4r sin2 ξ

2
, ξ ∈ [−π, π]. Sufficient conditions for the stability of the IMEX scheme are established

in Theorem 4.5.

Theorem 4.5. Suppose that matrix G in (37) is diagonalizable. Then

(i) G satisfies the von Neumann condition, and
(ii) the IMEX scheme in Equation (35) is unconditionally stable.

Proof. (i) Applying the spectral radius norm to Equation (37), we have

|||G|||s ≤
∣∣∣∣∣∣(I + pD)−1

∣∣∣∣∣∣
s
|||I +∆tA|||s .

Since matrix G is diagonalizable, |||G|||s = ρ(G). Matrix (I + pD)−1 is diagonal with diagonal entries
1/(1 + pdi) and

∣∣∣∣∣∣(I + pD)−1
∣∣∣∣∣∣
s

= ρ((I + pD)−1). Thus

ρ(G) ≤ ρ
(
(I + pD)−1

)
· |||I +∆tA|||s .(38)

The eigenvalues of (I + pD)−1 are its diagonal entries 1/(1 + pdi) and each of them is less than 1 since
p, di ≥ 0. Thus ρ

(
(I + pD)−1

)
≤ 1. Equation (38) reduces to

ρ(G) ≤ |||I +∆tA|||s ≤ |||I|||s +∆t|||A|||s = 1 +∆t|||A|||s .

Since matrix A is bounded, G satisfies the von Neumann condition.

(ii) Proceeds as in the proof of Theorem 4.1 part (ii).

5. Matrix semi-stability

In Section 4, we have established sufficient conditions for the linear stability of some well-known
difference schemes used for the time integration of the multi-variable RD equation (1). One notable
condition has been that the Jacobian A of the reaction part is either D-semi-stable or semi-stable. We
demonstrate here that for a single chemical reaction, by making reasonable assumptions on the kinetics of
the reaction, the Jacobian A evaluated at any u ∈ Rn+, is indeed both semi-stable and D-semi-stable. We
also show that the assumptions that we make in order to prove the semi-stability of A hold for reactions
governed by a variety of enzyme-kinetic rate governing laws.

5.1. Monotone kinetics

Here we give a brief description about the assumption that we make on the kinetics of the reaction.
Consider a reversible chemical reaction involving n chemical species X1, X2, . . . , Xn that takes the form:

n∑
i=1

αiXi

vf−⇀↽−
vr

n∑
i=1

βiXi ,(39)

where αi and βi are nonnegative integers, known as the stoichiometric coefficients of species Xi on the
substrate and product sides of the equation, respectively and vf and vr are the reaction rates in the
forward and backward directions, respectively. Denote by xi the concentration of the chemical species
Xi and let x = [x1, . . . , xn]> ∈ Rn+ denote the vector of species concentrations at any time t, where the
superscript > denotes transpose. Assume that reaction (39) satisfies the following properties:
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(a) The reaction is non-autocatalytic, that is, no chemical species appears on both the left (substrates)
and right (products) side of the reaction. This means that for each i, either αi = 0 or βi = 0.

(b) The forward and backward reaction rates are continuously differentiable functions of the species con-
centrations x. Thus the overall reaction rate v in the forward direction, given by v = vf − vr, is a
continuously differentiable function of species concentrations. That is v = v(x).

(c) Define γi := βi − αi. For each Xi, if γi < 0 then
∂v(x)

∂xi
≥ 0, while if γi > 0 then

∂v(x)

∂xi
≤ 0.

All reactions whose reaction rates satisfy properties (b) and (c) above are said to obey monotone kinetics
[39].

We now proceed to show that the Jacobian of the reaction part of an RD system modelling the
dynamics of a non-autocatalytic reaction with monotone kinetics is D-semi-stable.

5.2. D-semi-stability

The concept of D-stability is commonly encountered in mathematical economics and there are many
necessary and sufficient conditions for a matrix to be D-stable, although many of them are hard to
prove [40]. One notable property about D-stable matrices, which we have already shown in Section 3, is
that every D-stable matrix is also a stable matrix although the converse is not generally true [40]. Thus
in order for us to show that a matrix A is both semi-stable and D-semi-stable, we only need to show that
A is D-semi-stable and use this to infer the semi-stability of A.

