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Abstract

The aim of this work is to study the effects of eccentric hypertrophy on the elec-
tromechanics of a single myocardial ventricular fiber by means of a one-dimensional
finite-element strongly-coupled model. The electrical current flow model is written in
the reference configuration and it is characterized by two geometric feedbacks, i.e. the
conduction and convection ones, and by the mechanoelectric feedback due to stretch-
activated channels. First, the influence of such feedbacks is investigated for both a healthy
and a hypertrophic fiber in case of isometric simulations. No relevant discrepancies are
found when disregarding one or more feedbacks for both fibers. Then, all feedbacks are
taken into account while studying the electromechanical responses of fibers. The results
from isometric tests do not point out any notable difference between the healthy and
hypertrophic fibers as regards the action potential duration and conduction velocity. The
length-tension relationships show increased stretches and reduced peak values for tension
instead. The tension-velocity relationships derived from afterloaded isotonic and quick-
release tests depict higher values of contraction velocity at smaller afterloads. Moreover,
higher maximum shortenings are achieved during the isotonic contraction. In conclu-
sion, our simulation results are innovative in predicting the electromechanical behavior
of eccentric hypertrophic fibers.
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1. Introduction

In the whole heart, eccentric hypertrophy is an organ response to a long-
term volume overload caused by physiological or pathological factors [1,2].
This yields a dilation of ventricles with a negligible wall thinning. Actually,
the high diastolic wall strains developing in such an environment lead to
the serial deposition of new sarcomere units inside cells without significant
changes in their cross-sectional area. Eccentric hypertrophy may also be the
phenotype deriving from genetic mutations that affect the correct encoding
of some cytoskeletal proteins [3].

In the literature, there are a few recent studies addressing the problem
of how eccentric hypertrophy can be mathematically modeled for the whole
heart (e.g., [4–7]). However, they have mainly focused on the mechanical
activity of hypertrophic hearts, disregarding the coupling with a model of
bioelectrical activity, except from [4,7]. The latter ones do not take into
account any mechanical feedback though.

In this paper, instead, we focus on the cardiac elementary anatom-
ical structure, i.e. the fiber, whose contraction and relaxation processes
are associated with the pumping function of the heart. In the literature,
many models referring to the electromechanics of ventricular fibers have
been proposed. They have been either lumped parameter models, like the
ones derived from the original Hill three-element model of skeletal muscle
(e.g., [8–11]), or continuous electromechanical models for one- or three-
dimensional fibers (e.g., [12,13]), which have only focused on free-loaded or
isometric contractions.

The novelty of the present work is the development of a finite-element
strongly-coupled electromechanical model that is able to investigate both
the electrical and mechanical activities of eccentric hypertrophic ventric-
ular fibers. We consider the fiber as a one-dimensional continuous strand
of cardiac tissue made of electrically and mechanically coupled myocytes,
through which an electrical excitation wave spreads and triggers muscle
contraction.

We implement three classical in vitro protocols, i.e. the isometric, after-
loaded isotonic and quick-release ones [10,14], which are known to reproduce
the different types of contraction and relaxation during the four phases of
a cardiac cycle: the isovolumic systole, the blood efflux, the isovolumic di-
astole and the diastolic filling.

The whole model consists of a zero-dimensional cardiomyocyte model
of bioelectrical activity, calcium dynamics and active tension generation
and a one-dimensional mechanical model of finite elasticity coupled with
the Monodomain reaction-diffusion equation written in the current fiber
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Electromechanical modeling of an eccentric hypertrophic fiber

configuration and describing the electrical current flow. In a Lagrangian
framework, the corresponding Monodomain equation written in the refer-
ence configuration includes two types of geometric feedback: the conduction
feedback, i.e. the influence of the deformation gradient on the conductivity
tensor, and the convection feedback, by introducing a dependence on the
deformation rate. However, if one already wrote the convective term in the
current configuration, then such a term would cancel when pulling back
to the reference configuration. Although this last way to proceed is cor-
rect in case of moving particles, in this work the Monodomain model is
written in the current configuration without the convective term because
we follow the considerations developed in [15] and it is still not apparent
from experimental data if introducing the convective term directly in the
current configuration is physically valid for a moving activation wavefront
among cardiomyocytes, which shift only around their reference positions.
Moreover, we take into account the so-called mechanoelectric feedback rep-
resented by the influence of stretch-activated membrane channels on the
ionic current [16].

