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Abstract

We analyze the consequences of the nonlinear terms in the heat-transport equation
of the thermomass theory on heat pulses propagating in a nanowire in nonequilibrium
situations. As a consequence of the temperature dependence of the speeds of propagation,
in temperature ranges wherein the specific heat shows negligible variations, heat pulses
will shrink (or extend) spatially, and will increase (or decrease) their average temperature
when propagating along a temperature gradient. A comparison with the results predicted
by a different theoretical proposal on the shape of a propagating heat pulse is made, too.
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propagation; thermomass theory
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1. Introduction

Like biotechnology and information technology, nanotechnology is a
growing industry with the potential to greatly change the world in which
we live. Engineering of nanosystems rapidly developed in recent years, and
it currently allows to design and develop mechanical, optical and electronic
devices, the characteristic sizes of which may be of the order of tens nanome-
ters. Nowadays, nanotechnology is also fighting its way in medicine, offering
some exciting possibilities which few years ago are only imagined.

Devices operating on nanometer length scale always provide new chal-
lenges, especially regarding their thermo-mechanical properties, and re-
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searchers face great challenges in thermal management and analysis under
the extreme conditions. In fact, it is well-known that the heat-transfer pro-
cess in nanosystems significantly differs from that in macrosystems [1-5].
The consequent inapplicability of the classical Fourier law in practical ap-
plications to well-describe heat transport at nanoscale has led to several
generalizations of it [6-14]. Leaving untouched the differences between all
theoretical approaches one can find in literature [15], it is possible to claim
that each of them provides a comprehension of heat-transfer mechanism
at nanoscale which is almost satisfactory. However, there is still a lack of
understanding of that processes.

Among the different theoretical approaches describing heat transport
beyond the Fourier law, the thermomass (TM) theory [16-18] represents
a recent proposal which is growing in interest. In this theory, whose ther-
modynamic compatibility with second law has been analyzed in Ref. [19]
within the framework of continuum thermodynamics, the following nonlin-
ear evolution equation for the heat flux q is derived:
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with T being the temperature, 7, a suitable relaxation time [16,19], ¢, the
volumetric specific heat at constant volume, A\ the thermal conductivity,
p the mass density, and v the Griineisen constant. In the evolution equa-
tion (1) the nonlinear terms are introduced by the parameters in Egs. (2)
which, indeed, do not have a precise physical meaning. However, they turn
out well-known quantities when coupled with the heat flux. In fact, /q in
Eq. (1) denotes the characteristic length vector of heat conduction [17,19].
It conceptually differs from the mean-free path of thermons, and character-
izes the strength of the non-Fourier effects introduced by Eq. (1) [17,19].
Moreover, the quantity ¢?b? denotes a dimensionless number which is also
called thermal Mach number of the drift velocity relative to the thermal-
wave speed in the heat-carrier collection.

The TM theory can be viewed as an interesting example of the mass-
energy relation in thermal science. In particular, it reveals a dual nature of
heat, which behaves like energy during its transformation into other forms of
energy, and like mass during its transfer from the hotter bodies to the colder
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ones. From a microscopic point of view, the TM of an individual particle
(atoms, molecules, etc.) is defined as A “thermonA”. All the thermons in a
system form thermon gas, and the heat conduction of solids is actually the
direct flow of thermon gas under its pressure gradient [20].

This theory has been successfully already used in Refs. [17,21] to de-
scribe the behavior of the effective thermal conductivity in nanomaterials,
which is a very hot topic in practical applications. Indeed, besides incorpo-
rating information on the characteristic length of the system, the peculiarity
of Eq. (1) is also to cope with relaxational and nonlinear effects, which are
of fundamental importance for the functionality of nanosystems. Indeed, it
is not our present purpose to further examine this theory in an exhaustive
way, but only to point out a significant and illustrative aspect of the conse-
quences of Eq. (1). In particular, starting from Eq. (1), in the present paper
we study how thermal waves are predicted to propagate by the TM theory
in nonequilibrium steady states characterized by a non-vanishing temper-
ature gradient, or heat flux, and what may be the possible implications of
those predictions in practical applications.

