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Abstract

In this paper we extend previous results on the effective thermal conductivity of liquid

helium II in cylindrical channels to rectangular channels with high aspect ratio. The aim

is to compare the results in the laminar regime, the turbulent regime and the ballistic

regime, all of them obtained within a single mesoscopic formalism of heat transport, with

heat flux as an independent variable.
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1. Introduction.

Superfluid helium exhibits peculiarities which are very important in
cryogenics, for instance for cooling the big magnets at CERN, to keep at
low temperature observational devices in astronautical artificial satellites,
and for future applications in the refrigeration of micro-devices.

The properties of superfluid helium to flow through very thin capillaries
with very low viscosity, or the high thermal conductivity which does not
allow it to boil have been known since the first half of the last century [1–7].

From the point of view of heat transport theory, superfluid helium is
the most challenging material, because of its peculiar quantum macroscopic
coherent nature which confers to it extraordinary properties, and also be-
cause it can remain in its liquid state also in the absolute zero temperature
limit, potentially exhibiting turbulent behaviour. Even in the latter situa-
tion, helium is surprising because of the quantum properties of the vortices
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in turbulent state. In superfluid helium there are different mechanisms re-
sponsible for heat transport, but here we focus our attention to the ones
occurring in three very different regimes: laminar, turbulent, and ballistic.
The first two ones are the subject of much research, but the ballistic trans-
port is much less known, and it occurs when the mean free path (mfp) of
the heat carriers (quasiparticles) is comparable or longer to the smallest
size of the channel. The heat carriers in Helium II are phonons and ro-
tons as pointed out by Landau [8], even though in the following we refer
to phonons for the sake of simplicity, because at very low temperatures
their contribution is higher than that of rotons. The aim of this paper is
indeed to pay attention to the ballistic regime and continue the studies
begun in [9,10], but without dismissing the other two regimes, i.e. in the
framework of heat transfer equations able to deal with the three regimes.
Furthermore, the dynamical aspects of heat transport are also very special,
because of the appearance of second sound waves (temperaure waves at
constant density), and because of the strong interaction between thermal
effects and mechanical effects.

The main features of the three mentioned devices are the following ones:

1. Laminar regime: The phonon mean free path (mfp) is short as com-
pared with the radius of the pipe in cylindrical channel or with the
smallest size in rectangular channel. Furthermore, the heat-flux value is
low enough in such a way that the normal component of helium (carry-
ing the heat flow) is laminar. In cylindrical tubes, the total heat flow Q̇
and ∇T are related by the following expression [2,3,11,12]:

(1) ∇T = − 8η

R2S2T

(
Q̇

πR2

)

where R is radius of the pipe, η is the viscosity of the normal component,
S the entropy per unit volume, T absolute temperature, Q̇ the total heat
current across the pipe (namely, Q̇ = πR2q, q being the local heat flux,
or the heat flowing per unit time and unit area), and ∇T the local
temperature gradient along the tube.
For laminar flow through a tube with rectangular cross section, the coef-
ficient relating ∇T and Q̇ in (1) is not longer valid. A theoretical solution
which is found in Section 2.2. is

(2) ∇T = − 12η

b2S2T
[
1− 0.63 ba

] ( Q̇
ba

)

where b and a are the two sizes of the rectangular cross section with

112



Effective thermal conductivity of He II

b � a. The coefficient relating ∇T and Q̇ in Eqs. (1) and (2) are the
thermal resistance of the pipe.

2. Turbulent regime: For sufficiently high values of the heat flux, quan-
tized vortices appear and contribute to the thermal resistance [13–17],
because of the frictional force between the normal component and the
quantized vortices. Thus, the heat transport properties becomes strongly
nonlinear, very different from those of the laminar regime. The relation
between ∇T and Q̇ for fully-developed turbulence is given by [1,2]

(3) ∇T = −
(

C1ρn
S4T 3ρ3s

)(
Q̇

A

)3

with ρn and ρs as the mass densities of normal component and super-
fluid component, C1 a numerical constant and A is the area of the cross
section of the channel (A = πR2 for a cylindrical channel and A = ab for
a parallelepiped channel). The main part of thermal resistance, in con-
trast to the purely viscous resistance in Landau regime, is now caused
by the friction between the normal component (carrying the heat flow)
and the quantized vortex tangle. In a recent paper by Sato et al. [18]
more experiments were reported on heat transport in channels filled by
superfluid helium, where it was observed that in several circumstances
the temperature gradient was proportional to the heat flux to the 3.4
power instead of the 3 power. This adds further challenges to the nature
and form of heat transport in this regime. It must be said that, fur-
thermore, the transition between the laminar and the turbulent regime
is very complicated, so that between (1) and (3) there is a considerable
range of intermediate states not yet completely described.
The rectangular tube was not fully studied in this situation apart from
the paper by Ladner and Tough [17].

