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Abstract

Biological systems are typically formed by different cell phenotypes, characterized by

specific biological properties and behaviors. In particular, cells are able to undergo phe-

notypic transitions (i.e., activation or differentiation) upon internal or external stimuli.

In order to take these phenomena into account, we here propose a modelling framework

in which cell ensembles can be described collectively (i.e., through a distributed mass

density) or individually (i.e., as a group of pointwise/concentrated particles) according

to their biological determinants. A set of suitable rules involving the introduction of a cell

shape function then defines a coherent procedure to model cell activation mechanisms,

which imply a switch between the two mathematical representations. The theoretical en-

vironment describing cell transition is then enriched by including cell migratory dynamics

and duplication/apoptotic processes, as well as the kinetics of selected diffusing chemicals

influencing the system evolution. Remarkably, our approach provides consistency of the

same modeling framework across all types of cell representation, as it is suitable to cope

with the often ambiguous translation of individual cell arguments (i.e., cell dimensions

and interaction radii) into collective cell descriptions. Biologically relevant numerical re-

alizations are also presented: in particular, they deal with phenotypic transitions within

cell colonies and with the growth of a tumor spheroid. These phenomena constitute bio-

logical systems particularly suitable to assess the advantages of the proposed model and

to analyze the role on cell dynamics both of relevant parameters and of the specific form

given to the cell shape function.
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1. Introduction

The evolution of a living system is in general a complex and multi-
scale phenomenon involving many different but interconnected processes,
that occur at different spatio-temporal levels. In particular, macroscopic
dynamics of large cell aggregates and tissues results from microscopic be-
havior of single component cells, which are able to sense and actively inter-
act with the surrounding environment in a non strictly mechanical manner.
This gives rise to entirely different dynamics from those seen in standard
systems of inert matter (e.g., fluids, gases), whose particles respond pas-
sively to relatively simple physical rules. In this respect, the evolution of
a cellular ensemble is not the simple superposition of individual behaviors.
In fact, complex interactions arise among cells, leading to the spontaneous
emergence of phenomena.

In particular, in a wide range of biological systems, collective cell move-
ment is the principal migration mode and it results from the coexistence
and the interactions between multiple cell populations, or between multiple
clones of the same population, each having specific functions and migra-
tory properties. For instance, few specialized cells typically behave as a
patterning guidance for the unspecialized part of the aggregate [1–3]. Such
mechanisms are mainly regulated by temporary activations and/or long-
lasting differentiation processes, that define the leader/differentiated indi-
viduals within the cell group [4]. Relevant examples of these phenomena
include the so-called tip cell selection and lateral inhibition, which estab-
lishes the leader endothelial cells during physio-pathological vascularization,
a process largely mediated by selected vascular endothelial growth factor
(VEGF)-induced delta-notch signaling pathways [5–7], and the epithelial-
to-mesenchymal transition (EMT), which is instead typical of different
stages of morphogenesis and organogenesis. Similarly, during skin repair
after injury, epidermal monolayers invade the wound region moving across
two-dimensional extracellular matrix (ECM) substrates, with activated cells
located at the front of the population that generate traction forces on the
collagenous matrix and are able to synthesize a new basement membrane,
whereas the movement of following individuals is only due to cell-cell and
cell-matrix adhesive interactions [4]. Typical phenotypic differences are also
observed in pathological situations, such as in tumor growth. Nutrient gra-
dients form in fact within a solid cancer mass, causing a well-localized
differentiation of malignant cells, which typically differentiate in an outer
viable rim of highly metabolic and proliferative individuals and a central
quiescent (possibly necrotic) core. In particular, the external cells, which
are difficult to be clinically detected, have the greatest potential to metas-
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Modeling cell activation processes

tasize, displaying an evident ability to evade destruction by the immune
system enter the host bloodstream or lymphatics, extravasate at a distant
site, and establish secondary colonies with devastating consequences for the
wellbeing of the patient [8,9].

From a mathematical point of view, it is indeed desirable to develop
modelling structures able to capture and represent different cell behaviors
as well as the relative mechanisms of cell activation and phenotypic tran-
sitions. In this respect, following the idea presented in [10], we here pro-
pose an innovative modelling approach, which allows to integrate within
the same environment both the dynamics of quiescent cell aggregate, col-
lectively described through a proper spatial mass density and the phe-
nomenology of sets of activated individuals, individually represented by
pointwise/concentrated particles. Further, our mathematical framework in-
cludes rules to reproduce cell differentiation by the use of a proper shape
function which gives the correspondence between the two cell descriptive
instances. In order to apply the proposed approach to specific biological
problems, the resulting hybrid model is finally enriched with proper equa-
tions describing the behavior of each cell clone (i.e., activated/inactivated),
including movement and duplication/apoptosis processes, and the kinetics
of extracellular chemicals involved in the phenomena of interest.

