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Abstract

In this paper, a generalized heat transport equation including relaxational, nonlo-
cal and nonlinear effects is provided, which contains diverse previous phenomenological
models as particular cases. The aim of the present work is to establish an extended irre-
versible thermodynamic framework, with generalized expressions of entropy and entropy
flux. Nonlinear thermodynamic force-flux relation is proposed as an extension of the usual
linear one, giving rise to the nonlinear terms in the heat transport equation and ensuring
compatibility with the second law. Several previous results are recovered in the linear
case, and some additional results related to nonlinear terms are also obtained.
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1. Introduction

Heat transport has been a phenomenon of basic interest for the foun-
dation of thermodynamics since the beginning of this physical theory. In
the early years of thermodynamics, two different views about the nature of
heat competed with each other [1]: heat as a conserved substance (dubbed
as caloric) and heat as a form of energy. It was the latter view which en-
forced the first mathematical statement of the second law by Clausius and
Thomson [1]. Later, classical linear irreversible thermodynamics [2] was de-
veloped by Onsager [3,4], Eckart [5,6], Meixner [7] and Prigogine [8] for the
near-equilibrium heat transport described by Fourier law. In recent years,
generalized laws of heat transport in micro- and nanoscale systems [9–14]
have been again the stimulus for further developments of compatible irre-
versible thermodynamics and wider formulations of the second law, as in
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diverse branches of rational thermodynamics [15], rational extended ther-
modynamics [16–19], extended irreversible thermodynamics [20,21], weakly
nonlocal thermodynamics [22,23] and GENERIC [24–26]. In the present
work, we will illustrate the close connection between generalized heat trans-
port equations and generalized forms of the second law in the framework
of extended irreversible thermodynamics. In a previous paper [27], we have
proposed a generalized heat transport equation including relaxational, non-
local and nonlinear terms:

(1)
τ
∂q

∂t
+ q =− λ∇T +m1q∇ · q +m2q · ∇q+m3∇q2 +m4∇2q

+m5∇ (∇ · q) +m6q (q · ∇T ) +m7q
2∇T,

and identified the coefficients mi (i=1, . . . , 7) by comparing Eq. (1) with
previous macroscopic heat transport equations achieved in diverse differ-
ent phenomenological approaches, such as phonon hydrodynamics model
[21,28,29] with m1 = m2 = m3 = m6 = m7 = 0 and m4,m5 6= 0, dual-
phase-lagging model [11,30] with m1 = m2 = m3 = m4 = m6 = m7 = 0 and
m5 6= 0, the thermon gas model [31,32] with m3 = m4 = m5 = m7 = 0 and
m1,m2,m6 6= 0. Furthermore, we have related such coefficients to the phase
speed of high-frequency heat waves along nonequilibrium steady states in
several different situations. Each coefficient has a particular physical mean-
ing and particular physical consequences, in such a way that Eq. (1) is
not merely a formal equation, but it provides a synthesis of a number of
different theories motivated by different physical phenomena.

Here, we try to establish a thermodynamic framework for Eq. (1),
namely, we seek for the expressions of entropy and entropy flux which make
Eq. (1) compatible with the second law, i.e. ensuring a positive-definite en-
tropy production. The answer to the problem is not obvious, because nei-
ther the expression of entropy nor entropy flux are known a priori, but are
closely related to the heat transport equation. We will follow the general
lines in the framework of extended irreversible thermodynamics (EIT), but
with some nonlinear extensions beyond the usual linear thermodynamic
force-flux relations.

2. Entropy, entropy flux and second law

In this section and following, the internal energy u, heat flux q, and
flux of heat flux Q are taken as basic state variables [21]. In contrast to u
and q, Q has not an established and clear physical meaning, but it has a
microscopic physical basis in kinetic theory and a rigorous formal meaning,
thus having been used in many occasions in the literature [19,21,33,34].
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For the sake of generality, we will discuss the expression of Q in terms
of nonlocal terms as ∇q and nonlinear terms as qq in Section 3, but for
the moment we leave Q as open as possible. Thus the generalized specific
entropy is expressed as s = s(u,q,Q) and the corresponding generalized
Gibbs relation becomes [21]:

(2) ds = θ−1du− vα1q · dq− vα2Q : dQ,

with v the specific volume, α1 and α2 coefficients whose physical meaning
will be explored below, and θ the nonequilibrium absolute temperature.

Combining Eq. (2) with the energy balance equation:

(3) ρu̇ = −∇ · q,

we obtain:

(4) ρṡ = −θ−1∇ · q− α1q · q̇− α2Q : Q̇.

