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Abstract

Transport phenomena in silicon nanowires with different cross-section are investi-
gated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson sys-
tem. The model has been formulated by closing the moment system derived from the
Boltzmann equation on the basis of the maximum entropy principle of Extended Ther-
modynamics, obtaining explicit closure relations for the high-order fluxes and the pro-
duction terms. Scattering of electrons with acoustic and non polar optical phonons have
been taken into account. The bulk mobility is evaluated for square and equilateral triangle
cross-sections of the wire.
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1. INTRODUCTION

Due to increasing technical difficulties in fabricating planar devices of
sub-50 nm critical dimension, one-dimensional nanowire devices have been
suggested as an alternative, to achieve a high stacking density. In fact dif-
ferent electronic structures and transport properties in one dimension can
be utilized to fabricate high performance and highly packed integrated cir-
cuits (ICs). Sensors, field effect transistors, logic gates and light-emitting
devices have been produced using several semiconducting nanowires such
as carbon nanotubes, group IV nanowires, and group III-V nanowires [1].
Silicon nanowires (SiNW) are of particular interest since these nanowire de-
vices can be integrated with currently used silicon ICs. In fact, there have
been several attempts to fabricate silicon nanowire based devices utiliz-
ing conventional silicon processing technology; for example, patterning by
lithography, etching and the oxidation of silicon [2]. The electrical trans-
port properties of these wires are particularly important since controllable
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and predictable conductance is vital to many nanoscale electronics applica-
tions. By shrinking the dimension of electronic devices, effects of quantum
confinement are observed and the wave nature of the electrons must be
taken into account. The Non-Equilibrium Green Function formalism is the
most advanced transport model for the simulation of SiNW devices, but it
necessitates rather intensive computational efforts since it requires detailed
information on the propagation of the electron wave packet injected in the
device.

Under reasonable hypothesis, transport in low-dimension semiconduc-
tors can be tackled coupling quantum and semiclassical tools. In fact, the
main quantum transport phenomena in SiNW transistors at room temper-
ature, such as the source-to-drain tunneling, and the conductance fluctu-
ation induced by the quantum interference, become significant only when
the longitudinal length (called channel) is smaller than 10nm [3]. Therefore,
for longer channels, semiclassical formulations based on the 1-D Multiband
Boltzmann Transport Equation (MBTE) can give reliable simulation results
when it is solved self-consistently with the 3-D Poisson and 2-D Schrödinger
equations in order to obtain the self-consistent potential and subband en-
ergies and wavefunctions [1]. Another simplification comes from the use of
the Effective Mass Approximation (EMA), which is supposed to be still a
good solution in the confining direction in the presence of disorder, which
is probably valid for semiconductor nanowires down to 5 nm in diameter,
below which atomistic electronic structure models need to be employed.
Solving the MBTE numerically is not an easy task, because it forms an
integro-differential system in two dimensions in the phase-space and one
in time, with a complicate collisional operator. The full solution of the
MBTE can be obtained or by using the Monte Carlo (MC) method [4–9]
or by using deterministic numerical solvers [10], [11] at expense of huge
computational times. Recently a physics-based hydrodynamic model has
been obtained from the MBTE [12–14], taking advantage of the Maximum
Entropy Principle.

The aim of this paper is to investigate the transport properties of these
nanowires, taking into account the shape of the cross-section. We shall focus
ourselves in the square and equilateral triangle cross-sections. In particular
quantum wires with equilateral triangle cross-sections have received lots of
attention by researchers during the last decade [15], [16], [17], [18], [19] be-
cause they represent a step toward the employment of non planar structures
for the realization of integrated circuits.
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2. Transport equations

For a quantum wire with linear expansion in z-direction, and confined in
the plane x-y, the normed electron wave function ψ(x, y, z) can be written
in the form

(1) ψ(x, y, z) = χα(x, y)
eikzz√
Lz

where χα(x, y) is the wave function of the α-th subband and the term
eikzz/

√
Lz describes an independent plane wave in z-direction confined to

the normalization length, where z ∈ [0, Lz] and kz is the wave vector num-
ber. In general the electron is subject to external confining potential U ,
such as by a discontinuity in the band gap at an interface between two
materials, and also to the effect of the other electrons in the system. The
simplest approximation, called Hartree approximation, is to assume that
the electrons as whole produce an average electrostatic energy potential
Vtot, and that a given electron feels the resulting total potential

(2) Vtot = U(x, y)− eΦ(x, y, z) .