3. Ballistic regime: The phonon mfp ` increases when temperature is
lowered (for low temperatures, for example, it behaves as T−4.3 [4]), in
such a way that for sufficiently low temperatures, it becomes comparable
to (or higher than) the smallest size of the pipe (below some 0.7 K ` is
of the order of 0.5 mm and for lower temperatures it is still larger) [4,
6]. In this case, the predominant collisions are not the phonon-phonon
collisions, but the phonon-walls collisions [4]. Thus, in these situations
the walls play a crucial role. The expression relating ∇T and Q̇ in this
case is [4,6]

(4) ∇T = −
(

3

2CvvR

)(
f

2− f

)
Q̇

πR2
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with Cv being the phonon specific heat, v being the modulus of the
phonon speed, and f is the fraction of phonons undergoing diffuse scat-
tering from the tube walls (in contrast to those undergoing specular scat-
tering). For the latter Whitworth in Ref. [19] found that f is a slowly
funtion of the temperature T and f ≈ 0.95 for T ∈ [0.3K, 0.6K]. The
ballistic regime shares a number of aspects with the ballistic regime in
nanometric solid systems, but it may be approached from the laminar
regime as well as from turbulent regime, which is not the case in solids.
Up to now, we do not know the equivalent expression of (4) applied to a
rectangular channel. In principle, it should be the same relation (4) with
the transversal area ab instead of πR2, but we have found a proposal in
Section 3.1. (see expression (25)).

For the sake of completeness, another interesting mechanism in the heat
transport in superfluid helium is the ”near wall shock wave”, which occurs
in the presence of a heat flow from the boundary to the fluid [20,21]. It is
important just next to the boundary and it is characterized by a thickness
δ, in which temperature decays as the distance from the boundary increases
(for temperature T = 1.5 K the thickness δ ≈ 10−6 cm).

Although its importance, in this paper we are mainly interested to the
situations where the heat flux applied is parallel to the walls. Thus, the
contribution of the boundaries becomes relevant when the transversal di-
mension of the channel is of the same order of the phonon mfp. In this
situation it would be interesting to combine the back scattering due to the
collisions phonon-wall and the boundary shock wave, which will be investi-
gated in the next future.

The aim of this paper is to consider the transition between the three
regimes illustrated, i.e. laminar, turbulent and ballistic, which can be es-
tablished in terms of the mutual comparison among the length L−1/2 (the
inter-vortex space), d (the smallest size of the channel) and ` (the phonon

mean free path). In particular, the Landau regime is for L−1/2

d ≥ 1 and
`
d � 1; the Gortex-Mellinck regime is for `� L−1/2 � d; and the ballistic

regime is for d ≤ ` � L−1/2. In particular, special attention is paid to the
ballistic regime in parallelepiped devices.

The paper is organized as follows. In Section 2 we consider the equations
for the heat flow inside channel with rectangular cross section and we cal-
culate the heat flux profile in the laminar case. In section 3 we consider the
influence of the wall when the phonons mfp is comparable or longer than
the smallest size of the channel and some comments on the appearance
of quantized vortices. In Section 4 we study the effective thermal conduc-
tivity in the presence of quantized vortex lines and slip condition on the
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wall caused by the phonon scattering; and finally Section 5 is devoted to
conclusion and comments.

2. Heat flow along a channel with rectangular transversal section

In this section we derive the effective thermal conductivity of He II in the
laminar regime inside a channel of rectangular cross section with transversal
sizes −a

2 < y < a
2 and 0 < z < b, and length l along the x direction. We

describe heat transport in terms of Extended Thermodynamics [22,23] when
superfluid helium is globally at rest. In terms of the two-fluid model, the
motion of the normal component is compensated by an opposite flow of the
superfluid component, in such a way that the net velocity of the total system
vanishes, i.e., there is no net mass flow. This means that ρsv̄s + ρnv̄n = 0,
where v̄s and v̄n are the average velocities of the superfluid and normal
components on the transversal section of the tube, and ρs and ρn their
density, respectively [13–16].

Q

b

a

Figure 1. Geometry of the channel being considered with the applied heat flux orthog-
onal to rectangular section (with size a and b).

2.1. Equations for heat transport in laminar flow

In the one-fluid model of liquid helium II it is rather natural to choose as
fundamental fields the mass density ρ, the velocity v, the absolute tempera-
ture T , and the local heat flux q. The dynamical equations in the stationary
situation, neglecting the nonlinear terms, for zero net mass flow are [24,25]
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(5)


∇ · v = 0
∇ · q = 0
∇p− η∇2v − 1

ST η∇
2q = 0

λ1∇T − λ1
S η∇

2v − 1
S2T

ηλ1∇2q = σq

where S is the entropy per unit volume, σq is the production term of the
heat flux, p is the pressure, and λ1 and η can be interpreted as the heat
conductivity and the shear viscosity when applied to a classical fluid [24].
The thermal conductivity λ1 is related to the velocity of second sound
w2 by the relation ζ := λ1/τ1 = w2

2ρCv, where Cv is the constant volume
specific heat, and τ1 the relaxation time of the heat flux. Both τ1 and λ1 are
very high in superfluid helium, but their ratio is finite. In these equations,
the time derivatives of the corresponding quantities have been neglected
because we are interested in steady state situations. Note that the left-
hand side of the second equation is the divergence of the flux of the heat
flux (second order heat flux). Anyway, it must be said that consideration of
the time derivative of the heat flux in the non-steady version of equations (5)
is able to to describe in a direct way the second sound.