The remaining part of the article is indeed organized as follows. In
Section 2, we present the main model features relative to cell phenotypic
transitions, supported in Section 3 by sample test applications that show
how the multiscale cell differentiation procedure works. Section 4 is then
devoted to introduce possible laws for cell migratory and growth dynamics.
Section 5 proposes the application of the model to the avascular invasion
of solid tumor, whereas Section 6 finally includes some conclusive remarks
as well as comments on the pertinent literature.

2. Mathematical Model I: Cell Phenotypic Transitions

An aggregate of cells within a two dimensional domain Ω ⊂ R2 can
be collectively described by defining a spatial mass density distribution
ρ(t, y) : R+ × Ω→ R+ such that

(1)

∫
Ω
ρ(t, y)dy = M(t) ∀ t,

where M(t) ∈ R+ is the actual mass of the whole cell ensemble. As we will
see in the following, ρ can evolve following a balance equation with non local
intercellular interactions whereas M(t) can possibly vary in time according
to suitable growth/death processes (modeled, for instance, by exponential
or logistic laws).
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Figure 1. In biological systems, cell activation is triggered both by external stimuli and
by intracellular signaling cascades. Such phenotypic transitions can be reproduced in the
proposed mathematical framework by a switch between a distributed and a localized cell
representation. The former in fact properly gives a collective description of an undif-
ferentiated cell ensemble, the latter is instead particularly adapt to reproduce a set of
differentiated cells.

However, in a wide range of biological phenomena, one or few cells are
able to undergo phenotypic transitions, which are induced either by intra-
cellular signals or by extracellular stimuli, see Fig. 1. For instance, high
enough levels of microenvironmental chemicals can trigger cell differenti-
ation/activation. In these cases, the proposed description of the system,
based on a collective density, is no longer adapt. The activated cells require
in fact a more detailed representation, i.e., with a higher level of individual
detail: for instance, they can be more properly regarded as localized mate-
rial points, with concentrated mass m, which are identified by their exact
position in space. It is indeed necessary to define a formal procedure to fig-
ure out an individual pointwise description of the differentiated cells from
the ensemble representation of the system given by the mass density, as
sketched in Fig. 1. In this respect, let us first assume that an input triggers
cell activation in a given point xs ∈ Ω at a given time t ≥ 0 (s for source):
then, as a consequence, a cell differentiates and it is assigned a localized
representation, i.e., a material point is added at xs, while the correspond-
ing mass m has to be removed by the density of the remaining inactivated
aggregate. Such a decrement in the density ρ can be spatially distributed
according to a positive Lebesgue integrable function wxs : Ω 7→ R+, cen-
tered in xs with supp wxs = Ixs ⊆ Ω. Such a function, that hereafter will
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Figure 2. Sample cell morphologies with possible corresponding forms of the shape
function introduced in Eq. (2). In particular, the right panels reproduce the shape function
wxs defined either in Eq. (5) (top) or in Eq. (6) (bottom).

be denoted as shape function, has to satisfy the following property

(2)

∫
Ω
wxs(y)dy = m

and has units µg/µm2. Obviously, cell activation, and the relative switch
between the two mathematical descriptive instances, is possible only if there
is a sufficient amount of mass over the support Ixs of wxs , i.e., if ρ(t,y) ≥
wxs(y), ∀ y at time t. If this condition is satisfied, the updated cell density
is given by

(3) ρ(t,y) = ρ(t,y)− wxs(y) ∀ y ∈ Ω,

whereas, as already explained, at the same time t, a localized material point
“appears” in xs, giving rise to a hybrid description of the system. In this
respect, we remark that the activated cell takes places in the barycenter
of the shape function and carries the same amount of mass. The notation
t is used since a cell phenotypic transition can be considered an almost
instantaneous phenomenon (with respect to the characteristic times of other
cell dynamics) which gives rise to an intermediate system configuration
that, in turn, represents the initial condition for the successive evolution of
the system.

More in general, if we then extend the above-described procedure in
time, or to the case of multiple simultaneous cell differentiations, at any
time t, there is the coexistence of a given number, say N(t), of activated
individuals, whose distribution will be described hereafter by a vector

(4) X(t) = {x1(t), x2(t), . . . , xN(t)},
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and of a mass M(t) of an inactivated cell ensemble, defined by its density
ρ.

In principle, there exist several possible options to properly explicit
the form of the shape function wxs . In particular, we first assume that
the mass of an activated cell has to be accounted within a round region
around its position, whose extension is defined, for instance, by a mean
cell measure. In this respect, recalling the above-introduced notation, it is
consistent to define Ixs as a ball centered in xs, with radius equal to rc,
which obviously depends on the type of cells of interest, see Fig. 2. Further,
the decrement in the mass density due to the cell activation can be either
uniformly distributed over Ixs , as in the case of

(5) wxs(y) =


m

πr2
c

, if y ∈ Ixs ;

0, otherwise,

or inhomogeneous in space. In this case, the shape function wxs may for
example resemble the morphology of cells seeded on planar substrates, ac-
counting therefore of a denser central nuclear region

(6) wxs(y) =


4 m

π (rc)8
( r2
c − |xs − y|2 )3, if y ∈ Ixs ;

0, otherwise;

where | · | identifies the modulus of a vector in the Euclidean norm. A
graphical sketch of the above-introduced forms of the shape function is
given in Fig. 2.