The structure of the paper is the following. In Sec. 2 we briefly calculate
the speed of propagation of thermal pulses in TM theory. In Sec. 3 we
analyze the consequences of the temperature dependence of the propagation
speeds on the shape of a heat pulse. Therein we also compare the predictions
of the TM theory with those arising from a different theoretical proposal. In
Sec. 4 the main results obtained in the paper are summarized and discussed.

2. Heat waves in nonequilibrium steady states

In the classical theory, wherein heat transport is described by the Fourier
law, thermal signals obey to a parabolic partial differential equation [15].
This implies that they paradoxically propagate with an infinite speed,
namely, the influence of a thermal signal is immediately felt throughout
the whole system. That equation, instead, becomes hyperbolic whenever
relaxational effects are incorporated. This means that the aforementioned
speed becomes finite, in agreement both with experimental observations,
and with kinetic theory [4,22-26].

Therefore, from the theoretical point of view, the search for a gener-
alization of the Fourier law is strictly related to the problem of finding a
suitable equation leading to a hyperbolic partial differential equation for
the heat waves. From the experimental point of view, instead, that search
began when the second sound and the ballistic phonon propagation in some
dielectric solids at low temperature were discovered [27]. Such analyses are
of great interest in solid-state physics because they provide useful and rel-
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evant information on phonon scattering process [28].

A great part of the works dealing with heat-waves propagation prin-
cipally focus their own attention on the analysis of the consequences of
the dynamical behavior of the generalized heat-transport equation. This
is a natural consequence of the very important role played by relaxational
terms in high-frequencies nonequilibrium situations [28]. However, the same
attention should be also put on nonlinear terms, if they are taken into ac-
count in the theoretical proposal.

Therefore, along with these observations, in the present section we
briefly analyze the consequences of nonlinear terms in Eq. (1) on the heat-
waves propagation. To this end, we consider a rigid solid which can be
locally characterized by the internal energy per unit volume e and the heat
flux vector q [4]. The energy balance law in this case reduces to

Oe
(3) o -V-q

By means of the constitutive relation e = ¢,T', and assuming that the
specific heat per unit volume ¢, is a constant material function?, in the
one-dimensional (1D) case the coupling of Egs. (1) and (3) gets

Jq dq oT B
(4) Ttma—FQéq%—FAf%—Fq—o
wherein
(5) &€= (1-¢%°)

and z is the longitudinal cartesian coordinate.

Referring to the classical procedure for the analysis of waves propa-
gation [29,30], let us consider a smooth surface of equation ¢ (z;t) = 0
propagating through the body. We assume that both the temperature T,
and the heat flux ¢ are continuous across that surface, but their first-order
derivatives suffer finite discontinuities defined by

(6) 0= <8(?0>@0+ - <§P>¢o

Making use of the standard transformations

0 0
7 9 . v
(7) 675% Us, axﬁé

®This mathematical assumption, which allows us to derive very simple and manageable
relations, lays on the physical observation that in several occasions the specific heat
capacity shows non-negligible variations only in very wide temperature range.
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with U being the wave speed, from Eqs. (3) and (4) the following system
of two homogeneous algebraic relations for the discontinuities é7 and dq
arises

(8)

—UcydT 4+ 9g=0
AOT + (200 — emU ) 6g¢ =0

wherein gg means the steady-state heat-flux value. The homogeneous linear
system (8) has nontrivial solutions if, and only if, the following relation
holds:

(9) CoTemU? — 20c,qoU — X =0
which implies that the characteristic velocities are
(10) Ui:UO( <I>2+§i<1>)

with the superscript + indicating the wave traveling in the positive direction
(namely, in the same direction of the heat flux), and the superscript — indi-
cating the wave propagating in the negative direction (i.e., the opposite di-
rection with respect to the heat flux). Moreover in Egs. (10) Uy = \/A/ (T¢y)
is the speed of propagation of thermal waves in an equilibrium reference
state, and

