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Abstract

The planar interactions between pair of vortices in an inviscid fluid are analytically
investigated, by assuming one of the two vortices pointwise and the other one uniform.
A novel approach using the Schwarz function of the boundary of the uniform vortex is
adopted. It is based on a new integral relation between the (complex) velocity induced
by the uniform vortex and its Schwarz function and on the time evolution equation of
this function. They lead to a singular integrodifferential problem. Even if this problem is
strongly nonlinear, its nonlinearities are confined inside two terms, only. As a consequence,
its solution can be analytically approached by means of successive approximations. The
ones at 0th (nonlinear terms neglected) and 1st (nonlinear terms evaluated on the 0-order
solution) orders are calculated and compared with contour dynamics simulations of the
vortex motion. A satisfactory agreement is keept for times which are small with respect
to the turn-over time of the vortex pair.

Keywords: inviscid two-dimensional vortex dynamics, uniform vortex,

point vortex, contour dynamics, Schwarz function, nonlinear singular

integral equation.

AMS subject classification: 76B47, 76M40.

1. Introduction

The planar, inviscid motion of an asymmetric pair of vortices is in-
vestigated, in the basic hypothesis that one of the two vortices is very
concentrated, while the other one is rather spread. In these conditions, the
dynamics of the core of the first vortex can be neglected, by schematizing it
as a point vortex, and the second vortex can be approximated as a uniform
one, its core being defined by a simple and closed curve, only. In this way,
the motion of the pair of vortices is reduced to the dynamics of a point and
of a closed curve.
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Interactions between uniform and pointwise vortices

The study of such kind of flow is a rather old issue in Fluid Mechanics,
usually aimed to investigate the (partial) merging occurring between two
co-rotating vortices. The first numerical simulations of the interactions of
two vortices in an inviscid fluid dated back to the eightiess [1]. They were
performed by means of a contour dynamics algorithm. Some years later,
high resolution pseudo-spectral simulations of high Reynolds number inter-
actions of two vortices (as well as a Hamiltonian, reduced model based on
the dynamics of elliptical vortices [2]) were used in [3] to establish which
vortex is dominant, or “victorious”. In the same year, an important theo-
retical/experimental analysis [4] investigated the same flow in a geophysical
framework.

Once the sophisticated algorithm of the contour surgery was devel-
oped [5], numerical simulations of asymmetric interactions (the vortices
had equal vorticity, but different sizes) at extremely high Reynolds num-
bers [6] pointed out that complete vortex merger is very rare, while often
partial merger occurs. Other kinds of interaction were also found: the elas-
tic one, the partial and the complete straining-outs. Few years later, more
extensive contour dynamics simulations were carrier out [7], by consider-
ing also different vorticity levels. An empirical critical merging distance
was deduced, involving the ratio between the vorticity levels, too. In ad-
dition to contour dynamics (or surgery) and pseudo-spectral approaches,
also the particle in cell method has been used for numerically simulating
high Reynolds number interactions. As a sample, an interesting comparison
between simulations and experiments (in an electron plasma) was carried
out in [8] and an excellent agreement was found.

Among many others, two papers have enlightened the asymmetric merg-
ing mechanism in recent times. In the first [9], the merging has been ex-
plained in terms of rate of strain and co-rotating streamfunction, while the
second one [10] uses the Lamb-Oseen vortex to build a model in surprising
qualitative agreement with the numerical simulations.

More general analyses of the interactions between a point vortex and
a uniform one are quite rare in literature. An intriguing model for study-
ing the motion of point vortices inside a uniform one was built in [11],
with the aim to investigate the breaking of Kelvin waves, that triggers
the filamentation of the vortex boundary. By assuming the parameter
λ := mean |point vortex circulations|/ uniform vortex circulation � 1, it
is found that a “fast” (within one rotation period) filamentation occurs if
one of the point vortices approaches the boundary at a distance of the order
λ0.566, while if all the vortices are far from the boundary, the vortex can
experience a “slow” filamentation, at times of order −(log λ)/λ. In the same
year, an important experimental proof of this study was supplied by [12].
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Experiments showed also that, for a sufficiently intense point vortex, the
wave travelling on the boundary of the uniform vortex evolves into a vor-
ticity hole within the disk (or an antivortex in a frame rotating with the
vortex core).