3. Numerical Results - I

We now propose two series of numerical tests, designed both to visualize
the above-introduced modeling procedure that implements cell activation
and to highlight the effects on cell dynamics of different forms given to
the shape function introduced in Eq. (2). In particular, we will employ
either the form defined in Eq. (5) or the one defined in Eq. (6). However,
in both cases, rc is fixed equal to 15 µm and m to 1.8 · 10−3 µg, which are
values coherent with the mean measures of most eukaryotic cell lineages [11].
Further, in all the following simulations, we will constantly start with an
undifferentiated cell aggregate placed in the center of 700 µm × 700 µm
domain Ω, characterized by an inhomogeneous spatial density distribution.
In this respect, referring to the hybrid system representation, we will indeed
always have that N(0) = 0 (i.e., X(0) = ∅) and M(0) = 0.3 µg.
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Figure 3. Cell phenotypic activation (with the coherent switch between the correspond-
ing mathematical descriptions) induced at successive instants at selected points within an
initially quiescent cell colony. Top panels: Cell dynamics obtained by the use of the shape
function given in Eq. (5). Bottom panels: Cell dynamics obtained by the use of the shape
function given in Eq. (6). In both cases the initial round cell aggregate is characterized
by an inhomogeneous distribution of mass. At t1, cell activation is proposed and occurs
in both settings at point A. At t2, cell differentiation is then induced at points B, C,
D and E. In the case of the shape function defined in Eq. (5) cell phenotypic transition
actually occurs in B, C, and D, whereas in the case of the shape function given in Eq. (6)
cell activation is observed only in B. In all the other cases, the mass density distributed
around the points of interest is in fact not sufficient to give rise to a differentiated indi-
vidual, given the employed shape function. We remark that, for graphical purposes, in
each panel is represented only the central part of the computational domain Ω.

Table 1. Parameter settings used for the simulations in Figs. 3 and 4.

Parameter Description Value & Units Reference(s)

Ω computational domain 700 × 700 µm2

rc cell radius 15 µm [11]

m cell mass 1.8·10−3 µg [11]

D chemical diffusion coefficient 10 µm2/s [12,13]

ε chemical decay rate 1.8·10−4 s−1 [12,13]

c0 chemical production rate 2.17·10−4 µM [12,13]

cs cell activation chemical threshold 10−8 µM estimated in [10]
Rinh spatial inhibition radius 40 µm estimated in [10]

In the first set of realizations, cell activation is induced at selected in-
stant times in randomly chosen points within the colony. In particular, at
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Figure 4. Cell phenotypic activation (with the coherent switch between the correspond-
ing mathematical descriptions) induced by a diffusive chemical factor. The use of the
shape function given in Eq. (5) results in consecutive differentiations of radially symmet-
ric rings of cells. On the opposite, the use of the shape function defined in Eq. (6) results
in the fact that cell activation only occurs in the densest stripe of the cell aggregate.
In both cases, we start with an inhomogeneous undifferentiated colony, whereas in each
panel the violet line indicates the concentration of the chemical equal to the activation
threshold cs. We remark that, for graphical purposes, in each panel is represented only
the central part of the computational domain Ω.

a given time t1, cell differentiation is proposed to take place in a single
point A = (381 µm, 389 µm) within the colony. As it is possible to see
in Fig. 3, such a cell phenotypic transition occurs regardless of the spe-
cific form assigned to the shape function: in both cases, there is in fact
a sufficient amount of distributed mass located over the support of the
corresponding wA (i.e., ρ(t1,y) ≥ wA(y), ∀ y ∈ Ω). As a result, in both
settings (but with a clearer evidence in the case of the shape function de-
fined in Eq. (5), given its mass distribution), the localized cell formed in A
is surrounded by a round area of radius rc characterized by a reduction of
the local mass density. Successively, at t2, cell phenotypic transitions are
simultaneously proposed to take place in four different locations of the un-
differentiated colony (i.e., B = (363 µm, 299 µm), C = (317 µm, 287 µm),
D = (279 µm, 363 µm) and E = (351 µm, 441 µm)). In the case of the use
of the shape function given in Eq. (5), cell activation is observed in three
points, i.e., B, C and D (see Fig. 3, top panel). On the opposite, the use of
the shape function given in Eq. (6) allows to have cell differentiation only in
B (see Fig. 3, bottom panel). In each setting, the mass density distributed
around the remaining points is in fact not sufficient to constitute a localized
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differentiated individual.
In the second set of simulations, cell activation is instead triggered by

the activity of a chemical factor, which is assumed to evolve according to
the following standard reaction-diffusion equation:

(7)