The entropy balance equation and the expression of entropy flux are re-
spectively [2,21]:

(5) ρṡ = −∇ · Js + σs,

(6) Js =
q

θ
+ βQ · q,

where β is a coefficient which according to information theory, would be
β=-vα1 [21]. Eq. (5) is a general expression of a balance law, whereas Eq. (6)
is a particular hypothesis concerning the form of the entropy flux, which
turns out to be far more general than the classical expression Js=q/T .
Analyses of generalized expressions of entropy flux may be found in [21,22,
35–42].

Substitution of Eq. (4) and Eq. (6) into Eq. (5) gives rise to the expres-
sion of entropy production:

(7) σs = q ·Xq + Q : XQ,

with the conjugate thermodynamic forces to thermodynamic fluxes q and
Q respectively given by:

(8) Xq = −α1q̇ +∇(θ−1) + β∇ ·Q,

(9) XQ = −α2Q̇ + β∇q.
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Eq. (3) acting as the evolution equation for the state variable u, we must
also obtain similar evolution equations for q and Q:

(10) q̇=fq (q,Q,∇T,∇q,∇Q, · · ·) ,

(11) Q̇=fQ (q,Q,∇T,∇q,∇Q, · · ·) .

The time derivatives of q and Q appear respectively in Xq and XQ, in such
a way that the evolution equations for them may be achieved by express-
ing Xq and XQ in terms of q and Q. Therefore the following nonlinear
thermodynamic force-flux relations are proposed:

(12) Xq = µ1q + µ12Q · q,

(13) XQ = µ2Q + µ21qq,

with µ1, µ2, µ12 and µ21 being phenomenological coefficients. In usual linear
formulations of EIT, it is assumed that µ12 = 0, µ21 = 0 and linear heat
transport equation is derived. However, Eq. (1) is nonlinear, thus here the
nonlinear terms must be considered as well. Since we have a vector q and a
tensor Q, q and Q·q arise as two independent vectors, whereas Q and qq as
two independent tensors. Based on the Curie’s principle (requiring that in
isotropic systems, vectorial effects must be related to vectorial causes, and
tensorial effects to tensorial causes [2]), the vectorial force Xq will depend
on the vectors q and Q·q, while the tensorial force XQ will depend on
the tensors Q and qq. Notice that Q could be split into two independent
parts as Q = Q0 + QI with Q the trace of Q and Q0 the deviatoric part.
In this case, the vectors appearing in the constitutive equations will be q,
Qq, Q0·q and the tensors QI, qq, Q0. For the sake of simplicity, however,
we will stick to the simplest approach, which is sufficient for conceptual
clarification and physical interpretation.

Therefore by substituting Eq. (12) and Eq. (13) into Eq. (7), the entropy
production and then the entropy inequality (second law) becomes:

(14) σs = µ1q · q + µ12Q : qq + µ2Q : Q + µ21Q : qq ≥ 0.

Thus we have the following restrictions on the phenomenological coefficients
to ensure a positive-definite entropy production for arbitrary values of q
and Q:

(15) µ1 ≥ 0, µ2 ≥ 0, µ12 = −µ21.
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Combined with Eq. (8) and Eq. (9), Eq. (12) and Eq. (13) turn into respec-
tively:

(16) −α1q̇ +∇(θ−1) + β∇ ·Q = µ1q + µ12Q · q,

(17) −α2Q̇ + β∇q = µ2Q + µ21qq.

These are exactly the evolution equations for q and Q, since they yield
the time derivatives of q and Q as Eq. (10) and Eq. (11). Up to here, the
development is general (up to second order in q and Q). In the next section,
we will specify the form of Q to obtain the explicit heat transport equation.

3. Flux of the heat flux

To relate the current thermodynamic formalism to heat transport equa-
tion Eq. (1), it is necessary to express Q in terms of q. This will be possible
when the relaxation time of Q is negligible in comparison with the relax-
ation time of the heat flux, i.e. α2 � α1 in which case Q is no longer an
independent variable on its own, but a variable dependent on q through ∇q
and qq based on Eq. (17). Though, for µ12 = −µ21 = 0 and non-negligible
α2, Eq. (16) reduces to the generalized Guyer-Krumhansl model [21] when
combined with Eq. (17). For µ12 = −µ21 = 0 and negligible α2 as well, Eq.
(16) will reduce to the Guyer-Krumhansl model (phonon hydrodynamics
model) [28,29]. For µ12 = −µ21 6= 0 and negligible α2 in present work, the
flux of heat flux Q could be got from Eq. (17):

(18) Q ' β

µ2
∇q− µ21

µ2
qq,

and we obtain by substituting Eq. (18) into Eq. (16):
(19)
α1

µ1
q̇+q = − 1

µ1θ2
∇θ−βµ21

µ1µ2

[
q∇ · q + q · ∇q− 1

2
∇q2

]
+

β2

µ1µ2
∇2q− µ221

µ1µ2
q2q.