After some trivial manipulations, Eqs. (5)b and (5)d, respectively, be-
come

∇p− η∇2

(
v +

1

ST
q

)
= 0,(6a)

− S∇T +∇p = − S
λ1
σq.(6b)

where we can neglect the contribution ∇2v because in Ref. [10] it was seen
that it does not contribute to the full heat flow accross a transversal section
of the channel in counterflow experiments.

In this section we assume the simplest expression for σq, namely σq =
−q, while a more general assumption is required to take into account of the
presence of vortices [10,26,27].

When λ1 is high enough, as it is experimentally observed, Eqs. (6a)
and (6b) become

∇p− η

ST
∇2q = 0,(7a)

S∇T −∇p = 0.(7b)

where we recover the famous London’s equation (the last equation) relating
the pressure gradient and the temperature gradient.
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2.2. Heat flow through the rectangular channel

Now, let’s set up our concrete problem. Let’s assume that the heat flux
has the form q(y, z) = (q(y, z), 0, 0) where y, z are the transveral axes and x
is the longitudinal coordinate along the channel, and that the heat flux on
the wall is also zero. Furthermore, pressure and temperature depend only
on the x-axis. Thus equation (7a) becomes

(8)

[
∂2

∂y2
+

∂2

∂z2

]
q − ST

η
∇p = 0.

The solution of this partial differential equation is a classical problem in
hydrodynamic flow when q is the velocity of the fluid flowing in a channel
with the same geometry as considered in this section. The solution is the
Poiseuille flow [28]

(9) q(y, z) = −4b2

π3
ST

η

∞∑
n,odd

1

n3

[
1−

cosh
(
nπ yb

)
cosh

(
nπ a

2b

)] sin
(
nπ

z

b

)
∇p.

The integrated flow across a transversal section is
(10)

Q̇ = 2

∫ a/2

−a/2
dy

∫ b

0
q(y, z)dz = −b

3a

12

ST

η

1−
∞∑

n,odd

1

n5
192

π5
b

a
tanh

(
nπ

a

2b

)∇p,
For b/a→ 0 (i.e. for thin and wide channels) it becomes

(11) Q̇ = −b
3a

12

ST

η

[
1− 0.63

b

a

]
∇p.

By means of (7b), when ∇p is expressed in terms of ∇T , expression (11)
becomes

(12) Q̇ = −b
3a

12

S2T

η

[
1− 0.63

b

a

]
∇T

and hence the effective thermal conductivity of the superfluid is

(13) Keff ≡ −
Q̇

ab

1

∇T
=
b2S2T

12η

[
1− 0.63

b

a

]
.

Note that for a channel with infinite parallel plates the second term in the
square brackets in the above expressions has to be removed, hence the heat
flux acrossing the transversal section of width a and thickness b is [9]

(14) Q̇ = −b
3a

12

S2T

η
∇T
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while the effective thermal conductivity is

(15) Keff =
b2S2T

12η
.

The reciprocal of this quantity is the thermal resistance per unit length
and transversal area. This expression may be compared with the more
well-known thermal conductivity of superfluid helium in laminar flow in
cylindrical tube of radius R, which is [10]

(16) Keff =
R2S2T

8η
.

It is seen that for b −→ 0 in (15), Keff tends to zero as b2. Note the
same behaviour for R −→ 0 in (16) in a cylindrical channel. However, when
compared with experiments (see expression (4)), this reduction is too strong,
as it is observed that Keff tends to zero as b (or R), rather than as b2 (or
R2). This is the reason why (15) is not applicable when b becomes of the
order of phonon mfp.

3. The ballistic regime

3.1. Equation and heat profile

In the ballistic regime, namely when the mfp of the phonon becomes
comparable with the size of the system, collision with the surface become
very relevant, and even dominant, in setting the thermal resistance. In-
spiring in the so-called phonon hydrodynamics in the rarefied regime, one
admits a heat flux slip flow along the walls, instead of the non slip condition.
For this reason we choose

(17) qw = −C`
(
∂q(y, z)

∂z

)
z=b

where C is a non-negative parameter, which in kinetic theory of rarefied

gases ma be identified as C =
2− f
f

[4,6]. More arguments on the interest-

ing subject of no-slip condition can be find in Ref. [29,30]. Note that the
same condition (17) also holds in the wall z = 0, but with the derivative
evaluated in the opposite direction, i.e. always pointing towards the inner
of the channel.