∂c

∂t
(t,y) = D∆c(t,y)− εc(t,y), y ∈ Ω;

c = c0, y ∈ ∂Ω,

whereD is the constant and homogeneous diffusion coefficient, ε is the decay
rate, and c0 indicates a constant production of the molecular substance over
the entire boundary of the computational domain Ω. Their specific values,
summarized in Table 1, are taken from the experimental literature relative
to vascular endothelial growth factor isoforms (VEGFs), which has been
widely demonstrated to induce cell activation during physio-pathological
vascular progression [12,13]. We set that a minimum concentration thresh-
old, cs, is needed to locally (i.e., in a given point of the aggregate) pro-
mote cell activation. Finally, in order to avoid the formation of quasi or
completely overlapped differentiated individuals, we assume that the pres-
ence of an activated cell inhibits further phenotypic transitions within a
surrounding ball of radius Rinh = 40 µm: this modeling rule is the com-
putational counterpart of a wide range of well-known signaling pathways,
such as the Delta-Notch regulatory mechanism. The obtained results are
reproduced in Fig. 4, where in particular a violet line is a level set that
indicates a concentration of the chemical equal to the activation threshold
cs. In the case of the use of the shape function given in Eq. (5) (top pan-
els), we observe consecutive (i.e., form the edge to the bulk of the spheroid)
differentiations of two rings of cells, almost radially distributed, until the
phenotypic transition of a single individual in the center of the colony. On
the opposite, the use of the shape function defined in Eq. (6) results in the
fact that cell activation only occurs in the densest stripe of the cell aggre-
gate, despite an analogous chemical field (see Fig. 4, bottom panels). These
simulation outcomes further confirm that the choice of the specific form of
the shape function w substantially affects the overall model behavior and
corresponding dynamics.

4. Mathematical Model II: Cell Growth and Movement

We now enrich the proposed mathematical environment by including
proper cell migratory dynamics and proliferation/death processes. In this
respect, a key feature of our hybrid modelling framework is the possibility
to define a distinct evolution law for the different cell phenotypes forming
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the system of interest. Hereafter, we will denote by the superscript “A” the
terms relative to the group of activated cells and by the superscript “U”
those relative to the undifferentiated mass, whose distribution is given by
the density ρ. First of all, it is consistent to use a set of first order ODEs
to describe the migration of the activated individuals. The dynamics of the
inactivated part of the cell system is instead assumed to be regulated by
the local form of a mass balance equation. As graphically sketched in Fig.
5, the evolution of the overall system is therefore defined as it follows

(8)


dxj(t)

dt
= vA(xj(t)), j = 1, . . . , N(t),

∂ρ(t,y)

∂t
+∇ · (ρ(t,y) vU(t,y)) = Γ(t,y);

where vA and vU are the velocity of the two cell phenotypes, respectively,
while the term Γ is the proliferation/apoptosis rate of the distributed part
of the aggregate. It is worth to notice that, in Eq. (8), we have assumed
that the velocity of moving individuals and not their acceleration is propor-
tional to the sensed forces: this is the so-called overdamped force-velocity
assumption, that holds for extremely viscous regimes, such as biological en-
vironments (see [14] for a detailed comment). On the other hand, we here
do not account possible duplication/death processes of activated individu-
als: however, they can be introduced in the mathematical environment by
defining proper evolution laws for their number N and for the location of
the newly born individuals.

In general, cell migratory behavior results from the superimposition
both of a productive directional locomotion and of dynamics resulting from
intercellular interactions. In Eq. (8), it is indeed consistent to set
(9)

vA(xj(t)) = v̂A(xj(t)) +
N∑
i=1

m KAA(xi(t)− xj(t))+

+

∫
Ω
KAU(ξ − xj(t))ρ(t, ξ) dξ;

vU(y) = v̂U(y) +

N∑
i=1

m KUA(xi(t)− y) +

∫
Ω
KUU(ξ − y)ρ(t, ξ) dξ.

Specifically, the functions v̂A, v̂U : R2 7→ R2 implement the directional
contribution to cell velocity, which may arise from environmental deter-
minants, e.g., the local concentration/stiffness of the extracellular matrix
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Figure 5. The activation of individual cells within a quiescent aggregate gives rise to
a hybrid environment, which is characterized by the coexistence of a group of material
points and a spatially distributed mass density. The dynamics of the overall system
has indeed to be approached by a coupled-hybrid mathematical framework, where a set
of ODEs describes the evolution of the differentiated cells, whereas a balance equation
defines the evolution of the undifferentiated rest of the aggregate.

components (haptotaxis/durotaxis) or from the spatial distribution of some
diffusive chemicals (chemotaxis). The other terms in Eq. (9) represent in-
stead the velocity components due to direct intercellular interactions. In
this respect, the kernels Kαβ : R2 7→ R2 (where α, β,∈ {A, U}) define how
a cell element belonging to phenotype α is influenced in its dynamics by a
cell element of phenotype β. We indeed have both homotypic (i.e., if α = β)
and heterotypic (i.e., if α 6= β) intracellular interactions. The specific form
of each Kαβ have then to account for the following set of assumptions:

• intercellular interactions involve cell-cell adhesion, due to the ex-
pression of cadherin adhesive molecules, and cell-cell repulsion,
which reproduces cell resistance to compression;
• the resulting velocity components give an effect along the direction

connecting the interacting elements, depending on their relative dis-
tance;
• intercellular interactions are isotropic and metric (i.e., they occur

only within limited neighborhoods around the interacting elements).

