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Abstract

The thermal diode is the fundamental device for phononics. There are various mecha-
nisms for thermal rectification, e.g. different temperature dependent thermal conductivity
of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport
in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the
heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is
characterized by the balance equation of momentum, like the Navier-Stokes equation for
fluid mechanics. Generalized heat conduction law thereby contains the spatial accelera-
tion (convection) term and the viscous (Laplacian) term. The viscous term predicts the
size dependent thermal conductivity. Rectification appears due to the MFP supersession
of phonons. The convection term also predicts rectification because of the inertia effect,
like a gas passing through a nozzle or diffuser.
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1. Introduction.

Thermal rectification, namely, the asymmetry of the thermal conduc-
tance leading to higher heat flow in one direction than in the opposite
direction for the same temperature gradient, is a current active topic of
research [1–11]. The thermal rectification can originate from various mech-
anisms, e.g. the different temperature dependences of the thermal conduc-
tivity at the different part of the device, the asymmetric transmission ra-
tio of phonons across the interfaces, and the temperature dependence of
electromagnetic resonances. Here we would like to investigate the thermal
rectification related to the asymmetric geometry of the device, namely, a
trapezoidal silicon flake with a wide beginning and a narrow end. The ther-
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mal rectification effect of such device has been investigated both by exper-
iment [9] and atomistic simulation [10,11]. It is qualitatively understood
that the rectification is caused by the asymmetric phonon transport caused
by boundaries. Yet a more quantitative theory is desired to explain these
phenomena. In recent years a series of theories are developed for the phonon
transport in nanosystems. For systems evidently larger than the dominant
phonon wavelength, the quantum effect can be neglected [12,13]. Then the
phonon interaction with boundaries is characterized by the constraint of
phonon mean free paths (MFPs). The equation of phonon radiative trans-
fer (EPRT) [14] is established to solve the Boltzmann transport equation,
which treats phonon like radiative photon. A predictive model (Gray model)
is thus obtained for the effective thermal conductivity of nanosystems [14].
In comparing with the experimental results, the Gray model to some ex-
tent overestimates the effective thermal conductivity. It is further modified
through a reconsideration of the phonon MFPs [15,16], or using a frequency
and branch dependent phonon group speed and mean life time [17]. Guyer
and Krumahansl [18,19] derived a linear solution of the phonon Boltzmann
equation. They obtained a generalized heat conduction equation in the con-
densed matter, which contains the memory and nonlocal effect of heat flux.
In particular, a Laplacian term of the heat flux appears due to the normal
scattering processes of phonons. This term is in analogy with the viscous
dissipation term in the Navier-Stokes equation. Therefore, models based on
Guyer and Krumahansl’s results are called the phonon hydrodynamic mod-
els. It was addressed that in a certain range of temperature, the collective
behaviour of phonons may be characterized as in the fluid mechanics. In re-
cent years, the significant reduction of thermal conductivity of nanosystems
was exhibited in experiments [20–24]. With the phonon hydrodynamic mod-
els, the boundary drag is larger for smaller systems. Then such reduction
can be explained by the boundary drag acting on the phonon gases [25–27].
The thermomass theory [28–31] derives the generalized heat conduction law
from the approach of continuum mechanics. It regards the thermal energy
as a continuum fluid with a certain amount of mass, which is the rest mass
of energy in the relativity theory. The memory and nonlocal effects are pre-
sented as the transient and spatial inertia effects of thermomass. A phonon
gas model for the decreased thermal conductivity of nanosystems is pro-
posed by combining the phonon hydrodynamics and thermomass theory.
The phonon gas is resisted by a Darcy-Brinkman friction with it viscosity
depending on the systems size, which is in analogy with the rarefaction
effect in micro-tubes. The previous phonon hydrodynamic and phonon gas
models mainly focus on the straight tubes. In this paper, we investigate the
heat transport in the trapezoidal silicon flack through these models. The
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thermal rectification effects predicted by different models are presented.

2. Thermal Rectification Based on Phonon Hydrodynamics

The phonon hydrodynamics model is derived from the linearizd phonon
Boltzamnn equation, which has a dual relaxation form [28].