In the present paper, the study of the vortex interactions will be ap-
proached from an analytical point of view, by extending to these flows the
technique used in investigating the self-induced motion of a uniform vor-
tex [13–15]. A novel integral relation between the Schwarz function of the
boundary of the uniform vortex and the (complex) conjugate velocity , as
well as an evolution equation for the same function are used to build the
integrodifferential problem describing the motion. Its analytical solution is
handled by means of successive approximations.

2. Set-up of the mathematical model

At the initial time (t = 0), the vorticity is the sum of a piecewise
constant function, taking the values ω (> 0) inside a connected and bounded
domain P (0) and vanishing outside, and of a Dirac function of amplitude
Γ̂ located at the point y(0). This point will be hereafter taken outside
the boundary of P (0) (∂P (0). The motion is assumed planar (the plane
of the motion is identified with the complex one) and the fluid isochoric
and inviscid, so that the vorticity is only convected and the point vortex
remains pointwise. The present paper is aimed to analytically investigate
the motion of the curve ∂P (t) and of the point y(t).

The conjugate velocity induced by the uniform vortex is written [16] in
terms of a Cauchy integral of the Schwarz function Φ of the curve ∂P (t) [17].
As discussed in [15], its time evolution satisfies the equation: (∂t+U∂x)Φ =
U , where U (U) is the analytic continuation of the velocity u (u) on ∂P (t).
Note that the left-hand-side is just the analytic continuation of the material
derivative of Φ, indicated by DtΦ below. The non-linear integro-differential
problem (space and time dependences are omitted, for shortness)

(1)


DtΦ =

ω

4i

(
Φ +

1

πi

∫
−
∂P
dw

Φ

x−w
)

+
Γ̂

2πi

1

x− y
for any x ∈ ∂P

ẏ =
ω

4i

(
2χy +

1

πi

∫
∂P
dw

Φ

y −w
)

Φ(x; 0) = Φ0(x) and y(0) = y0 given

follows. Hereafter, the integral with a dash means that its Cauchy principal
value is taken and χ holds 1 if y lies inside P and 0 if it is external.

In order to overcome the difficulties due to the convective term in DtΦ,
the problem (1) is rewritten in Lagrangian form. First of all, a Lagrangian
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Interactions between uniform and pointwise vortices

Schwarz function S is introduced. It is obtained by means of analytic con-
tinuation of its values on ∂P (0), given for any ξ on this curve by the natural
relation: S(ξ; t) := Φ[x(ξ; t); t]. a Then the (nonlinear) functions

(2)

X(η, ξ; t) := ∂η log
x(η; t)− x(ξ; t)

η − ξ

Y (η; t) := ∂η log
x(η; t)− y(t)

η − y(0)

V (ξ; t) := Γ̂

[
1

x(ξ; t)− y(t)
− γ(t)

ξ − y0

]
,

are introduced. In V , γ satisfies the constraint γ(0) = 1, so that the func-
tions (2) vanish at t = 0. Hereafter, γ is assumed 1 if the point vortex is
internal to the uniform one, while it is taken as exp(−iωt/2) if it is exter-
nal. The Lagrangian evolution equations are non-dimensionalized b (non-
dimensional quantities will be indicated with the same symbols) by choosing
a reference length L (related to P (0)) and the reference time 4/ω. Finally,
the equations are Laplace-transformed in time (t ↔ σ with Re(σ) > 0, a
tilde or the symbol L[·] indicate Laplace transforms), by accounting for the
proper initial conditions. The integro-differential problem (1) becomes the
integral one:

(3)



(iσ − 1)S̃ +
1

πi

∫
−
∂P (0)
dη

S̃

η − ξ︸ ︷︷ ︸
slS

+nlS = iΦ0︸︷︷︸
idS

+
Γγ̃

ξ − y0︸ ︷︷ ︸
fS

(iσ − 2χ)ỹ + nly = iy0︸︷︷︸
idy

− 1

πi

∫
∂P (0)
dη

S̃

η − y0︸ ︷︷ ︸
fy

symbols nlS and nly indicating the nonlinear terms:

(4) nlS :=
1

πi

∫
∂P (0)
dη X̃S − Γ Ỹ , nly :=

1

πi

∫
∂P (0)
dη Ṽ S.

One of the most relevant features of the system (3) is that its nonlinear-
ities are confined inside the two terms (4). This important property opens
the way to the use of successive approximations (see [18] page 84, or [19]
pages 5, 49), leading to analytical approximate solutions for this kind of

aIt is worth remarking that S(ξ; t) for any ξ outside ∂P (0) does not give Φ[x(ξ; t); t],
due to the fact that the flow ξ 7→ x(ξ; t) is not an analytic function of ξ.

bInstead, the circulation Γ̂ is non-dimensionalized as 2Γ̂/(πL2ω) =: Γ.
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flows. The method consits in transforming the nonlinear system (3) in an
infinite hierarchy of linear problems, the kth (k = 0, 1, . . .) of which being
written as:

(5)

slS
(k) = idS + fS − nlS(k−1) := M (k)

(iσ − 2χ) ỹ
(k)

= idy + fy(k) − nly(k−1)

With this approach, nonlinear terms (nlS, nly) are evaluated at the pre-
vious level k − 1 (nlS(−1) = 0, nly(−1) = 0) and considered as forcing
ones. Comparisons with numerical simulations of the motion show that the
solution of the kth problem (5) converges as k → ∞ to the Lagrangian
representation of the flow. Due to the fact that the algebraic difficulties in
evaluating the solution of the problem (5) increase very rapidly with k, the
0th and 1st order solutions will be only considered. They give for the first
time (to the best of the author knowledge) an analytical picture of such a
kind of motion.

In order to simplify the analytical handling, it will be hereafter assumed
that at t = 0 the uniform vortex fills a circle with center on the origin. By
choosing L as the radius of that circle, the initial vortex boundary is just
the unit circle (C).

3. Solutions at orders 0 and 1

The problems (5) corresponding to k = 0 and k = 1 are now solved.
At the 0th order, nonlinear terms are neglected. By introducing the

notations: w0 := 1/y0 and τ := i e−it sin t, the solution (in terms of
vortex boundary x(0), correspondig Lagrangian Schwarz function S(0) and
point vortex position y(0)) is:

(6)
x(0)(ξ; t) = e2itξ + τ

Γw0 ξ

ξ − w0
, S(0)(ξ; t) =

e−2it

ξ
− τ

Γ

ξ − y0

y(0)(t) = y0 e
2it (internal) or y0 − 2w0 τ (external) .

The function x(0)(ξ; t) (6), as well as the corresponding 1st order one (see
below), gives an approximation of the vortex boundary at time t, for ξ
running on C.

Due to the simplicity of the approximation (6), it becomes possible to in-
vestigate the singular set of the corresponding (Eulerian) Schwarz function
Φ(0). It is obtained in the following way. The first relation (6) is inverted,
by writing ξ as a function of x (supscript “(0)” is removed, for shortness)

(7) ξ =
e−2it

2

[
x+ w0(e2it − Γ τ ) +R

]
,
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Interactions between uniform and pointwise vortices
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Figure 1. Trajectories of the moving pole (orange dashed line) and of the branch points
(8) (x+ green dashed, x− black dashed) of the function (9), for Γ = −3/4 and
y0 = 1/2. They are superimposed to snapshots of the vortices given by the 0th or-
der approximation (red lines and symbols) and by the numerical simulation (blue lines
and symbols). Times 0.2, 0.4 and 0.6 are shown in a, b and c, respectively. Filled symbols
on the trajectories indicate the singularity positions at the current time.