Similar hypotheses underline intercellular interaction terms introduced in
[15] and [16], where a hybrid discrete/continuous representation of two-
population systems are obtained by employing a measure-theoretic ap-
proach. Other examples of non-local integro-differential models to describe
selected dynamics of heterogeneous cell aggregates are proposed in [17], [18]
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and [19]. In particular, in [17] and [18], the authors use a continuous ap-
proach to model cell adhesion with an integral term over a sensing region,
which is defined as the area over which a cell can sense the surrounding
environment. In [19], instead, the dynamics of both homogeneous and het-
erogeneous aggregates are given by a non-local PDE model, which includes
both attracting and repelling signals directly transmitted over different in-
teraction ranges.

5. Numerical Results II: Avascular Tumor Growth and Invasion

A solid tumor is typically formed by two clones of malignant cells,
that have equal geometrical dimensions but distinct behavior: a differenti-
ated/metastic group of individuals, activated by a given amount of nutrients
or growth factors and hereafter labelled by “A”, and an undifferentiated
quiescent mass, coherently labeled by “U”. The former cell phenotype has
reduced adhesive interactions and a high migratory ability (in particular,
high chemotactic strength). On the contrary, the latter cell clone has signif-
icant adhesiveness and enhanced proliferation/death cycles. Taking these
considerations into account, it is natural to use a pointwise description for
the NA metastatic individuals (whose positions are indeed defined by the
vector introduced in Eq. (4)) and a distributed representation for the rest
of the tumor mass (defined by the mass density ρ whose integral over the
domain gives the total mass MU). The overall hybrid environment evolves
following the coupled ODE-PDE system of Eq. (8), with the velocity com-
ponents defined in Eq. (9). In particular, according to the above biological
considerations, we set:
(10)

v̂A(xj(t)) = vchem(xj(t)) = min{k0|∇c(t,xj(t))|; vmax}
∇c(t,xj(t))
|∇c(t,xj(t))|

;

v̂U(y) = 0;

Γ(t,y) =

[
γ

(
1− ρ(t,y)

ρmax

)
− δ
]
ρ(t,y)H(t− TΓ).

Entering in more details, vchem is a chemotactic velocity component that, as
already seen, is active only for metastatic individuals, as c is the concentra-
tion of molecular growth/motility factors, whose kinetics are described in
Eq. (7), with the same parameters used in the simulations proposed in Sec-
tion 3. In particular, c0 represents a constant supply of chemical substances
from the host tissue to the tumor. Further, k0 = 4 · 109 µm2/(µMs) is the

12



Modeling cell activation processes

chemotactic coefficient while vmax = 0.018 µm/s is a maximum admissible
speed, taken from the biological literature [11]. Γ gives then a plausible law
for growth processes of the quiescent part of the tumor, which start after
TΓ = 2 hours, as H( · ) is the Heaviside function. In particular, γ = 10−3

s−1 and δ = 10−4 s−1 are the proliferation and death rate, respectively,
while ρmax = 2 · 10−5 µg/(µm)2 is a maximum admissible value for the cell
mass density. By assuming logistic growth and constant death rate for the
quiescent mass, we are including in the model both a contact-inhibition of
cell proliferation and a natural cell apoptosis.

There are several possible options to specify the interactions kernels
introduced in Eq. (9): in this respect, for all pairs of α, β,∈ {A, U}), we set

(11) Kαβ(r) =



−2Fαβr |r|
dr

if |r| < dr

2
;

2Fαβr

(
|r|
dr
− 1

)
if
dr

2
≤ |r| < dr;

− 4Fαβa

(da − dr)2
(|r| − dr) (|r| − da) if dr ≤ |r| < da;

0 otherwise.

Our choice results in the fact that the forces expressed by the interaction
kernels depend on the distance between the interacting components (ei-
ther pointwise individuals or infinitesimal masses) and are directed along
the line ideally connecting them. In this respect, from a biological point
of view, dr can be interpreted as a mean cell diameter, that determines a
minimal space needed by a cell to survive, while da represents the maximal
distance reached by cell mobile adhesive structures: it is indeed consistent
to assume dr < da, as wandering cells are able to extends membrane pro-
trusions sufficiently far from their main body. On the other hand, the inter-
action strengths Fαβr represent an intrinsic cell resistance to compression,
while Fαβa give, from a molecular point of view, the amount of expressed
and activated adhesive structures that regulates the cell-cell adhesion. It
is worth noting that the interaction radii are set to be independent from
the specific cell phenotype, whereas the values of interaction forces rely on
the type of cells involved. The underlying hypothesis is in fact that the
cell subpopulations forming the tumor are two clones of the same cell lin-
eage that have equal physical properties but different behavior. In other
words, we are assuming that chemical-induced phenotypic differentiations
preserve cell physical dimensions and uniquely determine variations in the
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intercellular interaction force components (as well as in the sensitivity to
chemotactic cues). In particular, according to experimental measurements
on tumors (refer to [20] for gliomas and to [21] for ovarian cancer spheroids),
we set dr = 30 µm and da = 60 µm. The specific values of the intercellular
adhesive strengths have been instead empirically estimated, after a number
of trial simulations and in accordance with the above-explained considera-
tions, equal to