(1) (
∂

∂t
+ vk · ∇)f = −f − fE

τR
− f − fD

τN

where f is the distribution function of phonons, τR and τN are the char-
acteristic relaxation times of resistive (R) and normal (N) processes, vk is
the group velocity, fE is the Planck distribution for the thermal equilibrium
state

(2) fE =
1

exp(~w/kBT )− 1

fD is the displaced Planck distribution which conserves the phonon
momentum

(3) fD =
1

exp[(~w − ~k · u)/kBT ]− 1

with u the drift velocity of phonon gas. Guyer and Krumalhansl [18,19]
obtained an eigen value solution of Eq. (1) as ( GK model)

(4) τR
∂q

∂t
+ q = −κ∇T + l2G(∇2q + 2∇∇ · q)

where κ is the thermal conductivity, and lG is the MFP of phonons.It
is worth observing that in their original proposal [18,19], Guyer and
Krumhansl considered a boundary relaxation-time τb which they added
to the usual relaxation time due to resistive mechanisms by the use of
Matthiessen rule as τ−1

R = τ−1
U + τ−1

i + τ−1
d + τ−1

b , τU being the relax-
ation time of umklapp-phonon collisions, τi the relaxation time of phonon-
impurity collisions, and τd the relaxation time of phonon-defect collisions.
Once the combined resistive-boundary collision time was obtained, the ther-
mal conductivity κ (depending on the size of the system through the τb de-
pendence of τR ) was obtained and used in the first term of the right-hand
side of Eq. 4.

Indeed, to account for the phonon-wall interactions in nanosystems, in
Refs. [25–27] a different approach has been used. In particular, in those
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papers the authors assumed that the time rate of the heat flux in given by
a GK-model type equation, the main differences with respect to Eq. 4 rest
on the different way of computing both the resistive time τR (which does
no longer account for the boundary relaxation time τb ), and the thermal
conductivity κ (chosen as the Ziman limit for the bulk thermal conductivity
[32] ). Then the phonon-wall interactions are taken into account by the
use of suitably boundary conditions [25–27], similar to those used in the
hydrodynamics of rarefied gases.

For the steady transport in nanosystems, the first term of Eq. (4) is
neglected, and Eq. (4) simplifies as

(5) q = −κ∇T + l2G∇2q

whenever the phonon MFP is smaller than the characteristic size of the
system the latter term in the right-hand side of Eq. (5) can be neglected, and
it reduces to the classical Fourier’s law. Otherwise this expression describes
a reduction of thermal conductivity because of collisions with the walls.
Along with previous observations about the possible ways of accounting
for the phonon-wall interactions, if in Eq. (5) the thermal conductivity is
meant as the Ziman limit for the bulk thermal conductivity, then one should
assume suitably boundary conditions. However, if the boundary roughness
is comparable with the phonon wavelength (in which case the boundary
is regarded as pure diffusive), then one may reasonably assume a non-slip
boundary condition, i.e., the heat flux vanishes at the boundary. For a 2-D
thin layers, the solution of Eq. (5) with the non-slip boundary is [25–27]

(6) q(y) = −κ∇T (1−
cosh y

lG

cosh H
2lG

)

where H is the thickness of the layer, y ∈ [−H/2, H/2] is the distance
from the central line. From the integration of Eq. (6) one gets the effective
conductivity of the layer [25–27]

(7) κeff = κ(1− 2Kn · tanh(
1

2Kn
))

where Kn is the Knudsen number, Kn = lG/H. For large systems, Kn
is small, then the bulk conductivity is recovered. When the system size
shrinks, Kn grows large, the effective conductivity reduces significantly
from the bulk value. Note that Eqs. (6) and (7) are derived based on the
non-slip boundary. In [25–27] the authors assumed the Maxwell slip bound-
ary with the boundary slip of heat flux proportional to the gradient of heat
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flux at boundary and the MFP. The temperature dependence of the slip pa-
rameters was yielded through the experimental results. In [33] the boundary
slip of heat flux was assumed to be proportional to the Fourier heat flux,
q0, and the effective MFP. The former is obtained through the Fourier’s law
with the same temperature gradient while the latter is a phenomenological
function of Kn. Nevertheless, the boundary condition is sensitive to the
practical experiment setup. Thus I only discuss the non-slip boundary con-
dition to focus on the role of nonlinear terms on the thermal rectification.
Since the cross sections of the layers studied in the experiments could be
rectangles of finite width instead of infinitely wide, which is Wx, we made a
modification on the Kn number, by defining the effective size of each cross
section to be [25–27]

(8) R = R1 · (tanh η)2,
1

R2
1

=
1

W 2
x

+
1

H2

where Kn = l/R, Wx is the width of each section, and η is the aspect ratio,
η = max(Wx/H,H/Wx). When η � 1 (about > 3), the Kn defined in
Eq. (8) is reduced to that appearing in Eq. (7). The reason for Eq. (8) is
that when the aspect ratio is near 1 (i.e. for square nanowires), the phonon
confinement will become stronger than in the 2D layer.