The normed wave function satisfies the Schrödinger equation in the Effec-
tive Mass Approximation, i.e.

(3)

[
Ec −

~2

2m∗
∆ + Vtot(x, y, z)

]
ψ = E ψ

where E is the total energy, Ec the conduction band edge energy, and
m∗ denotes the effective mass of the electron in the conduction band. By
inserting eq.(1) into eq.(3), in each z-th cross section of the device, one
obtains the following equation for the envelope function χαz(x, y)[
− ~2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
+ U − eΦ

]
χαz = εαzχαz , Eαz = εαz +

~2k2z
2m∗

+ Ec(4)

where εαz is the kinetic energy associated with the confinement in the x-y
plane, and we have assumed parabolic band approximation. The term Φ
satisfies the Poisson equation

(5) ∇ · [ε∇Φ(x, y, z)] = e(n−ND +NA)

where ND, NA are the doping profile (due to donors and acceptors), ε the
permittivity, and n(x, y, z, t) is the electron density, which depends on χαz

(6) n(x, y, z, t) =
∑
α

ρα(z, t)|χαz(x, y, t)|2
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where ρα is the subband linear density in the z-direction

ρα(z, t) =
2

2π

∫
fα(z, kz, t)dkz(7)

fα being the electron distribution function in the α-subband. For an as-
signed confining potential, one has to solve a coupled problem formed by
eqs.(4), (5) and (6) to find εαz, χαz in each cross-section.

So far, the electrons are free to move in the z-th direction, and can be
described using the MBTE [1]

∂fα
∂t

+ vz(kz)
∂fα
∂z
− e

~
Ez
∂fα
∂kz

=
∑
α′

∑
η

Cη[fα, fα′ ](8)

where e is the absolute value of the electron charge, ~ the Plank constant
divided by 2π, and

vz =
1

~
∂Eαz
∂kz

=
~kz
m∗

, Ez = −1

e

∂Eαz
∂z

(9)

are respectively the electron group velocity and the force acting on the
electrons. In the low density approximation (not-degenerate case), the col-
lisional operator writes

Cη[fα, fα′ ] =
Lz
2π

∫
dk′z

{
wη(k

′, k)fα′(k
′
z)− wη(k, k′)fα(kz)

}
(10)

where wη(k, k
′) = wη(α, kz, α

′, k′z) is the η-th scattering rate. When α = α′

we have an intra-subband scattering, otherwise we have an inter-subband
scattering.

Scattering mechanisms in SiNW must comprise acoustic phonon scat-
tering (bulk and confined), non-polar optical phonon scattering, surface
scattering, scattering with ionized impurities, as well as dielectric screen-
ing [5], [6]. However in this preliminary study, for the sake of simplicity, we
shall limit ourselves to consider just scattering with optical and acoustic
phonons. For the bulk acoustic phonon scattering, in the elastic equiparti-
tion approximation, the transition rate is given by [1]

wac(k, k
′) = sacG

αα′δ (Eα′ − Eα) , sac =
2πD2

AkBTL
ρ~v2sLz

(11)

where DA is the acoustic deformation potential (9 eV), TL the lattice tem-
perature, ρ the mass density ( 2.33 gr/cm3), vs the sound speed (6960
m/sec), and Gαα

′
the confinement factor

Gαα
′

=

∫
|χα′(x, y)|2|χα(x, y)|2dxdy .(12)
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For the optical phonons we have

wop(k, k
′) = sop

[
g0 +

1

2
∓ 1

2

]
Gαα

′
δ (Eα′ − Eα ∓ ~ω0) , sop =

πD2
0

ρω0Lz
(13)

where D0 is the optical deformation potential (11.4 108 eV/cm), ~ω0 the
effective optical phonon energy (63 meV), and g0 the Bose-Einstein phonon
occupation number.