R being the root [(x − x+)(x − x−)]1/2 having time-dependent branch
points

(8) x±(t) = w0e
2it ( 1±

√
−Γ τ

)2
.

The function Φ(0) is then obtained by inserting ξ (7) in S(0) (6):

Φ(0)(x; t) =
y0e
−2it

2

x+ w0(e2it − Γ τ )−R(x; t)

x
+

+
Γ τ

2(y0 − w0)

x+ w0(e2it − Γ τ )− 2y0e
2it −R(x; t)

x− x(0)(y0; t)
.(9)

Equation (9) shows that the singular set of the 0th order (Eulerian) Schwarz
function is formed by two simple poles (x = 0 and x = x(0)(y0; t)) and by
two branch points (8). These latter arise from the point w0 at t = 0, move
at successive times as shown in the figures 1, until they collapse still onw0 at
t = π. A careful analysis of these figures suggests two important remarks:
the point vortex does not coincide with a pole of Φ(0) and the motion of
x− is responsible for the progressive deformation of the vortex boundary
in figures 1-b and c. At the present time, the corresponding analysis for the
1st order solution is under investigation.

In order to calculate the 1st order solution, the linear approximation (6)
is now used for evaluating X, Y and V (2) and then the nonlinear terms
(4). The function X becomes:

(10) X(0) =
1

η −H
−

1

η − w0
,
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the simple pole H depending on the Lagrangian position ξ and on the time:

(11) H(ξ; t) := w0
ξ − w0(1 + Γτ )

ξ − w0
with: τ := i e−it sin t .

Due to the fact that the pole (11) is a linear fractional function of ξ [20],
it maps C onto another circle, named as CH(t) hereafter. It has center
in H(y0; t) =: Λ(t) and radius |ν sin t|, with ν := w0Γ/(w0 − y0).
The algebraic structure of the 1st order solution strongly depends on the
position of CH with respect to C. The center of CH moves by starting
at t = 0 from w0 and coming back to the same point at t = π, while
its radius grows in the first half-period and decreases in the second one. If
certain conditions on y0 and Γ are satisfied (see Appendix A), CH intersects
C. In this case, fixed a point ξ = eiθ ∈ C and assumed y0 < 1 (y0 > 1),
the pole (11) lies inside (outside) C at times t′H < t < t′′H , the intersection
times t′H and t′′H depending on ξ. By naming as T ′H the minimum t′H and as
T ′′H the maximum t′′H , CH intersects C at times T ′H < t < T ′′H (see figure
7-a). In order to account for the relative positions of the point (11) with
respect to C, the function χH(ξ; t) is introduced: it holds 1 when the pole
is internal to C, while it vanishes when it lies outside. The complementary
function χ′H := 1− χH will be also used.

The evaluation on the 0th order solution (6) of Y leads to the function:

(12) Y (0) =
e−2it

Ξw − Ξy

(
w0 − Ξy

ξ − Ξy
−
w0 − Ξw

ξ − Ξw

)
−

γ

ξ − y0
,

the analytical form of the time-dependent poles Ξy and Ξw being given
in Appendix B. At the initial time (and at t = π), they lie in y0 and
w0, respectively. The analysis in Appendix B shows that for an internal
point vortex (χ = 1) Ξy lies inside C and Ξw outside at any time. On
the contrary, if the point vortex is external (χ = 0), Ξw lies inside C at
any time, while the trajectory of Ξy starts and ends outside C and it can
cross this circle, if certain conditions are satisfied. Finally, the same poles
Ξy and Ξw also appear also in V :

(13) V (0) =
1

η − Ξy
−

1

η − y0
+

1

η − Ξw
−

1

η − w0
.