In the literature, there are already several studies on the impact of
mechanical feedbacks on the bioelectrical activity, starting from the first
ones by Nash and Panfilov [17,18]. However, to our knowledge, no previous
works have investigated the effects of all previous mechanical influences in
case of both healthy and eccentric hypertrophic fibers. Therefore, this is
the first problem we are going to face. Then, the remainder of this work
aims at studying the electromechanical behavior of fibers contracting under
isometric, afterloaded isotonic and quick-release conditions, by employing
some classical measures and curves found in the literature of in vitro and
in silico studies. We limit ourselves to the analysis of eccentric hypertrophy
as a time response to changes in blood volumes by neglecting any genetic
defect. Nevertheless, to our knowledge, for the first time, hypertrophic al-
terations are added both at the level of a single cardiomyocyte and at the
level of the entire fiber and for both electrical and mechanical activities.
Moreover, the effects of the mechanical feedback induced by a finite growth
and of the changes in cardiomyocyte size on the propagation of the electri-
cal signal are taken into account. As a remark, in the literature, there are
no experimental data for eccentric hypertrophic fibers, thus our simulation
results try to fill this lack of information.
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2. Methods

2.1. The mechanical model

Let us denote the material coordinates X = (X1, X2, X3)
T of the refer-

ence cardiac domain Ĥ and the spatial coordinates x = (x1, x2, x3)
T of the

current cardiac domain at time t H(t). We denote by φ the deformation
map, such that x = φ(X, t)T = φt(X), between Ĥ and H(t) = φt(Ĥ) and
by U(X, t) = φ(X, t)−X the corresponding displacement field. In a quasi-
static regime with no volume forces, we seek the displacement field U(X, t)
satisfying the equilibrium condition of the cardiac domain given by [19]

(1) Div(FS(U,X)) = 0 in Ĥ,

where F = ∂φ/∂X ≡ ∂x/∂X = I + ∂U/∂X is the deformation gradient
tensor, S is the second Piola-Kirchhoff stress tensor and Div is the operator
divergence defined relative to X.

To characterize growth, we consider the multiplicative decomposition
of the deformation gradient tensor F into an elastic part Fe and a growth
part Fg [20] (see also, e.g., [21] for an extensive review on the state of the
art of growth modeling and corresponding examples from the literature),
i.e.

(2) F = FeFg.

Since, during eccentric hypertrophy, Fg should represent the cardiomy-
ocytes elongation due to the serial deposition of new sarcomeres, we choose
Fg as in [4,5,7]

(3) Fg = I + (θf − 1)âf ⊗ âf ,

where âf is the unit vector for the local fiber direction in Ĥ and θf is
the growth parameter along the fiber, which depends on time and space,
varying typically between 1 and 2 in those computational studies dealing
with eccentric hypertrophy in a ventricular model (in any case, θf ≥ 1 at
least).

Following the active stress approach, we compute the elastic part Se of
the total stress tensor S as

(4) Se = Se,a + Se,p = FgTaâf ⊗ âf
âTf Câf

(Fg)T +
∂W

∂Ee
− p(Ce)−1,

where the elastic active component Se,a is related to the cell active tension
Ta that is supposed to develop only along the fiber direction (see, e.g., [13,
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22]), whilst the elastic passive component Se,p models the cardiac tissue
as an incompressible hyperelastic material [19]; Ce = (Fe)TFe and Ee =
1/2(Ce − I) are the elastic parts of the right Cauchy-Green deformation
tensor C and Lagrange-Green strain tensor E, W is a strain energy function
and p is the hydrostatic pressure.

(5) W =
a

2b
eb(I

e
1−3) +

af
2bf

(ebf (max{Ie4f−1,0})
2

− 1),

where a, b, af and bf are fixed parameters taken from [23], whilst Ie1 =
Ce : I and Ie4f = âTf C

eâf are the elastic invariants [4,19]. We choose a
transversely isotropic constitutive law because, in this work, the fiber has
equal material properties in any direction transverse to âf . As a remark, the
underlying hypothesis that a single fiber obeys the same constituive law of
the whole myocardium is motivated by the fact that the former represents
the elementary unit of the latter and the procedure described below to
derive the one-dimensional model keeps into account the three-dimensional
properties of the cardiac tissue.

Following [13,22], we assume that the cardiac domain is composed of
fibers parallel to the X1 axis, hence âf = (1, 0, 0)T , with no rotations occur-
ing during deformation (i.e., from the polar decomposition, F = RUs = Us

with R a rotation tensor and Us a stretch tensor). Thus, the analytical ex-
pression of Se,a simplifies into

(6) Se,a
MN =

Taθ
2
f

C11
δM1δN1,

where M,N = 1, 2, 3 and δij are the Kronecker symbols. Then, we suppose,
like in [13], that xi(X, t) = xi(Xi, t) for i = 1, 2, 3. In this case, Fe, Ce, Ee

and Se become diagonal tensors. In particular, Se,p can be written as

(7) Se,p
MM =

∂W

∂Ee
MM

− p

2Ee
MM + 1

, Se,p
MN = 0 if M 6= N.

Considering that soft tissues (like our fiber) may be characterized by rele-
vant volume changes during growth, we set the incompressibility constraint
only on the elastic part of the deformation [24], i.e. Je = det(Fe) = 1,
which, in terms of Ee, is written as

(8) (2Ee
11 + 1)(2Ee

22 + 1)(2Ee
33 + 1) = 1.