3. Extended Hydrodynamic model

By multiplying the MBTE (8) by the weight functions ψA =
{1, vz, εz, vzεz}, and integrating in the kz space, one obtains the following
hydrodynamic-like equations

∂ρα

∂t
+
∂(ραV α)

∂z
= ρα

∑
α′

Cαα
′

ρ(14)

∂(ραV α)

∂t
+

2

m∗
∂(ραWα)

∂z
+

e

m∗
ραEz = ρα

∑
α′

Cαα
′

V(15)

∂(ραWα)

∂t
+
∂(ραSα)

∂z
+ ραeEzV α = ρα

∑
α′

Cαα
′

W(16)

∂(ραSα)

∂t
+
∂(ραFα)

∂z
+ 3

e

m∗
ραEzWα = ρα

∑
α′

Cαα
′

S(17)

in the unknowns (called moments)

V α =
2

(2π)

1

ρα

∫
R
fα(z, kz, t)vzdkz (subband velocity),(18)

Wα =
2

(2π)

1

ρα

∫
R
fα(z, kz, t)εzdkz (subband energy),(19)

Sα =
2

(2π)

1

ρα

∫
R
fα(z, kz, t)εzvzdkz (subband energy- flux)(20)
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and the higher-order flux Fα, and the production terms

Fα =
2

(2π)

1

ρα

∫
fαv

2
zεzdkz(21)

Cαα
′

ρ =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]dkz(22)

Cαα
′

V =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]vzdkz(23)

Cαα
′

W =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]εzdkz(24)

Cαα
′

S =
2

(2π)

1

ρα

∑
η

∫
Cη[fα, fα′ ]εzvzdkz .(25)

This system of PDEs is of hyperbolic type and it is not closed, i.e. there
are more unknowns than equations. The Maximum Entropy Principle leads
to a systematic way for obtaining constitutive relations on the basis of the
information theory [20], as already proved successfully in the bulk case [21–
25], and for quantum well structures [26], [27]. Actually, in a semiconductor
electrons interact with phonons describing the thermal vibrations of the ions
placed at the points of the crystal lattice. However, since we are considering
the phonon gas as a thermal bath, one has to extremize only the electron
component of the entropy. We define the entropy of the electronic system
as

Se =
∑
α

|χα(x, y, t)|2Sαe(26)

Sαe = − 2

(2π)
kB

∫
R

(fα log fα − fα)dkz ,(27)

and, according to MEP, we estimate the fα’s as the distributions that max-
imize Se under the constraints that the basic moments, which we have
previously considered, are assigned. In a neighborhood of local thermal
equilibrium, this distribution function writes [12]

f̂α = exp

(
−λ

α

kB
− λαW εz

){
1− τ

(
λ̂αV vz + λ̂αSvzεz

)}
(28)

where the quantities (λα, λαW , λ̂
α
V , λ̂

α
S) are known functions of the moments

{ρα, V α,Wα, Sα}. By using the distribution function (28) it is possible to
evaluate the unknown functions appearing in the balance equations by in-
tegration. In this way the higher-order flux term writes
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Fα =
6(Wα)2

m∗
(29)

as well as the production terms Cαα
′

ρ , Cαα
′

V , Cαα
′

W , Cαα
′

S have been deter-
mined in [12]. We want underline that this Extended Hydrodynamic model
has been closed by using first principles, and it is free of any fitting param-
eters.

4. Electron Mobility

The mobility is one of the most important parameters that determine
the performance of a field-effect transistor. At low electric field, the carrier
drift velocity is proportional to the electric field strength, and the pro-
portionality constant is defined as the mobility. Hence a higher mobility
material is likely to have higher frequency response, because carriers take
less time to travel through the device. When the fields are sufficiently large,
nonlinearities in the mobility and saturation in the drift velocity are ob-
served. In fact, the scattering of the carriers with the lattice, the impurities,
and the surface is more active for higher fields, and the charges lose the en-
ergy gained by the electric field.