3.1. Point vortex outside the uniform one

Examine now what happens if the point vortex lies inside the uniform
one. Once the nonlinear terms (2) are evaluated in correspondence to the
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Interactions between uniform and pointwise vortices

approximation (6) by using the functions (10, 12), the right hand side of
the first equation in the system (5) follows as:

M (1) =
i

η
+ L

[
2χ′Hτ

(
Γe−2it

η −∆
−

ν2τ

η − Λ

)
+ 2y0χH

(
ντ − e−2it )+

+
Γe−2it

Ξw − Ξy

(
w0 − Ξy

η − Ξy
−
w0 − Ξw

η − Ξw

)]
,

in terms of the function ∆(t) := H(0; t) = w0(1 + Γτ ). In correspon-
dence to the above value of M (1), the solution of the singular integral
equation in the system (5) leads to the 1st order Laplace transform of the
Lagrangian Schwarz function:

S̃
(1)

=
1

σ + 2i

1

ξ
−

iΓ

σ + 2i
L
(

e−2it

Ξw − Ξy

w0 − Ξy

ξ − Ξy

)
+

−
iΓ

σ
L
(

e−2it

Ξy − Ξw

w0 − Ξw

ξ − Ξw

)
+(14)

−i Σ+ L
[
χ′Hτ

(
Γe−2it

ξ −∆
−

ν2τ

ξ − Λ

)
+ y0χH

(
ντ − e−2it )]+

+i Σ− L
[
Γ τ e−2itF ′∆ − ν

2τ 2F ′Λ + y0

(
ντ − e−2it )G1

]
,

where Σ± := 1/(σ + 2i) ± 1/σ. The functions F ′∆, F ′Λ and G1 in the

Laplace transform of S(1) are defined as:

(15)

F ′∆(ξ; t) :=
1

πi

∫
−
C
dη

χ′H(η; t)

(η − ξ)[η −∆(t)]

F ′Λ(ξ; t) :=
1

πi

∫
−
C
dη

χ′H(η; t)

(η − ξ)[η − Λ(t)]

G1(ξ; t) :=
1

πi

∫
−
C
dη

χH(η; t)

η − ξ

and their values depend on the relative positions of the circles CH and C.
At times t < T ′ or t > T ′′ (χH = 0), the above functions are easily
evaluated: F ′∆ = 1/(ξ −∆), F ′Λ = 1/(ξ − Λ) and G1 ≡ 0. Instead, at
times T ′H < t < T ′′H (χH = 1), the arc (ηi, ηf) ⊂ C is mapped by the
function (11) inside C, so that the functions (15) are evaluated by following
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the sketches drawn in Fig. 2 as:

(16)

F ′∆ =
1

ξ −∆

( 1

πi
log

ηi − ξ
ηf − ξ

+ χ′H −
1

πi
log

ηi −∆

ηf −∆

)
F ′Λ =

1

ξ − Λ

( 1

πi
log

ηi − ξ
ηf − ξ

+ χ′H −
1

πi
log

ηi − Λ

ηf − Λ

)
G1 =

1

πi
log

ηf − ξ
ηi − ξ

+ χH .

��

�
�
�
�

��

phii
phif

xi

etaf

etai
��

�
�
�
�

��

af

ai

phif

xi

phii

etai

etaf

(a) (b)

Figure 2. The domain of integration in the integrals (15) is the blue arc on C,
from ηi to ηf in counter-clockwise direction. The integrals have to be evaluated
in different ways if ξ lies outside a or inside b that arc, being the Cauchy integral
effective in the second case. Once a continuous branch of log(η − ξ) is chosen (the
direction of vanishing phase is drawn with an arrow from ξ), the increment of the
argument is ϕf − ϕi in a and αi + αf = ϕf − ϕi + π in b.