At last, we write an equation for Se,p
11 as a function of Ee

11 following the
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procedure suggested in [13]

Se,p
11 =

∂W

∂Ee
11

− p

2Ee
11 + 1

=(9)

= aeb(I
e
1−3) + 2afe

bf (max{Ie4f−1,0})
2

max{Ie4f − 1, 0} − p

2Ee
11 + 1

.

Here, p is derived from p = (2Ee
22 + 1)∂W/∂Ee

22 = (2Ee
22 + 1)aeb(I

e
1−3)

based on Equation (7), where Se,p
22 = Se,p

33 = 0 because the traction exerted
by the load acts only in the direction of the fiber; the value of Ee

22 is given
by Ee

22 = 1/(2
√

2Ee
11 + 1) − 1/2 based on Equation (8), where Ee

22 = Ee
33

because we model the fiber as a transversely isotropic structure. Since we
use a one-dimensional framework in the remainder of this paper, we set

X = X1, x = x1, x(X, t) : Ω̂ = [0, L̂]→ Ω(t) = [0, L(t)],

F = F11, C = C11, E = E11, S = Sa
11 + Sp

11

and

F e = F e
11, F g = F g

11, Ce = Ce
11, Ee = Ee

11, Se = Se,a
11 + Se,p

11 ,

where

(10) Se,a
11 =

Taθ
2
f

C11
=

Ta
Ce
11

.

After computing the elastic part Se, the total S can be derived as

(11) S = Se 1

θf
,

which is the simplified one-dimensional form of the corresponding three-
dimensional pull-back equation S = Jg(Fg)−1Se(Fg)−T (with Jg =
det(Fg)) from the intermediate growth configuration to the reference one.

Then, the scalar S = S(U,X) enters the quasi-static equilibrium condi-
tion to seek the displacement U(X, t)

(12)
d(FS(U,X))

dX
= 0 in Ω̂

with F = 1+∂U(X, t)/∂X. This equation is closed by always fixing the left
end, whilst the right one is fixed only under isometric conditions otherwise
a load is applied to it.
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At last, the active tension Ta in Equation (10) is computed through the
model by Land et al. [25], which can be summarized in the following way

(13)


∂ẑ

∂t
−Rẑ

(
ẑ, [Ca2+]i, λ

e,
dλe

dt

)
= 0 in Ω̂× (0, T ),

ẑ(X, 0) = ẑ0(X) in Ω̂,

Ta = h(ẑ, λe) in Ω̂× (0, T ),

where ẑ is a vector of model variables in Ω̂, [Ca2+]i is the intracellular
calcium concentration from the membrane model by Faber-Rudy [26] (see
below) and λe and dλe/dt are the elastic fiber stretch and stretch rate
from the mechanical model. We use λe and dλe/dt instead of the total ones
λ = λeλg = λeθf and dλ/dt because growth is carried out by adding new
sarcomeres in cardiomyocytes rather than lengthening the preexistent ones
(as observed in [7]). In particular, for a one-dimensional fiber, λe is given
by

(14) λe =
√
Ce
11 = F e

11.

2.2. The electrophysiological model

Most of works on cardiac electromechanical simulations assume that the
following current conservation laws, related to the intra- and extracellular
current densities ji and je, hold in the current configuration H(t)

(15) div ji = −im + iiapp, div je = im + ieapp,

where ii,eapp are the intra- and extracellular applied currents and im is the
total transmembrane current (all of them per unit tissue volume); see [15]
for a derivation of these laws and of the corresponding Bidomain model
on a moving domain in case of a quasi-static regime. The transmembrane
current appears as the active source or sink term depending on its sign
for the two media and it establishes the coupling with a zero-dimensional
membrane model. Actually, it is given by im = ic + iion, i.e. by the sum of
the capacitive membrane current ic and the total ionic current iion flowing
through membrane channels, from which we have

(16)



im(x, t) = cm
dv

dt
(x, t) + iion(v,w, c),

dw

dt
−Rw(v,w) = 0,

dc

dt
−Rc(v,w, c) = 0,
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where cm is the membrane capacitance, v is the transmembrane potential,
w is the vector of gating variables governing the dynamics of selective ionic
channels and c is the vector of intracellular ionic concentrations, in partic-
ular of sodium, potassium and calcium. All variables v, w and c are defined
on the current configuration H(t).

We remark that what is expressed in the membrane model (16) is con-
nected only to current flows crossing an element of the distributed cellular
membrane that interconnects the intra- and extracellular media. These cur-
rent flows are independent of the motion of the two media, thus all time
derivatives d(·)/dt are partial derivatives with respect to time only. Ac-
tually, if the capacitive current, modeling the lipidic double layer of the
membrane as an electric capacitor, were expressed through a total deriva-
tive of the transmembrane potential v, we would have

(17) ic = cm
∂v

∂t
+ grad v ·V,

where V = ∂φt/∂t would be the velocity field of the current configuration.
Then, it would follow that, for a time-constant but spatially heterogeneous
transmembrane potential v(x, t), there could still be a capacitive current
flow through the membrane due to the x-dependence of the convective term.
This would be strange and contradictory for a usual electric capacitor, for
which the origin of a capacitive current is only the time variation of the
transmembrane potential. A similar remark applies to the gating variables
w related to the dynamics of channels, whose behavior is independent of the
motion of the cellular membrane. Moreover, as shown in [15], the diffusive
components of ionic concentrations c can be neglected. Therefore, even if
we considered the total derivative of a generic concentration c

(18)
Dc

Dt
=
∂c

∂t
+ grad c ·V,

the second term would be negligible as the diffusive flow has already been
removed.