Cy

(11) ¢ = Llqo

Aot

with @ = 7y, /7, being 7 the relaxation time of resistive interactions be-
tween phonons. We explicitly observe that 7, in Eq. (1) means the lagging
time from the temperature gradient to the corresponding heat flux in TM
theory, whereas 7 means the lagging time from the thermal nonequilibrium
to the equilibrium state in the Maxwell-Cattaneo theory [15]. According
with these observations, the nondimensional parameter v above may allow
to compare the thermal response in the transient of both theories. As it has
been observed in Ref. [19], in some cases the two relaxation times may have
orders of magnitude which are sensibly different. In particular, in a silicon
sample the smaller the temperature, the bigger ¢, than 7.

From Egs. (10) it follows that a heat wave, moving in the same direc-
tion of the average heat flow, will travel with a velocity which differs from
that of the wave propagating in the opposite direction. In particular, due
to the positive values of ® arising from Eq. (11), we may conclude that
the TM theory predicts that U+ > U~. It is worth noticing that the abso-
lute value of the difference in the wave speeds, i.e., [U"T — U~| represents
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a thermodynamic prediction of a relation between the speeds of thermal
pulses in equilibrium (which gives information on the relaxation time) and
the speeds of thermal pulses under a heat flux. In the absence of nonlinear
terms in Eq. (1), instead, ® = 0 and £ = 1 in Egs. (10), and no difference
in the wave speeds would be recovered.

Referring the reader to Sec. 3.2 for a comparison with a different theo-
retical proposal of the heat-transport equation, here we only observe that
in phonon hydrodynamics it is usually recovered that U~ > U™ [4,9,22].
Moreover, in Sec. 4 we also comment that this result, which seems to be
specific of the TM theory, can be used to test the validity of the TM theory
in practical applications.

In closing the present section, we finally observe that the temperature
dependencies of £ and ® in Egs. (5) and (11), respectively, point out that
the propagation speeds in Egs. (10) are temperature dependent. In the next
section we will analyze the consequences of this dependence.

3. Focusing of an energy pulse

In previous section we observed that heat waves, propagating through
a 1D system, in the TM theory are predicted to move with a finite speed,
the value of which is given by Egs. (10). Due to the nonlinear terms in
Eq. (1), that value varies depending of whether the wave is moving towards
the heat flux, or in the opposite direction. We further observed that the
nonlinear terms are also the only responsible of the temperature dependence
of Egs. (10).

The temperature dependence of that speed may have interesting con-
sequences in practical applications. For example, consider a rectangular
energy pulse traveling through a system which is in a nonequilibrium situa-
tion due to the presence of a temperature gradient applied between its two
ends. Previous observations allow us to argue that the two boundaries of
the energy pulse should move with slightly different speeds. To analyze the
possible consequences of these speed differences, we introduce the following
(finite) pulse width

(12) Azt = :Ufi —

with z¢ (T") being the position of the front edge, and z, (T') the position of
the rear edge (the superscript + still standing for the positive direction of
propagation, and the superscript — for the negative direction).

Then, it is easy to see that the change of Az* as a function of the
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position along the system during the propagation of the pulse, reads

d d dt 1 (dxf daF U* (Ty) — U* (Ty)
— (A ) | 2 A =+ - f r _ r
7z (877) [dt(‘”)]dx Ui(dt dt>

1 (dU*\ (dT dnU*\ (dT
13 — == |dz = — ) Az*
(13) Ui<dT><dx>x (dT><dx> v
By straightforward calculations it is also possible to observe that the
coupling of Egs. (10) and (13) turns out that the relative variation rate of

the width of a traveling heat pulse along the system, predicted by the TM
theory, is