At times t < T ′, the inverse Laplace transform of S̃
(1)

(14) assumes
the simple form:

S(1) =
e−2it

ξ
− 2iΓ

∫ t

0
dt′

τ ′e−2it′

ξ −∆
+ 2iν2

∫ t

0
dt′

τ ′2

ξ − Λ
+

−iΓ
∫ t

0
dt′

e−2it′

Ξy − Ξw

w0 − Ξw

ξ − Ξw
+(17)

−iΓe−2it
∫ t

0
dt′

1

Ξw − Ξy

w0 − Ξy

ξ − Ξy
,

while the complicated form assumed at later times will not be written here,
for shortness. The (conjugate) position of the point vortex is then evaluated
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by solving the second equation in the system (5) and computing the inverse
Laplace transform. At times t < T ′H it assumes the simple form:

y(1) = e−2it
[
y0(1 + 2it)−

iΓ

w0 − y0
(e+it sin t− t) +

−2i

∫ t

0

dt′

Ξw
− 2iΓ

∫ t

0
dt′

τ ′e+2it′

y0 − Ξw
+

+4Γ

∫ t

0
dt′ e+2it′

∫ t′

0
dt′′

τ ′′e−2it′′

y0 −∆
+(18)

−4ν2

∫ t

0
dt′ e+2it′

∫ t′

0
dt′′

τ ′′2

y0 − Λ
+

+2Γ

∫ t

0
dt′ e+2it′

∫ t′

0
dt′′

e−2it′′

Ξy − Ξw

w0 − Ξw

y0 − Ξw

]
.

Time integrals in the 1st order approximation (17, 18) are analytically eval-
uated. The building of the 1st order approximation with the point vortex
external to the uniform one is now investigated.

3.2. Point vortex outside the uniform one

The nonlinear term slS(0) (4) is evaluated in the same way and the
right hand side of the first equation in the system (5) follows as:

M (1) =
i

η
+ L

[
2χ′H

Γe−2itτ

η −∆
+ 2χH

ν2τ 2

η − Λ
+

+2χ′H

(
Γτ

y0 − w0
+ y0e

−2it
)

+

+
Γe−2it

Ξw − Ξy

(
w0 − Ξy

η − Ξy
−
w0 − Ξw

η − Ξw

)]
.

The solution of the singular integral equation gives the Laplace transform
of the 1st order Lagrangian Schwarz function:

S̃
(1)

=
1

σ + 2i

1

ξ
−

i Γ

σ + 2i
L
(
χy

e−2it

Ξw − Ξy

w0 − Ξw

ξ − Ξy

)
+

−
i Γ

σ

[
L
(

e−2it

Ξw − Ξy

w0 − Ξw

ξ − Ξy

)
− L

(
e−2it

Ξy − Ξw

w0 − Ξw

ξ − Ξw

)]
+(19)

−i Σ+ L
[
Γ
e−2itτχ′H
ξ −∆

+
ν2τ 2χH

ξ − Λ
+ y0

(
e−2it − ντ

)
χ′H

]
+

+i Σ− L
[
Γe−2itτ F ′∆ + ν2τ 2 FΛ + y0

(
e−2it − ντ

)
G′1
]
,
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the new functions FΛ andG′1 being defined as F ′Λ andG1 in equation (15),
with χH and χ′H in place of χ′H and χH , respectively. Their calculation is
easy if the circles CH and C do not cross: in this case, FΛ = −1/(ξ−Λ)
and G′1 = 0. When the circles CH intersects C, these functions assume
more complicated forms, similar to the ones in equation (16).