Now, it is well known that the Bidomain model in a one-dimensional
fiber is equivalent to the Monodomain one (see [27,28]), which, for constant
intra- and extracellular conductivity coefficients σi,ef along the fiber, is given
by

(19) cm
∂v

∂t
+ iion(v,w, c)− σf

∂2v

∂x2
= iapp in Ω(t)

with σf = σifσ
e
f/(σ

i
f + σef ) and iapp = (σif i

i
app − σef ieapp)(σif + σef ). Pulling

back to the reference configuration Ω̂ and considering the incompressibility
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constraint Je = det(Fe) = 1 and the relationship J = det(F) = JeJg = θf ,
the one-dimensional Monodomain model (see [15]) reads

(20)



cm

(
∂v̂

∂t
− 1

F

∂v̂

∂X

∂x

∂t

)
− 1

θf

∂

∂X

(
θf
σf
F 2

∂v̂

∂X

)
+

+iion(v̂, ŵ, ĉ) + iSAC(v̂, ĉ, λe) = îapp in Ω̂× (0, T ),

∂v̂

∂X
= 0 on ∂Ω̂× (0, T ),

v̂(X, 0) = v̂0(X) in Ω̂,

∂w

∂t
−Rw(v,w) = 0 in Ω(t)× (0, T ),

∂c

∂t
−Rc(v,w, c) = 0 in Ω(t)× (0, T ),

w(x, 0) = w0(x), c(x, 0) = c0(x), in Ω(t),

where v̂, ŵ and ĉ are defined in Ω̂ and iion, iSAC and îapp are the total
ionic current, the stretch-activated channels current and the applied cur-
rent stimulus per unit fiber length. Since the fiber is supposed to be elec-
trically insulated, the second equation imposes a zero Neumann boundary
condition.

In our simulations, the Monodomain model is coupled with the
Faber-Rudy membrane model, which gives the ionic membrane current
Iion(v̂, ŵ, ĉ) per unit area of the membrane surface. Since we assume a
constant ratio of membrane surface per volume χ = 1000 cm−1, we have
iion = χIion.

The extracellular conductivity σef has a conservative value of 2 mS/cm

(see, e.g., [28]), whilst the intracellular one σif is computed as [29,30]

(21) σif =
1

rcyt +
rjunct

Lcell

,

where rcyt and rjunct are the cytoplasmic and gap junction resistivities and
Lcell = θfLcell,healthy is the cardiomyocytes length (with Lcell,healthy the
length value from the original Faber-Rudy membrane model, i.e. 0.01 cm).
We use the values rcyt = 150 Ω · cm and rjunct = 1.5 Ω · cm2 from [31]
to obtain a value of 3 mS/cm for σif [28] if θf = 1, which, together
with the conservative one chosen for cm (1 µF/cm), ensures a conduc-
tion velocity between 0.06 and 0.07 cm/ms in case of the healthy fiber.
Moreover, the same variable Lcell affects the geometric plasma membrane
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area Ageo = 2πR2
cell + 2πRcellLcell (where Rcell is the cardiomyocytes ra-

dius, i.e. 0.0011 cm), the capacitive one Acap = 2Ageo and the cell volume
Vcell = πR2

cellLcell, which are used to solve the Faber-Rudy model related
to the single cardiomyocyte. On the contrary, the surface-to-volume ratio
χ does not depend on growth in this work.

The second term in the first equation of system (20) contains a convec-
tive term depending on the one-dimensional deformation gradient F and
deformation rate ∂x/∂t, whereas the third term is only dependent on F ;
these two geometric feedbacks are called convection and conduction feed-
backs respectively in the remainder of this work. Moreover, in the same
equation, the membrane current iSAC , depending on the elastic stretch λe,
points out the addition of stretch-activated channels SACs to the original
Faber-Rudy model, which define the so-called mechanoelectric feedback. In
this work, we use the ISAC model proposed in [32] given by the sum of the
following currents

(22) ISAC,Na = GSACγSL,SAC
ER − EK

ENa − ER
(v̂ − ENa),

ISAC,K = GSACγSL,SAC(v̂ − EK),

IKo = GKo
γSL,Ko

1 + e−
10+v̂
45

(v̂ − EK),

where GSAC = 4.13 · 10−3 mS/cm2 and GKo = 1.2 · 10−2 mS/cm2 are two
maximum channel conductances per unit area of the membrane surface,
γSL,SAC = 10 max{λe − 1, 0} and γSL,Ko = 0.7 + 3 max{λe − 1, 0} account
for the linear dependence of currents on the elastic fiber stretch λe and ER =
−10 mV , EK = −85 mV and ENa = 65 mV are the reversal potentials of
ISAC , potassium and sodium. Hence, ISAC is activated only when λe >1
according to the experimental results reported in the literature (e.g., [16]).