FAA
r = FUU

r = 10−4 µm/(µg s);

FAU
r = FUA

r = 10−5 µm/(µg s);

FAA
a = 0 µm/(µg s); FUU

a = 2.5 · 10−5 µm/(µg s);

FAU
a = 10−5 µm/(µg s); FUA

a = 10−2 µm/(µg s).

Finally, we assume that cell activation is locally induced by a sufficiently
high concentration of chemical growth factors (which, as seen, also behave
as chemotactic cues for the already metastatic individuals). In particular,
the cell activation threshold is set equal to to cs = 10−8 µM, i.e., a cell
phenotypic transition is actually stimulated in any point xs within the
tumor if c(t,xs) > cs. We employ the shape function defined in Eq. (6) with
rc = 15 and m = 1.8 · 10−3 µg. As in the case of the simulations proposed
in Sect. 3, we also assume that a cell activation in xs inhibits further cell
differentiation over a ball centered in xs itself with radius Rinh = 100 µm.
However, when cell proliferation starts (i.e., at TΓ = 2 hours), we assume a
concomitantly downregulation of such a spatial inhibition of cell activation:
for all t > TΓ, Rinh in fact decreases to 15 µm, as a consequence of the
pathological overgrowth of the quiescent tumor mass. A summary of the
parameter setting is given in Table 2.

Given a domain Ω = [0, 700]× [0, 700] µm2, we start with a completely
quiescent tumor spheroid (i.e., X(0) = ∅ and N(0) = 0), whose mass den-
sity is inhomogeneously distributed over a round compact of radius 100 µm
to have an overall amount of M(0) = 0.3 µg, as reproduced in Fig. 6 (top-
left panel). Due to inner interactions, the tumor initially adjusts toward a
stable configuration, until the chemical diffusive front reaches the spheroid
and locally exceeds the critical threshold of cs. Suddenly, a differentiation
(with the corresponding switch in the mathematical descriptive instances)
occurs in the most dense part of the malignant mass: in particular, two cells
activates, whose distance satisfies the above-described mechanism of spa-
tial inhibition of differentiation. As reproduced in Fig. 6 (top panels), the
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Table 2. Parameter setting used for the simulation in Fig. 6.

Parameter Description Value & Units Reference(s)

Ω computational domain 700 × 700 µm2

rc cell radius 15 µm [11]

m cell mass 1.8·10−3 µg [11]

D chemical diffusion coefficient 10 µm2/s [12,13]

ε chemical decay rate 1.8·10−4 s−1 [12,13]

c0 chemical production rate 2.17·10−4 µM [12,13]

cs chemical threshold for 10−8 µM estimated in [10]
cell activation

Rinh spatial inhibition radius 100 / 15 µm estimated in [10]

k0 chemotactic coefficient 4·109 µm2/(µM s) estimated in [10]
vmax maximal cell speed 0.018 µm/s [11]

γ cell proliferation rate 10−3 s−1 estimated in [10]

δ cell death rate 10−4 s−1 estimated in [10]

ρmax maximum admissible value for 2·10−5 µg/µm2 estimated in [10]
cell mass density

TΓ delay of proliferation/death 2 hours estimated with
processes preliminary

simulations
dr intercellular repulsion radius 30 µm [20,21]
da intercellular adhesion radius 60 µm [20,21]

FAA
r homotypic repulsion strength 10−4 µm/µg estimated in [10]

between activated cells

FUU
r homotypic repulsion strength 10−4 µm/µg estimated in [10]

within the inactivated mass

FAU
r heterotypic repulsion strength 10−5 µm/µg estimated in [10]

FUA
r heterotypic repulsion strength 10−5 µm/µg estimated in [10]

FAA
a homotypic adhesion strength 0 µm/µg estimated in [10]

between activated cells

FUU
a homotypic adhesion strength 2.5·10−5 µm/µg estimated in [10]

within the inactivated mass

FAU
a heterotypic adhesion strength 10−5 µm/µg estimated in [10]