1 d
1
T( <I>2+§i<l>>

U=

3(1—¢) — 492
2,/ P2+ ¢

(14)

dT

dx
From a practical point of view, it is also interesting to analyze the
evolution of the pulse amplitude 6*. To this end, if we suppose that the

total internal energy of the heat pulse I* = ¢, Az™ is constant P, then
the relative variation rate of the pulse amplitude is

dI* 1 [do* 1 [d
15) ——=0=A0%=_ (—— ) =—g |5 (A2%)| =-Ax*
(15) dx 0=A8 Hi(dx> Az* [dx( v )]

which implies that if the pulse width shrinks (i.e., if in Eq. (14)
d(AzT) /dxr < 0), then the pulse amplitude raises up (i.e., in Eq. (15)
d0*/dx > 0), whereas if the pulse width enlarges (i.e., if in Eq. (14)

(15)

d (AzT) /dz > 0), then the pulse amplitude gets squashed (i.e., in Eq. (15
do* /dz < 0).

3.1. Application to a silicon nanowire

In order to apply previous results to a concrete situation, consider a
nanowire of longitudinal length L (much larger with respect to the radius
of the transversal section in such a way that it may be assumed as a 1D
system) in steady states, the hotter side of which is kept at the constant

®In practical applications, the amount of the heat contained in the pulse is not always
the same during the propagation. In fact, due to the diffusion effects, that amount is
distributed to the regions of lower temperature. However, if the characteristic time of
diffusion effects is larger than that of the pulse propagation, in principle it is possible to
assume that IT is constant.
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temperature T}, whereas its colder side is at the constant temperature 7.
In particular, just for the sake of computation, assume that the nanowire is
made by silicon, L = 10*m, T}, = 330K, and 7T, = 270 K. The Griineisen
constant of silicon is v = 1.5 [31].
For simplicity, we also assume that across the two ends of the nanowire
a linear temperature gradient of the form
T

(16) T () = —7 (T~ T) + T

is applied. This implies that the system at hand can be supposed at
the average temperature 7 = 300K. The thermal conductivity of sili-
con at the room temperature is A = 148 Wm™ K, whereas the specific
heat at constant volume per unit volume may be obtained by using the
usual Debye expression, namely, ¢, = (127r4/5) (T/TB)3 (Rpsi/Msi), with
Tg = 645K as the Debye temperature for silicon, R = 8.31 JK'mol! as
the gas constant, Mg; = 28 x 1072 kgmol ™ as the silicon molar mass, and
psi = 2.33 x 103kgm™ as the mass density of silicon.

Along with previous results, the TM theory predicts that a rectangular
energy pulse traveling longwise the system (see Fig. 1 for a qualitative
sketch) will change its shape both whether it moves in the same direction
(+) of the average heat pulse go, and in the opposite direction (—).

By using Egs. (14) and (15), in Fig. 2 we plot the relative variation rate
of the pulse amplitude. In obtaining the value of a to use in Eq. (11) we
calculated the relaxation time in the TM theory as 7im = Ap/ (270?}?), and
we roughly estimated the relaxation time of resistive interactions between
phonons as 7 = £, /¢, with ¢ = 8.34 x 103 m s being the phonon speed, and
£, = 40.3 x 1079 m being the phonon mean-free path at the room tempera-
ture. Moreover, we calculated the average heat flux flowing throughout our
system as qo = A (T, — T¢) /L.

As one can clearly see, the pulse traveling in the same direction of ¢q is
characterized by a positive value of AO™ everywhere. Along with previous
observations, in this case we may conclude that the pulse shrinks, growing
this way its temperature. In practical applications this may cause some
problems if the system cannot stand at high temperatures. In fact, in this
case, the propagating pulse may lead to the consequence that some points
of the nanowire will stay at a temperature which is higher than the melting
temperature threshold.

The pulse traveling in the opposite direction of gy, instead, is always
characterized by a negative value of A©~. This means that the pulse en-
larges during its motion with the consequent reduction of the temperature.
This may be also a problem in practical applications if one is trying, for
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T=T,
x=0 Ax - x=L
<>

Figure 1. Figure shows a rectangular energy pulse moving throughout a nanowire when
a linear temperature gradient between the two ends of which is applied. The end at z = 0
is held at the hot temperature T}, and the end at x = L is held at the cold temperature
Te. When the energy pulse travels from left to right in figure (i.e., from x = 0 to z = L),
it moves in the same direction (+) of the average heat flux qg, and its speed is UT. When
the energy pulse, instead, travels from right to left in figure (i.e., from z = L to z = 0),
it moves in the opposite direction (—) of the average heat flux qp, and its speed is U™ .

example, to send information along the system by means of heat pulses.
If the temperature of the pulses becomes too small, in fact, it will not be
detected.