It is seen that Eq. (19) is similar, but not exactly equal to Eq. (1). In
particular, it is seen after a careful comparison of Eq. (19) and Eq. (1) that
the following equivalences between the coefficients are established:

(20) τ =
α1

µ1
; λ =

1

µ1θ2
; m1 = m2 = −2m3 = −βµ21

µ1µ2
; m4 =

β2

µ1µ2
.

Therefore the expression of entropy flux Eq. (6), combined with Eq. (18)
and Eq. (20), is specified as:

(21) Js =
q

θ
+
m4

λθ2
∇q · q +

m1

λθ2
q2q.
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Similar generalized expressions of the entropy flux have been proposed in
Ref. [36,38], but through a different procedure analogous to rational ex-
tended thermodynamics, and for a heat transport equation less general than
Eq. (1). The generalized entropy density could be obtained by integrating
Eq. (2) and combining Eq. (20):

(22) s (u,q,Q) = seq (u)− τ

2ρλθ2
q2 − α2

2ρ
Q : Q,

with seq(u) the local-equilibrium specific entropy.
Furthermore, the terms in m5, m6 and m7 in Eq. (1) are still lacking in

Eq. (19). Nevertheless, the term in m5 could be easily obtained by splitting
the flux of heat flux Q into a deviatoric part and trace part Q = Q0 +QI
and taking u, q, Q0 and Q as state variables [21,33].

4. Nonlinear thermal conductivity

The terms in m6 and m7 in Eq. (1) could also be obtained when we
consider in Eq. (12) a more general phenomenological coefficient µ1 as:

(23) µ1 = µ10
(
I + aqq + bq2I

)
,

with I denoting the unit tensor. Based on Eq. (20), we have µ1 = 1
/
λθ2

thus Eq. (23) is rewritten in terms of a nonlinear thermal conductivity
dependent on q as:

(24) λ =
λ0T

2

θ2
(
I + aqq + bq2I

)−1
,

with µ10 = 1
/
λ0T

2. For relatively small values of heat flux, Eq. (24) could
be expanded as a form of heat flux-dependent thermal conductivity tensor:

(25) λ ≈ λ0
(
I− aqq− bq2I

)
.

In this way, the terms in m6 and m7 in Eq. (1) are obtained by substituting
Eq. (25) into the extended Fourier law q = −λ · ∇θ:

(26) m6 = λ0a, m7 = λ0b.

Finally, there is still a nonlinear cubic term in q in Eq. (19), which is lacking
in Eq. (1). This is a slight gap of the current thermodynamic framework
for the generalized heat transport equation.
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5. Conclusions

The generalized heat transport equation Eq. (1) can be put in a ther-
modynamic formalism analogous to that of extended irreversible thermo-
dynamics, though a slight gap still exists related to one nonlinear term. A
formal approach has been taken here, in order to emphasize the mathemat-
ical connections between the several coefficients in the generalized equation
Eq. (1) and the coefficients appearing in the expressions of entropy Eq. (2),
the entropy flux Eq. (21) and the nonlinear thermal conductivity tensor Eq.
(24). The thermodynamic force-flux relations Eq. (12) and Eq. (13) differ
from the usual linear ones in classical irreversible thermodynamics and ex-
tended irreversible thermodynamics, where the thermodynamic force (Xq)
conjugate to thermodynamic flux q is not related to thermodynamic flux
Q. In the nonlinear domain, however, the vector Xq may be related to both
the vectors q and Q·q being still consistent with Curie’s principle. Thus
here we could consider Eq. (12) and Eq. (13) as extended thermodynamic
force-flux relations far from equilibrium states. Nevertheless, up to now the
physical meanings of the nonlinear force-flux relations are still ambiguous,
which need further investigations in future work. Finally, it should point
out that higher-order fluxes could be introduced into the formalism, in such
a way that a term ∇ ·Q(3) could appear as an additional contribution to
Eq. (17), Q(3) being the flux of Q, with its own evolution equation. This
would result in a hierarchy of evolution equations for higher-order fluxes
Q(n). Linear hierarchies have been already explored in [21], but nonlinear
hierarchy will be extremely complicated and still open to exploration.
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