Suppose the chemical reaction (39) is non-autocatalytic. Let us order the chemical species in such
a way that the first m chemical species, X1, . . . , Xm, appear as reactants, while the remaining (n −m)
species, Xm+1, . . . , Xn, appear as products. Then Equation (39) can be written as;

m∑
i=1

αiXi

vf−⇀↽−
vr

n∑
j=m+1

βjXj .(40)

The stoichiometric matrix N for reaction (40) is given by

N =
[
−α1 · · · −αm βm+1 · · · βn

]>
.(41)

The time evolution of the concentrations of the chemical species in reaction (40) is governed by the RD
system

∂x

∂t
= D∇2x+Nv(x) ,(42)

where v(x) is the overall reaction rate. D-semi-stability of the Jacobian for the reaction part is established
in the following theorem.

Theorem 5.1. Consider the non-autocatalytic reaction (40) with stoichiometric matrix N given in Equa-
tion (41) and overall reaction rate v(x). Suppose the reaction kinetics are monotone. Then the Jacobian
matrix A of f(x) := Nv(x), evaluated at any x ∈ Rn+, is D-semi-stable.

Proof. Since N is a column vector, denote by nk the kth-entry of N . The Jacobian A of f(x) is the

n-square matrix A = [aij ] with aij = ni
∂v(x)

∂xj
, for i, j = 1, . . . , n. Denote by D a positive diagonal matrix

given by D = diag(δ1, δ2, . . . , δn). Matrix DA is given by

DA =



−δ1α1
∂v(x)
∂x1

· · · −δ1α1
∂v(x)
∂xm

−δ1α1
∂v(x)
∂xm+1

· · · −δ1α1
∂v(x)
∂xn

. . .

−δmαm ∂v(x)
∂x1

· · · −δmαm ∂v(x)
∂xm

−δmαm ∂v(x)
∂xm+1

· · · −δmαm ∂v(x)
∂xn

δm+1βm+1
∂v(x)
∂x1

· · · δm+1βm+1
∂v(x)
∂xm

δm+1βm+1
∂v(x)
∂xm+1

· · · δm+1βm+1
∂v(x)
∂xn

. . .

δnβn
∂v(x)
∂x1

· · · δnβn
∂v(x)
∂xm

δnβn
∂v(x)
∂xm+1

· · · δnβn
∂v(x)
∂xn
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Our aim is to show that matrix DA is semi-stable.
Note that the matrix DA has rank 1. From linear algebra, it is known that the number of nonzero

eigenvalues of a matrix is less than or equal to the rank of the matrix. Therefore matrix DA has at most
one nonzero eigenvalue and thus zero is an eigenvalue of DA with algebraic multiplicity of at least n− 1.
Since matrix DA is supposed to have n eigenvalues counting multiplicity, the remaining one eigenvalue
of DA is therefore real and is given by the trace of DA. Let us denote this eigenvalue by λ. Thus

λ =

m∑
i=1

−αiδi
∂v(x)

∂xi
+

n∑
j=m+1

βjδj
∂v(x)

∂xj
.(43)

Since we have monotone kinetics,
∂v(x)

∂xi
≥ 0 for i = 1, . . . ,m and

∂v(x)

∂xj
≤ 0 for j = m + 1, . . . , n.

Thus each term in both the first and second summations in (43) are nonpositive and hence both sums
are nonpositive. Therefore λ ≤ 0 and the matrix DA is semi-stable. This proves that the matrix A is
D-semi-stable.

From the properties of D-stable matrices, we conclude that matrix A is also semi-stable.
We now demonstrate on some examples that the assumption we made about the kinetics of the

reaction being monotone is a reasonable assumption that is satisfied by many rate governing laws.

Example 5.1. Consider the reversible chemical reaction governed by mass-action kinetics: α1X1+α2X2+

· · ·+ αmXm
k1−−⇀↽−−
k−1

βm+1Xm+1 + · · ·+ βnXn .