We shall assume that the cross-section A of the wire is surrounded by
an oxide which gives rise to an infinitely deep potential barrier,

(30) U(x, y) =

{
0 (x, y) ∈ A

∞ otherwise

In such a case analytical relations for the confinement energies εαz and
envelope functions χαz can be obtained from eq.(4) (with Φ = 0), according
to the shape of the cross-section:

• Rectangular cross-section.
In this case, after simple calculations, one obtains [1]

(31) εm,n =
~2π2

2m∗

(
n2

L2
x

+
m2

L2
y

)
, n,m ∈ N

(32) χm,n(x, y) =

√
2

Lx
sin

(
nπ

Lx
x

) √
2

Ly
sin

(
mπ

Ly
y

)

Gαα
′

=
1

LxLy

[
1 +

1

2

sin((n− n′)π)

(n− n′)π

] [
1 +

1

2

sin((m−m′)π)

(m−m′)π

]
(33)
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where Lx, Ly are the rectangle dimensions, and α = (m,n), α′ =
(m′, n′).
• Equilateral triangle cross-section.

Let be L the length of the triangle side. Using group theory argu-
ments one obtains [28]

εp,q =
8~2π2

3m∗L2

(
p2 + pq + q2

)
, q = 0, 1, 2, .. , p = q + 1, q + 2, q + 3, ..(34)

χp,0(x, y) =

√
8

3
3
4L
×(35) [

sin

(
4pπy√

3L

)
− 2 sin

(
2pπy√

3L

)
cos

(
2pπx

L

)]
, p = 1, 2, 3, ....

χp,q(x, y) =
4

3
3
4L

{
cos

[
2πxq

L

]
sin

[
2πy(2p+ q)√

3L

]
−(36)

cos

[
2πxp

L

]
sin

[
2πy(2q + p)√

3L

]
− cos

[
2πx(p+ q)

L

]
sin

[
2πy(p− q)√

3L

]}
q = 1, 2, 3, ... , p = q + 1, q + 2, q + 3, ...

Let us define α = (p, q), α′ = (p′, q′) then, after long but straight-
forward calculations, one obtains:

– if p 6= p′ and p′ 6= 2p then Gαα
′

= 4
3

√
3

L2 ;

– if p = p′ then Gαα
′

= 10
3

√
3

L2 ;

– If p′ = 2p the Gαα
′

= 16
9

√
3

L2 .

In the following we shall compare two SiNW having square and equilateral
triangle cross-sections, in such a way both have the same area (A = 100
nm2). In particular we have chosen Lx = Ly = 10 nm and L = 20/ 4

√
3 '

15.19 nm. In the figure 1 we plot the lowest four confinement energies for the
square and equilateral triangle cross-sections. We observe that the energy
levels are higher in the triangular case.

We want to obtain the drift velocity and the mobility in the so called
bulk case. We shall assume that the SiNW is homogeneous and sufficiently
long in such a way the neutrality charge condition hold, i.e. n−ND+NA =0.
Then, by assuming Neumann boundary conditions at the oxide interface,
and Dirichelet boundary conditions at the cathode and anode

(37)
∂Φ

∂n

∣∣∣∣
∂A

= 0 , Φ(x, y, 0) = 0 , Φ(x, y, Lz) = eVb
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where n is the unit vector normal to ∂A, the Poisson equation (5) gives

(38) Φ(x, y, z) =
eVb
Lz

z .

The EME equation (4) with (30) and (38), gives

(39) Eαz = εαz +
eVb
Lz

z +
~2k2z
2m∗

+ Ec

where the confinement energies εαz and the envelope functions χαz are given
by the previous formulas (31)-(36), and the force acting of the electrons (9)2
reduces to the usual electric field

(40) Ez = −1

e

∂Eαz
∂z

= − Vb
Lz

.