During growth and all simulations, the fiber is excited for 1 ms by a
current stimulus îapp of 250 mA/cm to its left end, which then propagates
towards the right end in order to better simulate the in vivo propagation
of current stimuli along fibers, unlike the usual in vitro experiments, where
the entire fiber is stimulated simultaneously.

2.3. The growth model

Fiber growth is achieved by following to some extent the procedure
suggested in [7] for five beats. No cardiac cycle phases are implemented
at the level of the fiber for the sake of simplicity. For each beat, the fiber
is first stretched at its right end by a load equal to 6 kPa, which should
simulate the rise in ventricular end-diastolic pressure from a healthy value
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of 2 kPa due to an increase of atrial pressure during mitral regurgitation (a
possible factor triggering eccentric hypertrophy). Then, it is stimulated in
order to contract and relax without modifying its length. At last, at the end
of the beat, the fiber can grow. In this work, we adopt the fixed reference
configuration method to update the growth of a soft tissue (see [33] for a
comparison with the updated reference configuration one). Thus, we first
compute the local increments for θf between the beats n and n+1, i.e. θf,∗,
as

(23) θf,∗ = 1 + k(θf,n)(λen − λeh).

Here, k is a rate-limiting function with the expression k = 1/τ(θmax
f −

θf,n)/(θmax
f − 1), where τ = 0.2 and θmax

f = 4 (to enhance differences

in local growth). The growth criterion λen − λeh, instead, is given by the
deviation of the local time-averaged elastic stretch during the beat n from
the local time-averaged homeostatic set point value dictated by a healthy
simulation with a preload equal to 2 kPa. Then, we compute the new local
values for θf at the beat n+ 1, i.e. θf,n+1, from the product

(24) θf,n+1 = θf,∗θf,n,

where θf,n represents the cumulative growth of all previous beats up to the
beat n.

2.4. The discretization of the complete model

The discretization of the complete model is performed by continuous
piecewise linear finite elements in space and semi-implicit finite differences
in time. The ODEs for c are solved by the Forward Euler method, whereas
the ODEs for w by the Rush-Larsen scheme [34]. The active tension gener-
ation model is solved coupled with the equilibrium equation (12) using the
update method [12], i.e. the variables of the active tension generation model
are updated at each Newton iteration together with the resolution of the
mechanical deformation. A uniform mesh of 100 linear finite elements and
a constant time step ∆tel of 0.05 ms are used for the electrical components,
whereas 50 linear finite elements and a constant time step ∆tmec of 1 ms
(if not otherwise specified) are used for the mechanical ones.

We perform all simulations in Matlab on a one-dimensional fiber with
a uniform cross-section and a reference length L̂ of 1 cm (Figure 1, panel
A). Its initial length changes according to the type of fiber, i.e. it is equal
to 1 cm for the healthy fiber and about 1.95 cm for the hypertrophic one,
which is obtained at the end of the previously described five growth beats.
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Figure 1. A) reference configuration between 0 and 1 cm for the healthy and hyper-
trophic fibers. The left end is always kept fixed, whilst the right one is fixed only during
isometric contractions and relaxations, otherwise it is subjected to a load. The current
stimulus is given at the left end. B) spatial distribution of the growth parameter θf shown
in the reference configuration (see text for details on its derivation). C-F) time evolutions
of the transmembrane potential V (C), intracellular calcium concentration [Ca2+]i (D),
active tension Ta (E) and elastic stretch λe (F), all referring to five equally-spaced nodes
(denoted by dots and selected at 3, 4, 5, 6 and 7 mm from the left end in A)) during an
isometric simulation with a preload equal to 4 kPa and involving the healthy (blue) or
hypertrophic (red) fiber.
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2.5. The implemented tests

At the beginning of all protocols, a specific preload is applied to the
right end of the healthy or hypertrophic fiber to stretch it passively. Then,
the fiber is fixed at the right end and five isometric beats are run to reach
a steady state for that preload. The final values for nodal stretches, coor-
dinates and all Faber-Rudy-Land model variables are saved and represent
the initial conditions for all the tests made later. The stretch rate is set to
zero for all nodes because the fiber stops after its stretching.