Here, k1 and k−1 are positive rate constants. Denote by xi the concentration of species Xi. The overall

rate of reaction v in the forward direction is given by v(x) = k1

m∏
i=1

xαii − k−1
n∏

i=m+1

xβii . For i = 1, . . . ,m,

γi = −αi < 0 and
∂v(x)

∂xi
= k1αix

αi−1
i

m∏
j=1
j 6=i

x
αj
j > 0, since x ∈ Rn+. Similarly, for i = m + 1, . . . , n,

γi = βi > 0 and
∂v(x)

∂xi
= −k−1βixβi−1i

n∏
j=m+1
j 6=i

x
βj
j < 0. Thus the reaction rate v(x) satisfies the properties

of monotone kinetics.

Example 5.2. Consider the reversible enzymatic reaction: S
E−⇀↽− P . Here S is the substrate, E is

the enzyme that acts as a catalyst for the reaction and P the product. Let s and p denote the substrate

and product concentrations, respectively, at any time t, and x =
[
s p
]> ∈ R2

+. Note that γs = −1 while
γp = 1. Suppose the reaction is governed by Michaelis-Menten kinetics, then

v(x) =

Vf
Kss−

Vr
Kp
p

1 + s
Ks

+ p
Kp

,

where Vf , Vr,Ks and Kr are positive constants. It can be verified that
∂v(x)

∂s
> 0 and

∂v(x)

∂p
< 0. Thus

the reaction has monotone kinetics.

6. Numerical simulations of the Brusselator model

In this section we test our results by carrying out a simulation of the Brusselator RD system. The
Brusselator model (see e.g. [41–43]) is a well-known theoretical model for the study of dissipative struc-
tures in nonlinear chemical systems and also in the study of biological pattern formation. It describes
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the space-time dependence of the concentrations of the intermediate products U and V in the sequence
of reactions

A
k1−→ U , B + U

k2−→ V +D , 2U + V
k3−→ 3U , U

k4−→ E .

Assuming that all rate constants of the reactions are unity and the concentrations of A and B are
constants, the conventional dimensionless Brusselator model in a one-dimensional domain can be written
as 

∂u
∂t

= Du
∂2
u

∂x2
+ u2v + a− (b+ 1)u

∂v
∂t

= Dv
∂2
v

∂x2
− u2v + bu

, (x, t) ∈ [0, L]× [0,∞) ,(44)

where Du and Dv are the diffusion coefficients of U and V , respectively. We complete the model system
by imposing homogeneous Neumann boundary conditions

ux(0, t) = ux(L, t) = 0 and vx(0, t) = vx(L, t) = 0 ,

and nonnegative initial conditions

u(x, 0) = u0(x) ≥ 0 , v(x, 0) = v0(x) ≥ 0 .

There are no known analytical solutions to the Brusselator RD system and thus it has to be solved
numerically. The system has a unique homogeneous equilibrium solution at u = a , v = b/a. In the absence
of diffusion, this equilibrium solution is stable when the parameters (a, b) satisfy

(45) b < a2 + 1 .

In order for the system to exhibit spatial patterns, Turing’s diffusion-driven instability requires the
homogeneous equilibrium to be unstable in the presence of diffusion. This is achieved when

(46) b >

(
1 + a

√
Du

Dv

)2

.

Simulation results

The schemes described in this work are used to simulate the Brusselator system for x ∈ [0, 10] and
taking the initial condition to be a small perturbation of the homogeneous equilibrium solution. The
simulations are carried out for two cases; one case where the Jacobian of the reaction part is semi-stable
at every time step of the simulation and another case in which it is not semi-stable. The results from the
simulations are compared to those generated by an explicit scheme (forward in time, centered in space).

Case I: Jacobian is semi-stable

The parameter values chosen are Du = 1, Dv = 8, a = 4.5, b = 9 and θ = 1/3 for the FSTS. The
results are shown in Figures 1 and 2.