We have performed a numerical integration of our hydrodynamic model
in the stationary homogeneous case with a constant electric field Ez along
the z direction. In this case the unknowns (ρα, V α,Wα, Sα) depend on the
time only. The initial data are the equilibrium values obtained with a global
Maxwellian i.e.

(41) fαM (kz) = exp

(
−

~2k2z
2m∗ + εαz + Ec − να

kBTα0

)

where να is the equilibrium chemical potential, and T0 (300 K) the lat-
tice temperature. By inserting the eq.(41) into (7), (18)-(20) after simple
calculation we get

V α(0) = 0 ,Wα(0) =
1

2
kBT0 , Sα(0) = 0(42)

ρα(0) = AND

exp
(
− εα
kBT0

)
∑

α exp
(
− εα
kBT0

) .(43)

The numerical experiments indicate that it is sufficient to take into account
only the first four subbands (α = 1, 2, 3, 4), since the other ones are very
scarcely populated. The average drift velocity is defined as

(44) 〈V (t)〉 =

∑
α ρ

αV α∑
α ρ

α
.

In the figure 2 we plot the subband velocities V α(t) (α =1,..,4) as well as
the average drift velocity versus the simulation time, for an electric field of
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8000 V/cm, and the equilateral triangle cross-section. During the transient
period the average velocity overshoots its asymptotic value, that is the
value attained in the stationary case. For the same case, in the figure 3, we
plot the subband linear densities: the linear density in the forth subband is
about 5 % of the total linear density as a confirmation that the inclusion
of further subbands has a negligible effect.

Then we have changed the electric field and plotted, in the figure 4,
the corresponding asymptotic value of the velocity 〈V (∞)〉: the typical
saturation effect is shown. The bulk mobility is defined as

(45) µ(Ez) =

∑
α ρ

αµα∑
α ρ

α
, µα =

V α(∞)

Ez
where µα is the subband mobility. In the figures 5, 6 we plot the bulk
mobility as function of the electric field for the triangular and square cross-
sections. In the same figures, we have compared the mobility obtained by
means of our hydrodynamic model, with the mobility given by the Caughey-
Thomas formula [29]

(46) µC = µ0

[
1 +

(
µ0Ez
vs

)2
]− 1

2

where µ0 = µ(Ez = 10 V/cm) and vs is the average drift velocity for high
fields. From the above figures we notice that, for low fields (≤ 1000 V/cm),
the mobility is constant whereas, for high fields, the mobility decreases
because the scattering processes become more active. Similar results have
been obtained, in the square case, using the more expensive MC simulations
in [5]. We notice also that the value obtained for the low field mobility in
the triangular cross-section case (µ0 = 1600 cm2 V/sec) is bigger than
that obtained in the square case (µ0 = 406 cm2 V/sec), and this value is
closer to the measured value for bulk silicon without any confinement effect
(1450 cm2 V/sec [30]). In order to explain this behaviour, we notice that
the confinement factor Gαα

′
is smaller in the triangular case with respect

to the square case. Then the scattering rates (11), (13) are reduced and
that results in an enhancement of the mobility. The values of the mobilities
found can be altered consistently if we take into account other relevant
physical effects such as the modification of the phonon spectrum due to
spatial confinement [5], and the surface roughness and impurity scattering.

5. Conclusions

An extended hydrodynamic model for SiNW has been formulated with
the use of the maximum entropy principle, where the transport coefficients
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are completely determined without any fitting procedure. The bulk electron
mobility (low and high-field) has been evaluated for SiNW with square and
equilateral triangle cross-sections having the same area. In particular we
have found higher mobility values in the triangular case. This behaviour
can be justified by a decrease in the scattering rate, due to the confinement
factor. In order to confirm the goodness of the triangular cross-section, our
model must be improved by including other relevant scattering mechanisms
such as scattering with impurities and surface roughness, as well as to take
into account the modification of the acoustic phonon spectrum in such
nanostructures. These topics as well as the study of thermoelectric effects
according to the guideline in [31–38] will be the subjects of future researches.

Acknowledgment

We acknowledge the support of the Università degli Studi di Catania,
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