For the isometric tests, only another isometric twitch is run.
To implement the afterloaded isotonic tests, instead, we automatically

fix the right end solely as long as the fiber does not contract. Thus, an
initial isometric contraction phase occurs before becoming purely isotonic
as soon as the developed tension (i.e. the reaction at the left end of the
fiber) equals the applied load. In experimental studies, this load is the sum
of the previous preload and another externally applied afterload. However,
our protocol automatically sets a unique afterload, which virtually includes
the preload and the afterload, by the following procedure. First, an iso-
metric twitch is run after the preloading phase. Then, the range between
the maximum and the minimum values of the developed tension is equally
divided in ten parts, obtaining a constant increment step. At last, starting
from the minimum value, the afterload is incremented by this constant step
in an iterative way resulting in many isotonic tests that start from the same
initial conditions assigned to the isometric twitch. When the afterload is
too heavy, i.e. it is equal to the maximum value of the developed tension,
then the last isotonic test becomes totally isometric. A simulation with a
zero afterload is run for each preload too.

For the quick-release tests, which are almost similar to the afterloaded
isotonic ones apart from the fact that the transition from the isometric
contraction to the isotonic one is externally enforced, we let the fiber free
to contract isotonically only when it develops the maximum tension due to
a specific initial length. Thus, we prolong the initial isometric contraction to
elicit at the same time all the subsequent isotonic contractions for different
afterloads. A simulation with a zero afterload is eventually performed again.

3. Results and discussion

3.1. Fiber growth

Panel B of Figure 1 displays the resultant spatial distribution of θf at
the end of the fifth growth beat on the reference configuration. The resul-
tant non-uniformity of such a distribution mainly derives from the isometric
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beat performed before triggering growth, which has been found to enhance
differences in local growth better than an isotonic one with a constant ap-
plied load, and the position of the stimulation site. Due to the fact that
both fiber ends are fixed and the external stimulus is applied at the left
end, a more inhomogeneous distribution of λen values (driving fiber growth)
comes out. The nodes closer to the left end, which are the first activated
ones, contract to a lesser extent, hence they show more positive λen values,
whilst the ones closer to the right end, which are activated later, contract to
a higher extent, thus they exhibit less positive λen values. Actually, the for-
mer nodes develop a lower value of active tension Ta due to the lower values
of λen before their contraction compared with the latter nodes, which de-
velop a higher value of Ta because the λen values are raised by the preceding
contraction of the leftmost nodes.

Panels C-F represent the time evolutions of the transmembrane poten-
tial V ≡ v̂, intracellular calcium concentration [Ca2+]i, active tension Ta
and elastic stretch λe in five equally-spaced nodes along the healthy and
hypertrophic fibers (denoted by dots and chosen at 3, 4, 5, 6 and 7 mm
from the left end in panel A) in case of isometric simulations with a preload
equal to 4 kPa. The propagation of the electrical signal can be remarked.

3.2. The electrical response

The electrical responses of healthy and hypertrophic fibers are analyzed
by means of isometric tests because isometric contractions and relaxations
are present in case of afterloaded isotonic and quick-release tests too and
isometric tests are usually found in those in silico studies aimed at investi-
gating the eletrical behavior of contracting fibers (e.g., [8,9,11]).

The first issue we deal with is the analysis of the relevance of the me-
chanical feedbacks in the Monodomain model of electrophysiology (20).
For both healthy and hypertrophic fibers, we run: i) a simulation with the
conduction feedback (COND); ii) a simulation with the conduction and con-
vection feedbacks (COND+CONV); iii) a simulation with the conduction
and mechanoelectric feedbacks (COND+SAC); iv) a simulation with all
three feedbacks (COND+CONV+SAC). For these simulations, we choose
∆tmec = ∆tel in order to improve the accuracy of results. We report in
Figures 2 and 3 the resulting spatial distributions (shown in the reference
configuration) of the activation time AT , repolarization time RT , corre-
sponding action potential duration APD = RT −AT and propagation (or
conduction) velocity vprop for the healthy and hypertrophic fibers respec-
tively under all simulated conditions. In this work, AT is defined as the time
instant when V exceeds the threshold value of -40 mV , RT is defined as the
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time instant when V becomes less than its 90% repolarization value of -76.5
mV and vprop is computed as the ratio of the coordinate of each node at
the moment of its electrical activation to its activation time. From a visual
inspection, it appears that the AT of the healthy fiber is not affected at
all. A maximum discrepancy of only 2 ms is present at the right end of the
hypertrophic fiber instead. As regards both RT and APD, a systematic but
slight difference is found along the entire healthy fiber between the COND
or COND+CONV case and the COND+SAC or COND+CONV+SAC one.
A similar difference is detected for APD only in case of the hypertrophic
fiber. Moreover, vprop for both fibers turns out not to be strongly affected
by mechanical feedbacks. 
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Figure 2. Spatial distributions of electrical variables shown in the reference configuration
in case of isometric simulations with a preload equal to 4 kPa and involving the healthy
fiber: activation time AT (A), repolarization time RT (B), action potential duration APD
(C) and propagation velocity vprop (D). The different curves belong to a simulation with
the conduction feedback alone (red, continuous) or together with the convection feedback
(blue, dotted), the mechanoelectric feedback (blue, continuous) or both of them (red,
dotted).