In this case the solution of the system (8) is again the solution (9) but
with a finite integration constant due to the slip condition on the wall,
namely

(18) q(y, z) = −4b2

π3
ST

η

∞∑
n,odd

1

n3

[
1−

cosh
(
nπ yb

)
cosh

(
nπ a

2b

)] sin
(
nπ

z

b

)
∇p+ qw,
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where qw can be interpreted as the proposed heat flux on the wall (17).
Inserting the solution (9) in the slip condition (17) we obtain the solu-

tion
(19)

q(y, z) = −4b2

π3
ST

η

∞∑
n,odd

1

n3

[
1−

cosh
(
nπ yb

)
cosh

(
nπ a

2b

)] [sin(nπz
b

)
+
nπ

b
C`
]
∇p.

As above, let’s calculate the integrated flow across a transversal section
(20)

Q̇ = −b
3a

12

ST

η

1 +
6C`

b
− 96

1

a

∞∑
n,odd

(
C`

π3
1

n3
+

2b

π5
1

n5

)
tanh

(
nπ

a

2b

)∇p,
which for b/a→ 0 (i.e. for thin and wide channels) becomes

(21) Q̇ = −b
3a

12

ST

η

[
1− 0.63

b

a
+ 6

C`

b
− 3.26

C`

a

]
∇p.

The total heat flow Q̇ in terms of the ∇T can be written by means of (7b)

(22) Q̇ = −b
3a

12

S2T

η

[
1− 0.63

b

a
+ 6

C`

b
− 3.26

C`

a

]
∇T

and hence the effective thermal conductivity defined as

(23) Keff = − Q̇
ab

1

∇T
=
b2

12

S2T

η

[
1− 0.63

b

a
+ 6

C`

b
− 3.26

C`

a

]
Note that for channel with infinite plates we recover the same results ob-
tained in [9] (see equation (4.9)). In the case of a very small distance be-
tween plates then the wall effects are emphasized and expression (22) can
be written

(24) ∇T = − 12η

b2S2TC`
[
61
b − 3.26 1

a

] Q̇
ba

which for high value of a becomes

(25) ∇T = − 2η

bS2TC`

(
Q̇

ba

)
similar to the one obained for cylindrical channel in [9], namely

(26) ∇T = − 2η

RS2CT`

(
Q̇

πR2

)
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Expression (26) becomes (4) with the identifications proposed in [9], namely

η =
1

5
ρnv` and S2T =

gρnv
2Cv

3
and C =

2− f
f

with g = 4/5. Using the

same identifications in the expression (24) with high value of a, we obtain

(27) ∇T = −3

2

1

bvCv

(
f

2− f

)(
Q̇

ba

)

which is the equivalent to (4), experimentally proposed in [4].

3.2. Role of heat slip flow on the transition to turbulence

In the previous paragraph we have computed the slip heat flow along
the walls in the ballistic regime, and its role on the effective thermal con-
ductivity. Here, we explore its role on the appearance of the first quantized
vortex and on the transition to turbulence. Such influence is due to the
modification of the velocity profiles. If V̇n and V̇s be the total volume flow
rate of normal and superfluid components of superfluid helium, related to
the average velocities by V̇n = abv̄n and V̇s = abv̄s. Counterflow imposes
that ρnV̇n = −ρsV̇s and hence the total heat flow is Q̇ = ST v̄nab = ST V̇n.
The same arguments are of course valid for cylindrical channel but with the
area πR2 in place of ab.

Let’s first consider the heat flux flowing through two infinity plates.
This means neglecting all the negative contributions in the expression (21).
Thus, the total heat flow accross a channel of thickness b and width a is
given by

(28) Q̇ = ST V̇n = −b
3a

12

ST

η

[
1 + 6

C`

b

]
as also obtained in [9] (see equation (4.8)). Expression (28) is related to the
maximum value of heat flux qmax = q(z)|z=b/2 inside the channel by

(29) Q̇(s) =
2

3
ab

(
1 +

2C`

b+ 4C`

)
q(s)max,

where the superscript ”s” stands for ”slip”, while for the non slip condition

(30) Q̇(ns) =
2

3
abq(ns)max,

where the superscript ”ns” stands for ”no slip”.

120



Effective thermal conductivity of He II

For a given heat flow Q̇, what we note is that qnsmax ≥ qsmax. Indeed,

(31) Q̇(ns) = Q̇(s) ⇒ q(ns)max =

(
1 +

2C`

b+ 4C`

)
q(s)max ≥ q(s)max

The same arguments can be also applied to cylindrical channel of radius
R. Indeed, by means of the results of the paper [9] we know that the relation
between the applied total heat flux Q̇ and the value of the maximum heat
flux (at the axis of the channel) with and without slip condition are

(32) Q̇(s) =
πR2

2

(
1 +

2C`

R+ 2C`

)
q(s)max

and for non slip condition

(33) Q̇(ns) =
πR2

2
q(ns)max.