With Eqs. (7) and (8), we can evaluate the effective thermal conductivity
of a silicon nano-flack. The investigated system size is: The thickness of the
silicon layer is 100 nm (H); the widths at the narrow and the wide ends are,
respectively, 60 nm (N) and 800 nm (W), and the separation between these
ends is 3500 nm. The difference between the temperatures imposed on both
ends was of the order of 30 K, and the average temperature (defined as the
average of hot and cold end temperatures) was varied between 205 K and
325 K. Note that in this case the open angle of the nano-flack is small,
so the heat flux in each cross section can be regarded as quasi-1D, i.e.
the x component of the heat flux dominates, and the y and z components
are negligible.Based on the quasi-1D approximation, the effective thermal
conductivity as each cross section can be obtained through Eqs.(7) and (8).
Note that the variation of area for each cross section leads to the evolution of
κeff along the x direction. The MFP increases with the temperature drop.
Therefore, Kn in each cross section changes when the heat flux direction is
reversed, leading to the rectification effect.

In Fig. 1 we show the calculated results for the effective thermal con-
ductivity of the nano-flack at various temperatures. The MFPs of phonons
are extracted from previous literatures [25–27]. It can be seen that the ef-
fective thermal conductivity greatly reduces from the bulk value (148W
m−1K−1for the room temperature silicon) because of the strong phonon
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scattering with boundaries. κeff keeps growing with the temperature, which
is an opposite trend to the bulk value. The conductivity for the WTN case
(which refers to that the wide end is hotter than the narrow end) is smaller
than that for the NTW case (which refers to that the narrow end is hotter
than the wide end) in the temperature range above 230K. However, the
rectification ratio is small. The maximum rectification ratio which appears
at 325K is about 3%.
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Figure 1. The effective conductivity of the trapezoidal Si flake based on the phonon
hydrodynamics model (Eq. (5))

The reason for such rectification can be understood as: The phonon
MFPs decrease with the temperature. In the WTN case, the narrow end
contacts with the lower temperature heat bath, which has the long intrinsic
phonon MFPs. Thus the constraint is stronger in this case, leading to a
smaller effective thermal conductivity. This mechanism is equivalent to a
device composed of two different materials which have different temperature
dependent thermal conductivities. For the silicon nano-flack, the different
thermal conductivities are induced by the size effect, namely, the phonon
scattering with boundaries.
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3. Thermal Rectification Based on Thermomass Theory

The thermomass theory proposes that the phonon gas residing in the
condensed matter corresponds to a certain amount of mass, which is the
equivalent mass of the phonon energy. The constitutive equation for the
motion of thermomass is [28–31]

(9)
∂(ρhuh)

∂t
+ ρh(uh∇) · uh +∇ph − fh = 0

which rises from the momentum balance equation of thermomass. The first
term on the left hand side is the transient inertia term, the second is the
spatial inertia term, the third is the driving force while the forth is the
friction force. In Eq. (9) uh is the drift velocity of thermomass,

(10) uh =
q

ρCV T

and ρh is the thermomass density

(11) ρh =
ρCV T

c2

where CV is the specific heat and ρ is the density of medium. The thermo-
mass pressure is expressed as

(12) Ph = γGρhCV T =
γρ(CV T )2

c2

where γG is the Grneisen parameter. The friction force fh has a Darcy-
Brinkman form

(13) fh = −βρhuh + µh∇2uh

where β is the friction parameter, µh is the viscosity of the phonon gas.
With β = 2γGρC

2
V T/κ, and µh = 2γGρ

2C3
V T

2l2G/c
2κ, Eq. (9) turns to a

form

(14) τTM
∂q

∂t
+ 2(lTM · ∇)q − bκ∇T + κ∇T = −q + l2G∇2q

with

(15) τTM =
κ

2γGρC2
V T

(16) lTM =
qκ

2γG(ρCV T )2
= uhτTM
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(17) b =
q2