In the remainder of this work, we always include the effects of all feed-
backs. Therefore, to better compare the electrical responses of healthy and
hypertrophic fibers, we first collect in panels A and B of Figure 4 the spatial
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Figure 3. Spatial distributions of electrical variables shown in the reference configura-
tion in case of isometric simulations with a preload equal to 4 kPa and involving the
hypertrophic fiber. Same format as in Figure 2.

distributions of APD and vprop for the COND+CONV+SAC case. From
panel A, it turns out that the decreasing trend of APD for the hypertrophic
fiber is less linear than the one for the healthy fiber, but the overall dis-
persion is not significantly affected. From panel B, hypertrophy alters vprop
only close to the left end, where the stimulus is applied. Moreover, panels
C and D display the time evolutions of the transmembrane potential V
in those nodes where the maximum and minimum values for the growth
parameter θf are detected compared with the corresponding time evolu-
tions of the healthy case. Similarly, panels A and B of Figure 6 show the
same evolutions for the hypertrophic fiber (with different local values for
θf ) compared with the ones for the case with all local θf values equal to
the mean of their distribution along the fiber (panel B of Figure 1). No
significant differences are found from both figures again.

3.3. The mechanical response

The mechanical responses of healthy and hypertrophic fibers are studied
by means of isometric, afterloaded isotonic and quick-release tests.
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Figure 4. Electrical responses of the healthy (blue) and hypertrophic (red) fibers in
case of isometric simulations with a preload equal to 4 kPa and all mechanical feedbacks.
A-B) spatial distributions of the action potential duration APD (A) and propagation
velocity vprop (B) shown in the reference configuration. C-D) time evolutions of the
transmembrane potential V in the nodes with the maximum (C) and minimum (D) values
for θf in case of the hypertrophic fiber compared with the corresponding evolutions of
the healthy case.

As regards the isometric tests, panel A of Figure 5 shows the time evo-
lutions of the tension T developed by the healthy and hypertrophic fibers
at the left end after their electrical stimulation when the preload is varied
(0, 1, 2, 3 or 4 kPa). The peak values of curves get higher and higher as the
preload increases, but they decrease with hypertrophy. Panel B reports the
length-tension relationships, where the tensions before and after the elec-
trical stimulation are represented as function of the increments in muscle
length ∆L, caused by the applied preloads. Again, the peak value for the
tension developed after the electrical stimulation Tmax decreases owing to
hypertrophy. This result suggests that, in a three-dimensional environment,
eccentric hypertrophic ventricles may develop a lower pressure during their
isovolumic systole. Moreover, if the same preload is taken into account in
panel B, it appears that the hypertrophic fiber gets more stretched than
the healthy one during the preloading phase according to panel F of Fig-
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ure 1, where the values of the elastic stretch λe are generally higher for
the former fiber. This phenomenon is peculiar to cardiac fibers that are
more likely to cause ventricular dilation during the diastolic filling, thus
leading to a higher end-diastolic volume. Interestingly, both previous re-
sults are obtained without altering the mechanical parameters belonging to
the strain energy function (5). Furthermore, for the hypertrophic fiber, the
previous decrease in Tmax, which includes both active and passive compo-
nents, occurs while the active tension Ta in panel E of Figure 1 increases
due to the higher values of λe. Then, similarly to APD, panels C and D
display the time evolutions of λe where the maximum and minimum values
for the growth parameter θf are found, comparing them with the healthy
case. Moreover, panels C and D of Figure 6 display the same evolutions for
the hypertrophic fiber (with different local values for θf ) compared with
the ones for the case with a constant θf equal to the mean value along the
fiber. From Figures 5 and 6, it appears that, where θf is maximum (panels
C), contraction is depressed. Conversely, where θf is minimum (panels D),
contraction is enhanced. This proves that the more growth gets heteroge-
neous along the fiber the more the resulting mechanical response during
the isovolumic systole of the cardiac cycle gets heterogeneous too. As far
as the afterloaded isotonic and quick-release tests are concerned, panel A
of Figure 7 illustrates an example of the time evolutions of the tension T
developed by the two fibers during the afterloaded isotonic contractions
with a preload equal to 4 kPa, whereas panel B depicts the corresponding
time evolutions of the fiber length L. Panels A and B of Figure 8, instead,
show the corresponding time evolutions during the quick-release contrac-
tions under the same preload. By considering all preloads from 0 to 4 kPa,
tension-velocity relationships are derived from both afterloaded isotonic and
quick-release tests (panels C). The afterloads on the abscissa correspond to
the developed tensions during the isotonic phase, whereas the contraction
velocities vcontr on the ordinate (taken positive) are computed from the
constant slopes of the length curves in time as soon as the two fibers start
to contract isotonically [10,14]. In particular, when the afterload is zero,
the initial reduction of the fiber length up to the rest value within the first
ms in panel B of Figure 7 must be neglected for the measurement of the
isotonic contraction velocity. In our simulations, the values for the veloc-
ity at a zero afterload are the same during the afterloaded isotonic tests,
whilst they change during the quick-release ones. This different result may
come out from the nature of the test itself. On one hand, the afterloaded
isotonic test is the protocol that mimics best the in vivo transition from the
isometric contraction to the isotonic one. On the other hand, instead, the
quick-release test is the one that most approaches the in vitro experiments
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Figure 5. Mechanical responses of the healthy (blue) and hypertrophic (red) fibers in
case of isometric simulations. A) time evolutions of the tension T developed by the two
fibers after their electrical stimulation for increasing preloads (0, 1, 2, 3 or 4 kPa). B)
corresponding length-tension relationships. ∆L on the abscissa is the increment in fiber
length from the initial value according to the type of fiber, whereas Tmax on the ordinate
is the maximum value for the five tensions developed before (circles) and after (triangles)
the electrical stimulation. C-D) time evolutions of the elastic stretch λe in the nodes
with the maximum (C) and minimum (D) values for θf in case of the hypertrophic fiber
compared with the corresponding evolutions of the healthy case (preload equal to 4 kPa).