For a given heat flow Q̇ in a cylindrical channel we obtain

(34) Q̇(ns) = Q̇s ⇒ q(ns)max =

(
1 +

2C`

R+ 2C`

)
q(s)max ≥ q(s)max.

From a qualitative point of view, the first vortices will arise when the
available vorticity is equal or slightly higher than the quantum vorticity
κ = h/m (h being the Planck’s constant and m the helium atomic mass),
as discussed in [31]. On the other side, the available vorticity will be of the
order of (ρn/ρ))|vn − vs|max2π(b/2), b being the separation between plats,
or the diameter of a cylindrical channel. Equating these two quantities, a
critical quantum Reynolds number appears. The quantum Reynolds number

is Req =
Vnsb

κ
, with κ instead of the kinematic viscosity ν of the classical

Reynolds number, and Vns = |vn − vs| [31]. Quantum Reynolds number
can also be written in terms of the heat flux q by means of q = STVns,

namely Req =
qb

STκ
.

In [31] it has seen that the appearance of the first vortex occurs for

Req ≈
1

π

ρ

ρn
ln

(
b

2a0

)
, with a0 the size of the core of the vortex. According

to the above results, the presence of the slip condition modifies the maxi-
mum value of the heat flux inside the channel and it becomes smaller than
the corresponding one with zero-slip condition. This means that we have to
apply a higher Q̇ for the appearance of the first vortex in such a way that
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q
(s)
max reaches the critical value. In terms of the quantum Reynolds number

for infinite plates

(35) Re(ns)q =
q
(ns)
maxb

STκ
=

(
1 +

2C`

b+ 4C`

)
q
(s)
maxb

STκ
≥ q

(s)
maxb

STκ
= Re(s)q .

and analogously for a cylinder channels. From a qualitative point of view,

the walls delay the appearance of vortices by a factor
(

2C`
b+4C`

)
for infinite

plates and by a factor
(

2C`
R+2C`

)
for a cylindrical channel. This delay could

occur also for the other critical Reynolds numbers for the appearance of
the TI turbulence and TII turbulence in cylindrical channel as well as for
for the appearance of TIII turulence in rectangular cross section channel
with high aspect ratio.

4. Turbulent regime (Gorter-Mellinck)

In this Section we consider the presence of a vortex tangle in order to
find out how the heat conducibility changes when quantum vortices are
distributed all over the channel. It is well known that quantum vortices
appear when the applied heat flux is higher than a critical value [13,14,16,
32]. Tough and coworker studied turbulence and the transition to turbulence
in superfluid helium for a lot of channel size and shape. They found out
a further transition in the turbulente regime for cylindrical channel which
distinguishes turbulence in two kind of turbulence (state TI and state TII)
[32]. In a rectangular channel with high aspect ratio instead Ladner and
Tough found just one state of turbulence, which they called TIII [17].

In the turbulent regime we must consider an additional equation for the
vortex line L, which also takes into account the size of the channel. For the
sake of simplicity we consider here the same equation used in Ref. [10]

(36)
dL

dt
= −βvκL2 +

[
α0vns − ω′β

κ

d

]
L3/2

where coefficients α0 and ω′ are functions of vnsd/κ, d is the radius of
the cylindrical channel or the minimum value between the two sizes of the
channel d = min{a, b} in rectangular channel (which becomes b in the high
aspect ratio situation considered in this paper).

Equation (36) was proposed on dimensional grounds taking into account
the lowest size in the channel compared to the mean distance between

vortex lines L−1/2, namely the ratio
L−1/2

d
. Indeed, in the equation (36)

it was considered only the first two terms in the expansion of distruction
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term βκL2, which is βκL2

1 + ω′
L−1/2

d
+ ω′′

(
L−1/2

d

)2

+ . . .

, but more

terms could be considered as well as in the production term α1qL
3/2 [33].

The full system in the steady state then becomes

∇p− 1

ST
η∇2q = 0,(37a)

S∇T −∇p+
KSL

ζ
q = 0,(37b)

− βvκL2 +
[
α0vns − ω′β

κ

d

]
L3/2 = 0(37c)

The third equation (37c) can be also written in terms of the heat flux q by
means of q = (ρs/ρ)STvns.

Equation (37b) has the steady state solutions

(38) L = 0; L1/2 = γ
ρ

ρsST
q − ω′

d
.

where γ =
α0

βκ
. The second solution is stable for q > qc1 = ρsST

ρ
βκω′

α0d
,

and in Ref. [34] it is seen that it has two different regimes, namely a TI
turbulence and TII turbulence flow. In a channel with a rectangular cross
section with high aspect ratio, instead, just one status was revealed, which
suggests that the turbulence in these kind of channels is simpler than the
one in the cylindrical channels.