Although a more refined analysis, (for example, a detailed microscopic
analysis of phonon focusing based on elastic properties of crystals), is desir-
able, previous results allow to infer that nonlinear effects may play a crucial
role in some situations, and they should be never neglected.
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Relative variation rate of the pulse amplitude in TM theory
20—————————7 "7 T T [ T T T T T

+ l6r B
® L
< 4t 4
12+ B
o e e e e e e e e
330 320 310 300 290 280 270
T
-10 T T T T T
~12F 4
, —l4F B
® L
< 16k 4
~18F 4
7 S S S S S S
270 280 290 300 310 320 330
T

Figure 2. Behavior of the relative variation rate of the pulse amplitude in a silicon
nanowire versus the temperature: theoretical results predicted by the coupling of Egs. (14)
and (15). The superscript + denotes the aforementioned behavior for a pulse traveling
in the same direction of the average heat flux qq, i.e., a pulse which moves from the
hotter end to the colder one. The superscript —, instead, denotes the behavior of a pulse
traveling in the opposite direction of the average heat flux qg, i.e., a pulse moving from
the colder end to the hotter one.

3.2. Comparison with a different formalism

With the rapid development of femtosecond lasers and micro/nano pro-
cessing techniques, the meaning of temperature in nonequilibrium situations
is becoming a very acute problem, because of the relatively small number
of particles involved and the influence of fast variations. In order to comply
with these situations, in recent papers [9,32,33] the concept of dynamical
temperature 5 has been introduced. By design, 8 coincides with the ab-
solute temperature T' at equilibrium, otherwise § follows 1" with a certain
delay which is controlled by a suitable relaxation time [32,33]. The dynam-
ical temperature, which can be fundamentally regarded as an additional
degree of freedom, is related to internal forcing acting on the heat carriers
which manifest themselves at time scales of the order of its characteristic
relaxation time.
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Starting from the idea that the heat flux q is proportional to the gradient
of 5 19,32,33], namely, q = —AVf, in Ref. [9] the authors derived the
following nonlinear Maxwel-Cattaneo type (nMC) evolution equation for
the heat flux

oq 27

(17) TE +q-— ch

q-Vq+AVT =0

which leads to the following speeds for heat waves [9]

(18) Ut =0y (V& +1709)

wherein ¢ = qo/ (Tc,Up). The positive defined character of ¢ in Eqgs. (18)
turns out that the theoretical proposal (17) predicts that U~ > U™, in
agreement with usual results of phonon hydrodynamics [4,9,22], but in con-
trast with the predictions of TM theory derived in Sec. 2. However, the
temperature dependence of ¢ in Eqgs. (18) points out that also in this for-
malism both propagation speeds are temperature dependent, implying that
the two boundaries of a energy pulse move with slightly different speeds.

We note that the consequences of accounting for Eq. (17) on the shape
of an energy pulse propagating along a system in nonequilibrium situa-
tions have been analyzed in deep in Ref. [25] in the more general case of
temperature-dependent material functions. Here we only consider the sim-
pler situation in which the different material functions do not depend on the
temperature (or, equivalently, all of them show negligible variations owing
to the applied temperature gradient) in order to compare the predictions
of the TM theory with those of the nMC theory.