FUA
a heterotypic adhesion strength 10−2 µm/µg estimated in [10]

activated malignant individuals then chemotactically react to the molecu-
lar substance gradient, thereby starting to crawl in the extracellular host
toward the nearest edge of the domain. Due to heterotypic adhesive inter-
actions, finger structures, formed by inactivated individuals, extend from
the external rim of the tumor mass beside each leader individual. The elon-
gation of malignant cellular tongues is obtained under the assumption that
such a first step of tumor infiltration is characterized by mass preservation.
In this respect, the collective patterning is uniquely a consequence of cell
differentiation and of selected interactions between leader/activated cells
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Figure 6. Avascular growth of a tumor spheroid. In the first stage, two single cells
differentiate due to the extracellular chemical stimulus. Then, they start to invade the
host tissue, followed by finger-like structures emerging from the quiescent malignant mass
(top panels). In a second phase (i.e., after 2 hours), cell proliferation starts, resulting
in a dramatic enhancement of tumor mass and pathological phenotypic transitions, as
a number of cells metastasize (middle panels). Finally, the remaining quiescent mass
clusters around the nearest activated cell, thereby forming an invading rim of tumor
that expands in the host. The bulk of the original spheroid, which has remained almost
deprived of cells, continues instead to proliferate, thereby becoming a source for a possible
in situ tumor relapse (bottom panels).

and follower/quiescent individuals. In this respect, it is useful to notice
that fingering dynamics arise only from specific ranges of model param-
eters: too low heterotypic adhesiveness (as well as high enough values of
the chemotactic strength) would result in the dispersion of activated cells;
on the opposite, a too high exogenous adhesiveness (as well as too low
chemotactic response) would result in the absorption of the differentiated
individuals within the bulk of the tumor. In the second stage of tumor inva-
sion (i.e., when t > TΓ, see Fig. 6 (middle panels)), the inclusion both of cell
proliferation and of the relaxation of the spatial regulatory mechanism of
cell differentiation results in a significant growth of tumor mass and in the
consequent dramatic activation of a number of aggressive cells within the
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Figure 7. Evolution in time of the mass of the quiescent part of the tumor (i.e., MU(t) =∫
Ω ρ(t,y)dy), of the activated individuals (i.e., MA(t) = mNA(t)), and of the entire

disease (i.e., Mtot(t) = MU(t) +MA(t)). In particular, in the left panel, we plot a zoom
view of the first 2 hours of the disease development. The black arrow indicate the chemical-
induced activation of the first pair of malignant cells.

most dense parts of the spheroid as well as along the finger structures. The
newly differentiated individuals, being characterized by reduced adhesive
interactions and increased chemotactic movement, indeed dissociate and
spread away. Concomitantly, the remaining quiescent mass tends to cluster
around the nearest activated cells. As a result, we observe an invading rim
of tumor that expands in the host. On the contrary, the bulk of the origi-
nal spheroid is almost deprived of cells. However, such a reduced quiescent
malignant core goes on proliferating (and possibly differentiating), thereby
constituting a source for a further in situ tumor relapse (see Fig. 6 (bottom
panels)).

The plots in Fig. 7 describe the time-evolution of the mass of the
quiescent part of the tumor (i.e., MU(t) =

∫
Ω ρ(t,y)dy), of the acti-

vated individuals (i.e., MA(t) = mNA(t)), and of the entire disease (i.e.,
Mtot(t) = MU(t) + MA(t)). As it is possible to see in the left graph, until
≈ 15 minutes the overall mass of the cancer is constant and equal to the
one of its inactivated part. Then two cells differentiate, due to the fact that
the chemical front reaches the spheroid edge: as a result, MU slightly de-
creases and while MA simultaneously increases at the same rate (see the
black arrow in the same panel). However, Mtot does not vary since there is
only a mass exchange between the two malignant subpopulations. At ≈ 2
hours, the spatial regulatory mechanism of cell activation is downregulated
and the quiescent cell proliferation enters the picture: as a consequence,
Mtot starts increasing at almost the same rate of MU (right graph in Fig.
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7). In particular, the decrements of the quiescent cellular fraction due to
cell differentiation are overcome by its growth due to the term at the right
hand side of Eq. (8) (and explicitly defined in (10)). In this respect, we can
conclude that the observed variations of Mtot completely rely on the mi-
totic/apoptotic processes of the inactivated tumor fraction since, as already
explained, cancer cell phenotypic transitions do not affect the overall mass
of disease.

It is finally useful to remark that the evolution of the malignant mass
captured in our simulations reproduces only the avascular stage of tumor
growth (i.e., before the angiogenic transition necessary for the disease to go
on survive).

6. Conclusions

A wide range of relevant biological systems is characterized by the co-
existence of distinct clones of the same cell lineage, which have specific
functions and migratory determinants. Furthermore, in such systems, cells
are able to change their phenotype. For instance, in vasculogenesis, tumor
growth and invasion, as well as in organogenesis and morphogenesis, rele-
vant component processes result in fact from the specialization of few cells,
that are able to activate and behave as a pattern guidance for the remaining
part of the system.