Thermal counterflow in high-aspect ratio rectangular tubes exhibits only
one turbulent state (also named TIII) with the coefficient γ, named γ3(T ),
comparable with the γ2(T ) coefficient, which is the value of γ in the TII
turbulence in cylindrical tubes. From Yarmchuck and Glaberson’s results
(applied to wide channel) [35] and Ladner and Tough’s results (applied to
narrow channel) [17] it was stated that γ3(T ) does not depend on the tube
size.

The expression of γ, instead, depends on the geometry of the channel
by a ratio D/d, where D is the hydraulic diameter (D = 4A/P with A the
area and P the perimeter of the transversal section of the channel) and d
is the radius R in the cylindrical channel and the size b in the rectangular
channel. In the former D/d = 1, while in the latter D/d > 1.

Below we distinguish two main situations: ` � L−1/2 � d and
L−1/2 � d ≤ `. In both cases, on the grounds of past numerical simu-
lations [36,37], we assume that the vortex line density L is constant on any
transversal section and, therefore, we stress that L should be considered as
the homogeneous equivalent vortex–line density.
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4.1. Case `� L−1/2 � d

The first equation (37a) is not changed and the solution is still expres-
sion (9) because we are in the same conditions as the previous section. The
heat flow accross a transversal section is still the expression (10), which can
be simplified in (11).

Integrating the second equation (37b) on the trasversal section one ob-
tains

(39) abS∇T − ab∇p+
KSL

ζ
Q̇ = 0.

where L is mean value of the vortex line density on the transversal sec-
tion of the channel. Expressing the previous equation in terms of ∇p and
substituting it in the expression (9), then one can obtain

(40) ∇T = −

(
12η

S2Tb2
[
1− 0.63 ba

] +
KL

ζ

)(
Q̇

ab

)

and hence the thermal conductivity

(41) Keff =
1(

12η

S2Tb2[1−0.63 b
a ]

+ KL
ζ

) .
But L is itself a function of Q̇ when Q̇ is high. Expression (40) is the one used
by Ladner and Tough for their studies. As one can see in their paper, this
expression fits very well the experimental data for different temperatures
and channel sizes.

4.2. Case L−1/2 � d ≤ `

Now, we consider the case in which the phonon mean free path is com-
parable to the sizes of the channel and much longer than the main distance
between quantized vortices. This condition requires a no-null value of the
heat flux q(y, z) on the wall. The dynamical equations are still (8), but the
solution of the equation (37a) to be considered is the solution (19) and the
corresponding heat flux accross the transversal section (20) or (21).

Integrating the second equation (37b) on the trasversal section we ob-
tain (39), where we can substitute the expression (20) or (21) of Q̇. The
result is

(42) ∇T = −
(

1

b2A
+
KSL

ζ

)(
Q̇

ab

)
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where A =
ST

12η

1 +
6C`

b
− 96

1

a

∞∑
n,odd

(
C`

π3
1

n3
+

2b

π5
1

n5

)
tanh

(
nπ

a

2b

) for

the solution (20) and A =
ST

12η

[
1− 0.63

b

a
+ 6

C`

b
− 3.26

C`

a

]
for the solu-

tion (21).
The effective thermal conductivity is then given by

(43) Keff =
1(

1
b2A

+ KSL
ζ

)
Note that expression (40) for the total heat flux and (41) for thermal con-
ductivity are not longer valid when the scattering of phonon on the wall
become relevant. Here, we take into account two opposite contribution to
the total heat flux and to Keff : from one hand the presence of the scatter-
ing of phonons (slip condition) raises the value of Keff and the dissipative
effect of the vortex lines which decreases Keff .

5. Discussion and Conclusion

In this paper we have considered the effective thermal conductivity in a
counterflow channel with rectangular cross section with high aspect ratio.
It is interesting to note that the model is able to describe not only the three
regimes (laminar, turbulent and ballistic), but it also describes the transi-
tion among them. In [9] we considered the effective thermal conductivity
in cylindrical channel in the same regimes considered here, but now we
pay more attention to the wall effects on the transition to quantum turbu-
lence. As in [9] we find that when the distance b between the plates (or the
radius R in the cylindrical channel) is small enough then the effective ther-
mal conductivity is not proportional to b2 (or R2), as one erroneously could
think from expression (13). Indeed, in Section 3.1. we obtain expression (23)
which is proportional to b for very small value of b. Expression (23) takes
into account the transition between laminar and ballistic regimes, and for b
very small we find expression (25), which is equivalent to the experimental
proposal in the ballistic regime in cylindrical channel [4,6]. Further studies
are required to handle the so called ”near wall shock wave” in the proximity
of the hot walls [20,21].

In Section 3.2. we have paid attention to an argument which has not
been considered yet, at least to our knowledge. Indeed, when the effects of
the walls are not neglected then all the arguments, referring to heat flux
profile, transition to quantum turbulence and so on, have to be reconsidered.
The result is that when the mfp of the phonons becomes comparable to the
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smallest size of the channel, then the heat flux has a slip condition on the
walls, so that the maximum value of the heat flux q inside the channel is
lowered (the profile is more flattened). It implies that more external heat
flux Q̇ is necessary in such a way that the maximum value of the heat
flux becomes higher than the critical value for the appearance of the first
quantized vortex line.