run on tetanized skeletal muscles, which cardiac fibers are often compared
with; actually, although the heart cannot be tetanized, researchers try to
reach an equally-activated muscle state by making constant the time dur-
ing contraction at which the isotonic contraction velocity is measured. This
discrepancy may lead to tension-velocity relationships that are not similar
to hyperbolas (especially for small afterloads as in this work) when they are
derived from afterloaded isotonic tests, whilst they could be entirely fitted
to hyperbolas in case of quick-release tests. Nevertheless, from both tests,
higher values of contraction velocity are reached by the hypertrophic fiber
at smaller afterloads (and at a zero one accordingly), whereas lower values
are found at bigger afterloads. The same trend characterizes the maximum
shortenings ∆Lmax (that are nearly the same for both tests too) during
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Figure 6. Time evolutions of electrical and mechanical variables in the nodes with the
maximum (A-C) and minimum (B-D) values for θf in case of the hypertrophic fiber with
an inhomogeneous growth (red) compared with the ones in the same nodes for the fiber
with a homogeneous growth (black), i.e. with all local θf values equal to their mean along
the fiber: A-B) transmembrane potential V ; C-D) elastic stretch λe. These results belong
to isometric simulations with a preload equal to 4 kPa and all mechanical feedbacks.

the isotonic phase under each applied afterload in panels D of Figures 7
and 8. The two previous results point out that, in case of small afterloads
(for example, when the aortic resistance to blood flow is physiological),
eccentric hypertrophy may determine greater volume variations for a three-
dimensional ventricle during the systolic blood efflux phase of the cardiac
cycle.

4. Conclusions

In this work, a one-dimensional strongly-coupled model has been devel-
oped to simulate the electromechanical activity of a ventricular fiber under
healthy conditions or affected by eccentric hypertrophy while it contracts
according to different protocols. Hypertrophy has been implemented both
in the electrophysiological model and in the mechanical one to better an-
alyze the full electromechanical response of contracting fibers. First, the
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Figure 7. Mechanical responses of the healthy (blue) and hypertrophic (red) fibers in
case of afterloaded isotonic simulations. A) time evolutions of the tension T developed
by the two fibers after their electrical stimulation with a preload equal to 4 kPa and
afterloads ranging from the minimum to the maximum value of T . B) corresponding time
evolutions of the fiber length L. C) tension-velocity curves for increasing preloads (0, 1,
2, 3 or 4 kPa). The afterloads on the abscissa are equal to the tensions developed by
the two fibers during their isotonic phase. The isotonic contraction velocities vcontr are
taken positive. D) corresponding maximum shortenings ∆Lmax.

effects of the geometric feedbacks and of the mechanoelectric one on the
electrical response of both healthy and hypertrophic fibers have been in-
vestigated. Then, by including all feedbacks, the electrical and mechanical
responses of such fibers have been compared too.

It has turned out that neglecting one or more feedbacks does not signifi-
cantly alter the behavior of both fibers. The effect of growth on electrophys-
iology is limited, suggesting that eccentric hypertrophy does not increment
the risk of inducing arrhythmogenic phenomena when it is just a compen-
satory process to overload and a single fiber is taken into account. Future
simulations should compare the results obtained in this work on fibers with
the corresponding ones on three-dimensional dilated ventricles in order to
test the existence of possible differences. Moreover, they may include the
effects of eccentric growth at a molecular level through one or more genetic
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Figure 8. Mechanical responses of the healthy (blue) and hypertrophic (red) fibers in
case of quick-release simulations. Same format as in Figure 7.

defects (characterizing hereditary hypertrophy), which could not preserve
the shape of the action potential due to modifications involving the total
number of membrane channels and gap junctions. In this way, a stronger
and more pathological electrical remodeling could be triggered similarly to
the one usually reported by the clinical literature.

Nevertheless, the effect of growth on fiber mechanics already suggests
a pressure-volume loop for eccentric hypertrophic ventricles that enlarges
over volumes and is more likely to shrink over pressures.
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