By direct calculations it is easy matter to see that in this case the

relative variation rates of the pulse width read
B +¢ <dT )
T (V& +170) de

Still assuming that our system is submitted to the linear temperature
gradient in Eq. (16), with T, = 330K and T, = 270K, in Fig. 3 we plot
the relative variation rate of the pulse amplitude predicted by the nMC
equation (17). The results plotted therein allow to see that, in contrast
with the prediction of the TM theory, in this different formalism a heat
pulse propagating in the same direction of the average heat squashes and
its temperature decreases, whereas a heat pulse propagating in the opposite
direction shrinks and increases its temperature.

o
Nz

(19) AX* 1T
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Relative variation rate of the pulse amplitude in nMC theory
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Figure 3. Behavior of the relative variation rate of the pulse amplitude in a silicon
nanowire versus the temperature: theoretical results predicted by the coupling of Egs. (15)
and (19). The superscript + denotes the aforementioned behavior for a pulse traveling
in the same direction of the average heat flux qq, i.e., a pulse which moves from the
hotter end to the colder one. The superscript —, instead, denotes the behavior of a pulse
traveling in the opposite direction of the average heat flux qg, i.e., a pulse moving from
the colder end to the hotter one.

4. Conclusions

In the present paper we analyzed the consequences predicted by the TM
theory [16—18] on the speed of propagation of heat waves. In the special case
of a silicon nanowire submitted to a linear temperature gradient, we pointed
out the very important role that nonlinear effects may have in practical
applications. In more detail, in Sec. 3 we observed that those effects may
be responsible of changes in the shape of a heat pulse traveling through a
nanowire.

It is worth noticing that in Eq. (1) the nonlinear effects are accounted
by the parameters £ and b? in Egs. (2). Indeed, for the case analyzed in the
present paper, the nonlinear effects introduced by the former parameter are
prevalent with respect to those introduced by the latter parameter, which
can be also related to the concept of flux limiters [4,34,35]. Along with this
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observation, here we also compared those results with the predictions of
the different theory proposed in Ref. [9], which introduces in Eq. (17) the
nonlinear effects by means of a term which is very similar (but not equal)
to 4.

Although it is evident by now the importance of accounting for non-
linear effects in the heat-transport equation at nanoscale, we note that the
different theories should introduce them in such a way that the mathemat-
ical form of the different characteristic equations remains always the same.
Therefore, the present analysis, which in a first rough look may appear
only as an academic motivation, becomes acute if one observes that the
growing importance of nanostructures fostered the interest in generalized
heat-transport equations incorporating memory, nonlocal, and nonlinear ef-
fects. Owing this, in literature different theories and/or models leading to
a generalization of the classical Fourier law may be found [15,27]. Although
from the theoretical point of view one has to admit that some of them are
very refined, while others show some weak points, in general it is not so sim-
ple to claim which is the best (or, alternatively said, the right) proposal. To
this end, a suitable way of testing the validity of a given model with respect
to another one may be to find practical (and simple to be reproduced) ap-
plications wherein different theories clearly predict different results. This is,
for example, just the case of the propagation of energy pulse in a nanowire
we analyzed in the present paper, which could be used to check the validity
of Eq. (1) with respect to Eq. (17). In fact, Eq. (1) predicts that an energy
pulse propagating through a silicon nanowire shrinks (and increases in tem-
perature) when it moves from the hot side to the cold one, whereas that
pulse enlarges (and decreases its temperature) when it passes from the cold
side to the hot one. The theoretical model introduced by Eq. (17), instead,
exactly predicts the opposite behaviors.

Indeed, in closing the present paper let us observe that differences be-
tween the TM theory and other modern thermodynamic theories, as for ex-
ample extended thermodynamics [15], also rest on the difference U~ — U™,
which in the former theory is negative, and in the latter is always positive.
In that respect, a comparison with experimental data should have been
welcome to decide between those opposite results, too. For example, a pos-
sible system wherein at high frequencies the difference U~ — U™| # 0 is
sketched in Fig. 4. However, in the book by Jou et al [4] (see therein Part
IIT - Selected Applications) it is possible to find several examples of
practical applications in which one can measure two different speeds for
propagating thermal pulses.
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Figure 4. In the right-hand side of the system a source of the heat pulse (for example
a faster heater) is directly connected with a heat-pulse receiver (for example a supercon-
ducting bolometer). The system is in a nonequilibrium situation when an average heat
flux qg is flowing through it.
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