In Section 4 we have considered the presence of quantized vortices in the
channel and their influence on the effective thermal conductivity. For it, a
further equation has been necessary (equation (36)), which we have already
proposed in [10], and we have used here for the sake of uniformity. Unfortu-
nately, there are not enough papers dealing with parallelepiped counterflow
channels. In [17] Ladner and Tough consider four long channels with a rect-
angular 10b×b cross section with b = 0.0098 cm, b = 0.0047 cm, b = 0.0032
cm and b = 0.0091 cm in the range of temperatures 1.2 K to 1.8 K. Ac-
cording to their results, they found only one state of quantum turbulence
(the TIII turbulent regime), which reveals that rectangular channel is sim-
pler than quantum turbulence in cylindrical channel, where two kinds of
turbulence have been detected [32,34].

Our expression (40) can be also obtained by means of the two-fluid
model [38–41] (as also found in [9,10]), and indeed it coincides with that
taken by Ladner and Tough, apart from the expression of the steady vortex
line density (their equation (25)), which they approximated within 2 % by
the expression

(44) L
1/2
0 = 1.03γ (V − 0.36Vc)

where V =
ρ

ρsST
q is the counterflow velocity, γ =

α0

βκ
and Vc is the critical

counterflow velocity for the appearence of quantum turbulence. Expres-
sion (44) is practically our expression (38b), which is also able to describe
the transition between the turbulent TI regime and the turbulent TII
regime in the cylindrical channel [10].

In the last Section 4.2. we take into account the presence of the walls.
What we find is that the effective thermal conductivity has further terms
from the slip condition, apart from the ones coming from the presence of
quantum turbulence and laminar flow. In this respect, in their experiments
Ladner and Tough do not consider any contribution from the walls. They in-
stead adopt the stringent condition that the measured laminar temperature
difference must agree with equation (2) over a wide range of temperatures,
and any further discrepancy of their results from this formula or, more in
general, from formula (40) are considered in details.

The arguments of this paper open the interest to further studies on the
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refrigeration of small devices located in a parallelepiped channel with high
aspect ratio where a cryogenic fluid flows.
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de Barcelona”. L. G.’s work is supported by Marie Curie - COFUND ac-
tion through Grant N. 7745104 issued by Fonds National de la Recherche,
Luxembourg.

REFERENCES

1. V. Arp, Heat transfer to superfluid and supercritical helium, Journal of
Applied Physics, vol. 40, p. 2010, 1969.

2. K. Mendelsohn, Liquid helium, in Encyclopedia of Physics, vol. XV,
Berlin: Springer, 1956.

3. S. W. Van Sciver, Helium Cryogenics. Berlin: Springer, second ed.,
2012.

4. B. Bertman and T. A. Kitchens, Heat transport in superfluid filled
capillaries, Cryogenics, vol. 8, pp. 36–41, 1968.

5. D. Benin and H. J. Maris, Phonon heat transport and Knudsen”s min-
imum in liquid helium at low temperatures, Physical Review B, vol. 18,
pp. 3112–3125, 1978.

6. D. S. Greywall, Thermal-conductivity measurements in liquid 4He below
0.7k, Physical Review B, vol. 23, pp. 2152–2168, 1981.

7. H. J. Maris, Dissipative coefficients of superfluid helium, Physical Re-
view A, vol. 7, pp. 2074–2081, 1973.

8. L. D. Landau, Theory of the superfluidity of helium II, Physical Review,
vol. 60, no. 4, p. 356, 1941.

9. M. Sciacca, A. Sellitto, and D. Jou, Transition to ballistic regime for
heat transport in helium II, Physics Letters A, vol. 378, pp. 2471–2477,
2014.

10. M. Sciacca, D. Jou, and M. S. Mongiov́ı, Effective thermal conductiv-
ity of helium ii: from landau to gorter–mellink regimes, Zeitschrift für
angewandte Mathematik und Physik, pp. 1–17, 2013.

11. P. Critchlow and R. Hemstreet, Heat transport in superfluid helium in

127



M. Sciacca, L. Galantucci

wide tubes, Journal of Applied Physics, vol. 40, p. 2675, 1969.

12. L. D. Landau and E. M. Lishitz, Mechanics of fluids. Oxford: Pergamon,
1985.

13. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cam-
bridge University Press, 1991.

14. C. F. Barenghi, R. J. Donnelly, and W. F.Vinen, Quantized Vortex Dy-
namics and Superfluid Turbulence. Berlin: Springer, 2001.

15. M. Tsubota, M. Kobayashi, and H. Takeuchi, Quantum hydrodynamics,
Physics Report, vol. 522, pp. 191–238, 2013.

16. S. K. Nemirovskii, Quantum turbulence: Theoretical and numerical
problems, Physics Reports, vol. 524, pp. 85–202, 2013.