In this respect, we here propose a modelling framework where cells
within an aggregate can be described either individually, i.e., as a set of
localized particles, or collectively, i.e., through a mass density distribution,
according to their biological behavior. In particular, our modeling frame-
work defines a coherent procedure to reproduce cell activation via the use of
a proper shape function. The proposed theoretical model also includes cell
migratory dynamics and interactions, as well as growth mechanisms. The
evolution of molecular substances, which possibly influence both cell motil-
ity and phenotypic differentiation, are taken in account as well. A first set
of illustrative simulations presented in the paper focuses on cell phenotypic
transitions within a quiescent aggregate both randomly induced and acti-
vated by a diffusive chemical morphogen. Such numerical tests also show
nontrivial consequences on cell dynamics of the specific form assigned to the
shape function. The proposed modeling approach is then applied to describe
the avascular growth and invasion of a tumor mass, which is composed of
two cell phenotypes: a set of aggressive activated cells (represented by a
pointwise mathematical description) and a quiescent mass (represented by
a distributed density). As a result, our simulation environment is able to
reproduce the extension of tumor tongues and the subsequent spreading of
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metastasis. In this respect, we can observe that the theoretical approach
described in this work is particularly suited to deal with problems in which
the interplay between different types of mathematical description can be
linked to the coexistence of multiple cell populations. In these cases, it is in
fact necessary to treat each set of individuals at a distinct scale according
to its intrinsic properties.

It is useful to remark that tumor cell activation is here assumed to be
triggered by a generic growth/motility factor which, as seen, behaves also
as a chemotactic cue for metastatic individuals. As defined in Eq. (7), such
a molecular substance is constantly produced at the domain borders, homo-
geneously diffuses and undergoes a natural decay. The proposed molecular
dynamics are reasonable in the case of morphogens such as VEGF isoforms
or HGF, which have been provided to be able to activate and guide the
migration of cells also within extended colonies [22,23], in agreement with
our simulations. A more realistic tumor model would account also for chem-
ical nutrients, such as oxygen and glucose. The kinetics of these types of
substances should be described by a reaction-diffusion equation similar to
(7), which however should include a cell uptaken term (e.g., κρ, where κ
is an internalization rate). As a result, we would observe the emergence
of nutrient gradient within the tumor mass: the molecular concentration
would be in fact higher at the spheroid edge (i.e., where cell density is
lower) and lower in the bulk of the aggregate (i.e., where cell density is
higher). In this case, if a nutrient-dependent proliferation rate is added as
well, the tumor would differentiate in a central hypoxic/necrotic core and
a external ring of highly metabolic cells, which would then constitute the
only subpopulation able to sense the presence of growth/motility factors
and therefore to activate [24]. In the case of nutrient substances, a further
possible model option to create chemical gradients within the tumor would
be also the assumption of non-linear diffusion, which is widely used in the
field of porous media.

Final remarks and future model developments. For the reasons cited along
the text, we expect our method to give an interesting contribution in the
development of multiscale approaches to the modeling of cell phenomena.
However, the presented mathematical framework has still some important
limitations, whose improvements would represent relevant modeling refine-
ments. First, in most of the proposed sets of simulations cell activation
occurs when two conditions are satisfied: (i) the concentration of the chem-
ical locally (i.e., at xs) exceeds a given threshold and (ii) there is enough
cell mass around that point (i.e., over Ixs). These assumptions are reason-
able from a biological point of view, since most intracellular pathways are
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affected by the local presence (and amount) of the molecular substance of
interest (e.g., at a given membrane receptor). However, the use of a local
thresholding control for cell differentiation may lead to discrepancies be-
tween different computer-based realizations (i.e., in the exact location of cell
differentiation). They depend from the presence of an artificial/numerical
diffusion which is in turn related to the computational method, time step
and characteristic grid size used to solve Eq. (7). In this respect, it would
be useful to perform a detailed study on how to reduce such numerical arti-
facts. On the other hand, some other non-local rules for cell activation could
be considered (e.g., a control of the chemical amount over a given neighbor-
hood of xs, maybe over Ixs itself). However, such regulatory mechanisms,
and underlying assumptions, should be carefully validated by experimental
evidence.

Then, some parameters have a poor correspondence with experimentally
measurable quantities, although they can be estimated through reasonable
biological considerations. This issue may be addressed by implementing dif-
ferent types of interaction kernels. It would be also interesting to describe
in more details cell interactions with the extracellular environment, for ex-
ample mechanical tensions and stresses with the substrate. Further, more
sophisticated boundary conditions may be needed in the case of applications
dealing with more realistic domains (i.e., analysis of blood flows, collective
cell migration in three-dimensional matrix scaffolds, organogenesis). In this
respect, a model implementation to three-dimensional environments would
be useful as well: however, such an extension would require the definition
of different types of shape functions. Future work developments will involve
an in-depth analysis of the model stability with respect both to the param-
eter settings and to the specific choice of the form of the shape function.
Further, after a renormalization with respect to the single cell mass, both
the density ρ and the discrete variables describing activated individuals can
be understood as the probability measure linked to cell positions. In this
way, the proposed approach can be interpreted as a probabilistic framework,
which is conceptually suited to deal with a statistical characterization of the
evolution of biological systems. Finally, in order to further assess the advan-
tages of the proposed modelling framework, it will be interesting to apply
the model to other biological problems whose evolution is characterized by
cell phenotypic differentiations that preserve cell biophysical properties but
lead to different behaviors.
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