2γGρ2C3
V T

3

Compared with the GK model, Eq. (14) has additional terms, namely, the
second and third terms on the left hand side. These terms rise from the
spatial inertia term in Eq. (9).The thermomass friction force, Eq. (13),
is extended with the Laplacian term compared with the previous mod-
els [28–30]. It is a necessary extension for nanosystems regarding that the
friction force of porous flow should also include the Laplacian of velocity
when boundary effect is important, which is called the Brinkman extension
to the Darcy’s law. The modified thermomass model with this extension has
been used to calculate the effective thermal conductivities of the nanofilms
and nanowires in [31] and got a reasonable agreement with experiments.
One should note that the phonon motion could be a mixture of kinetic and
collective behaviors in nanosystems. By using the hydrodynamic assump-
tion for phonons, as in GK model and thermomass theory, the phonon is
supposed to move collectively. Therefore, the parameters (e.g. κ and τ)
used in Eq. (5) and Eq. (14) should be calculated from the collectively
expression of phonon distribution function. de Tomas et al. [34] discussed
the difference between thermal conductivities in the kinetic and collective
regime. The general expression of thermal conductivity is a combination of
both regimes with a switching factor. They obtained a better agreement
with experiments. In a deliberate modeling of nanosystem heat conduction
regarding the distinction between kinetic and collective regimes would give
more reliable results.

In fluid mechanics it is easily found that the spatial inertia term induces
the rectification effect. For a trapezoidal flow channel, the flow rate under
the same pressure difference changes with the flow direction. For the WTN
case, the channel serves as a nozzle, while for the NTW case it serves as a
diffusor. The fluid accelerates in a nozzle, thus part of the input mechanical
energy converts to the dynamical energy of the fluid, which reduces the
flow rate. From this viewpoint, the NTW case will have a larger flow rate
than the WTN case. However, it should be noted that in the NTW case, if
the open angle is big and the flow rate is large, the flow may separate. In
this case the flow rate of the NTW case will significantly decrease and the
rectification effect will reverse. In steady state, Eq. (14) transforms to

(18) 2(lTM · ∇)q + κ∇T = −q + l2G∇2q

Here we neglect the third term on the left hand side of Eq. (14), since it
is much less than the second term in the present material and temperature
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conditions. It can be inferred from Eq. (18) that the ∇q term influences
the heat conduction. In a straight channel with constant cross-sections, q is
constant and this term vanishes. In the WTN case, the ∇q term is positive,
then it will weaken the driving force (note that κ∇T is negative) and reduces
the effective conductance of the device. In contrast, in the NTW case, the
∇q term is negative and enhances the effective conductance. Therefore, Eq.
(18) predicts a rectification effect that the NTW case is more conductive
than the WTN case.

Based on Eq. (18) we can calculate the effective conductivity of the de-
vice described in Section 2.The difference between Eq. (18) and Eq.(5) is the
divergence term 2(lTM · ∇)q. The numerical solution of Eq. (18) is yielded
by an iteration which modifies the local temperature drop and κeff based
on Eq. (5) with the divergence term. The property, lTM , is renewed through
each iteration step based on the temperature distribution obtained in the
previous s tep. The relaxation time of silicon is calculated based on Eq. (15)
with the temperature dependent parameters. At 300K τTM = 1.1e − 10s.
The results are shown in Fig. 2. The maximum rectification ratio is about
3%, very close to the results based on the phonon hydrodynamics model.
The reason for this consistency is that for the present device, the heat flux
gradient is very small, thus the spatial inertia term is not significant to
produce more rectification.

4. Concluding Remarks

Here we investigate the thermal rectification effect of a trapezoidal Si
flack based on the phonon hydrodynamics model and thermomass model.
Small rectification ratios are observed based on both models. The main
reason for such rectification ratio can be attributed to the confinement of
phonon MFPs. In the WTN case, the average MFPs of phonons suffer more
restriction, leading to a lower thermal conductivity. However, from Figs. 1
and 2, we see that such rectification effect can reverse at different tem-
perature ranges. At low temperature, the bulk thermal conductivity varies
strongly with temperature. One can derive that putting a high conductivity
material in the narrow end will benefit the total conductance. Therefore,
the MFP suppression effect is no longer the main reason for rectification,
and the WTN case is more conductive. The thermomass theory indicates
another nonlocal term, namely, the gradient of the heat flux. Such term
will cause the NTW case to be more conductive than the WTN case until
the flow separation happens. In the present model such effect is not observ-
able since the nonlocal term is not big enough. It can be expected that in
the shorter systems with larger open angles, or in the more conductivity
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Figure 2. The effective conductivity of the trapezoidal Si flake based on the thermomass
model (Eq. (18))

materials such as graphene layers, such nonlocal effect can cause consid-
erable rectification effect. It should be noted that in the present model,
we assume the nonslip boundary condition for both phonon hydrodynam-
ics and thermomass models. It is not necessary the practical case. For the
reflective boundary, the slip condition should be considered. In the trape-
zoidal channels, the inclined boundary may change the slip parameter due
to the reflected phonons, and thereby cause a strong rectification. More
investigation is underway and experimental data is desired.
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