17. D. R. Ladner and J. T. Tough, Temperature and velocity dependence of
superfluid turbulence, Physical Review B, vol. 20, pp. 2690–2702, 1979.

18. A. Sato and et al., Temperature dependence of the Gorter-Mellink ex-
ponent measured in a channel containing He II, in ADVANCES IN
CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engi-
neering Conference-CEC, vol. 823, pp. 387–392, AIP Publishing, 2006.

19. R. Whitworth, Experiments on the flow of heat in liquid helium below
0.7 degrees K, Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, vol. 246, no. 1246, pp. 390–405,
1958.

20. S. Putterman, Superfluid hydrodynamics. Amsterdam: North-Holland
Publishing Co., 1974.

21. S. Nemirovskii, V. Koren’kov, and V. Krupitskii, Heat flux through a
phase interface in superfluid helium, Journal of Engineering Physics,
vol. 47, no. 6, pp. 1413–1419, 1984.

22. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Ther-
modynamics. Berlin: Springer-Verlag, fourth ed., 2010.

23. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. New
York: Springer-Verlag, 1998.

24. M. S. Mongiov́ı, Extended irreversible thermodynamics of liquid helium
II, Physical Review B, vol. 48, pp. 6276–6283, 1993.

25. D. Jou, J. Casas-Vázquez, and M. Criado-Sancho, Thermodynamics of
Fluids Under Flow. Berlin: Springer, second ed., 2011.

26. D. Jou, G. Lebon, and M. S. Mongiov̀ı, Second sound, superfluid tur-
bulence, and intermittent effects in liquid helium II, Physical Review B,
vol. 66, p. 224509 (9 pages), 2002.

27. D. Jou and M. Mongiov̀ı, Description and evolution of anisotropy in
superfluid vortex tangles with counterflow and rotation, Physical Review
B, vol. 74, p. 054509 (11 pages), 2006.

128



Effective thermal conductivity of He II

28. H. Bruus, Theoretical microfluidics. Oxford: Oxford University Press,
2007.

29. D. Jou, G. Lebon, and M. Criado-Sancho, Variational principles for
thermal transport in nanosystems with heat slip flow, Physical Review
E, vol. 82, no. 3, p. 031128, 2010.

30. G. Lebon and P. Dauby, Heat transport in dielectric crystals at low
temperature: A variational formulation based on extended irreversible
thermodynamics, Physical Review A, vol. 42, p. 4710, 1990.

31. D. Jou and M. Sciacca, Quantum Reynolds number for superfluid coun-
terflow turbulence, in Bollettino di Matematica Pura e Applicata (M. S.
Mongiov́ı, M. Sciacca, and S. Triolo, eds.), vol. VI, pp. 95–103, Aracne
editrice, 2013.

32. J. Tough, Superfluid turbulence, in Progress of Low Temperature
Physics (D. Brewer, ed.), vol. VIII, pp. 133–219, North Holland, 1982.

33. M. S. Mongiov̀ı and D. Jou, Generalization of Vinen’s equation includ-
ing transition to superfluid turbulence, Journal of Physics: Condensed
Matter, vol. 17, pp. 4423–4440, 2005.

34. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in
thermal counterflow, Physical Review B, vol. 27, pp. 2788–2799, 1983.

35. E. Yarmchuk and W. I. Glaberson, Thermorotation Effects in Superfluid
Helium, Physical Review Letters, vol. 41, no. 8, pp. 564–568, 1978.

36. L. Galantucci, C. F. Barenghi, M. Sciacca, M. Quadrio, and P. Luchini,
Turbulent Superfluid Profiles in a Counterflow Channel, Journal of Low
Temperature Physics, vol. 162, pp. 354–360, 2011.

37. L. Galantucci and M. Sciacca, Non-classical velocity statistics in coun-
terflow quantum turbulence, Acta Applicandae Mathematicae, vol. 132,
no. 1, pp. 273–281, 2014.

38. L. D. Landau, Theory of the Superfluidity of Helium II, Journal of
Physics, vol. 5, pp. 71–90, 1941.

39. L. Tisza, Transport phenomena in Helium II, Nature, vol. 141, p. 913,
1938.

40. I. K. I.L. Bekarevich, Phenomenological derivation of the equation of
vortex motion in he ii, Soviet Physics JETP, vol. 13, pp. 643–646, 1961.

41. H. Hall and W. Vinen, The rotation of liquid helium ii. ii. the theory
of mutual friction in uniformly rotating helium II, Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences,
vol. 238, no. 1213, pp. 215–234, 1956.

129


	Abstract
	Introduction.
	Heat flow along a channel with rectangular transversal section
	Equations for heat transport in laminar flow
	Heat flow through the rectangular channel

	The ballistic regime
	Equation and heat profile
	Role of heat slip flow on the transition to turbulence

	Turbulent regime (Gorter-Mellinck)
	Case L-1/2d
	Case L-1/2d 

	Discussion and Conclusion