Case II: Jacobian is not semi-stable

Here all the parameter values stay the same as above except b which we set to 21. Setting ∆t = 0.01,
the solutions generated by the CN, FSTS, IIF and IMEX all converge to the solution generated by the
explicit scheme as shown in Figures 3 and 4. However, setting ∆t = 0.255 for the CN scheme, ∆t = 0.2
for the FSTS and ∆t = 0.25 for the IIF leads to a blow-up of the solutions. This is shown in Figure 5. In
fact all these schemes blow up for ∆t bigger than a certain value.
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Figure 1. Real parts of the two eigenalues of the Jacobian at the point x = 5.05. The space step size is ∆x = 0.101, while
time step is ∆t = 0.0002 for the explicit scheme and ∆t = 0.01 for the rest of the schemes.
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Figure 2. Left: Solution v(x, t) of the Brusselator system at x = 5.05. The space step size is ∆x = 0.101, while time step
is ∆t = 0.0002 for the explicit scheme and ∆t = 0.01 for the rest of the schemes. Right: Spatial pattern solution.

7. Discussion and Conclusion

In this work, we have established sufficient conditions for the local linear stability of some commonly
applied implicit finite difference schemes used for the solution of the multivariable RD equation (1). In
particular, we have derived conditions for the fully implicit CN and FSTS, the semi-implicit IIF and
IMEX schemes. It should, however, be noted that the conditions derived for the stability of localized
linear system may not guarantee stability of schemes for the nonlinear system (1). But it is known that
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Figure 3. Real parts of the two eigenalues of the Jacobian for Du = 1, Dv = 8, a = 4.5, b = 21 at the point x = 5.05. The
space step size is ∆x = 0.101, while time step is ∆t = 0.0002 for the explicit scheme and ∆t = 0.01 for the rest of the
schemes.
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Figure 4. Left: Solution v(x, t) for Du = 1, Dv = 8, a = 4.5, b = 21 at the point x = 5.05 with ∆t = 0.01. Right: Spatial
pattern.

for schemes of the nonlinear system to be stable, the same schemes should be stable for the localized
linear version of the nonlinear system.

One notable sufficient condition is that the Jacobian matrix of the reaction part evaluated at any
known positive solution is D-semi-stable, for the case of the CN scheme and semi-stable for the case of
the FSTS and IIF schemes. We have showed in Section 5 that the assumption of semi-stability and D-
semi-stability of the Jacobian matrix is reasonable and is satisfied by a large class of chemical reactions,
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Figure 5. Blow-up of solution v(5.05, t) for ∆t = 0.255 for the CN, ∆t = 0.2 for the FSTS and ∆t = 0.25 for the IIF. One
of the eigenvalues of the Jacobian is positive at the time of blow-up.

namely, those that obey monotone kinetics.
For the FSTS, our method has only been able to establish stability for θ = 1

3 . However, the FSTS
scheme is first order accurate in time at this value of θ. In contrast, both the CN and IIF schemes are
second order accurate in time.

Figure 2 shows that the solution generated by the IIF scheme is not as close to the explicit scheme
solution as all the other schemes. The reason may be that the IIF scheme was designed for diffusion-
dominated problems and does not seem to work well for problems where the reactions dominate. However,
the scheme converges to the same spatial pattern which is usually the main interest of RD applications
in biology. Our analysis also establishes unconditional stability of the IMEX scheme by only making the
assumption of diagonalizability of the amplification matrix.

The main results of this paper are the Theorems 4.1, 4.2, 4.4 and 4.5 used in establishing sufficient
conditions for the stability of the CN, FSTS, IIF and IMEX schemes, respectively. The proofs of these
theorems are similar in nature. All the theorems except Theorem 4.4 are based on the amplification
matrix arising out of the use of the discrete Fourier transform. Theorem 4.4 is based on the matrix
arising out of a direct manipulation of the scheme.

We hope that the stability analysis that we have carried out in this paper will help us in deriving an
efficient difference scheme that is unconditionally stable, second order accurate in time and also easier
to implement than the implicit schemes considered in this paper. We also intend to show that the D-
semi-stability that has been proven for a single non-autocatalytic reaction with monotone kinetics can
be extended to a network of chemical reactions.
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