The Laplace inverse transform of S̃
(1)

(19) is evaluated at times t < T ′H
as:

S(1) =
e−2it

ξ
− 2iν2

(∫ t

0
dt′

χ′Λτ
′2

ξ − Λ
+ e−2it

∫ t

0
dt′

χΛτ
′2e+2it′

ξ − Λ

)
+

−iΓ
( ∫ t

0
dt′

e−2it′χ′y

Ξw − Ξy

w0 − Ξy

ξ − Ξy
+(20)

+e−2it
∫ t

0
dt′

χy

Ξw − Ξy

w0 − Ξy

ξ − Ξy

)
+

−iΓe−2it
∫ t

0

dt′

Ξy − Ξw

w0 − Ξw

ξ − Ξw
,

while, as before, the corresponding form at later times will not be written.

The 1st order point vortex trajectory is obtained by inserting S̃
(1)

(20)
inside fy(1) and evaluating nly(0) by means of the function (13). At times
t < T ′H , the Laplace inverse transform gives

y(1) = y0 +
Γ

y0 − w0
(τ − it) +

−4ν2

∫ t

0
dt′ e−2it′

∫ t′

0
dt′′

τ ′′2e2it′′

y0 − Λ
+

−2Γ

∫ t

0
dt′ e−2it′

∫ t′

0
dt′′

χy

Ξw − Ξy

w0 − Ξy

y0 − Ξy
+(21)

−2Γ

∫ t

0
dt′ e−2it′

∫ t′

0

dt′′

Ξy − Ξw

w0 − Ξw

y0 − Ξw
+

+2i

(
−
∫ t

0
dt′

χ′ye
−2it′

Ξy
+ Γ

∫ t

0
dt′

χyτ
′

y0 − Ξy
+

+Γ

∫ t

0
dt′

τ ′

y0 − Ξw

)
.

Time integrals involved in the 1st order approximation (20, 21) are ana-
lytically evaluated, so that explicit formulae for the Lagrangian Schwarz
function and the point vortex position are obtained.
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4. Qualitative behaviour of the approximations and comparison
with contour dynamics simulations

The approximations at order 0 (6) and 1 (17, 18), (20, 21) are now com-
puted and compared with the corresponding results of contour dynamics
simulations.
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Figure 3. Boundary of the uniform vortex and point vortex position at times t = 0.05 a,
0.15 b, 0.25 c, for Γ = 0.5 and y0 = 0.8. The results of contour dynamics simulations
are drawn with blue lines and diamonds, the 0th order solution with green lines and
triangles and the 1st order one with red lines and triangles. The vortices at t = 0 are
also drawn with yellow lines and symbols. The simulations are performed with maximum
errors on the area of P −7.25·10−7, on the first order moment (in modulus) 6.99·10−7

and on second order moment −6.50 · 10−7.

Snapshots of the vortex motion with the point vortex inside the uni-
form one are shown in figures 3 (co-rotating vortices), 4 (counter-rotating).
It is easily perceived that the 0th order approximation is not able to fol-
low the vortex motion, unless during a very small initial time (see the
figures 3-a, 4-a at t = 0.05). This behaviour is due to the fact that the
0th order approximation neglects the nonlinear terms (4), which vanish
at the initial time, but become quickly important at later ones. Note also
that the differences with numerical simulations are larger for the bound-
aries of the uniform vortex, than for the point vortex positions. The 1st
order approximation substantially improves the behaviour of the 0th or-
der one, by keeping a good agreement with the numerical simulations for
larger times. Furthermore, the correspondence between approximate and
numerical boundaries appears to be nonuniform. It is very good in moder-
ate curvature regions, while it becomes worse in correspondence to the entry
of irrotational fluid inside the core (see figures 3-c, 4-c), where the curva-
ture substantially grows. One can conclude that the approximation of the
nonlinear terms with nlS(0) and nly(0) prevents the 1st order boundary
from following the numerical one, in high curvature regions.
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Snapshots of the interactions with the point vortex outside the uniform
one are drawn in figures 5 (co-rotating vortices) and 6 (counter-rotating).
As in the previous cases, the 0th order approximation behaves in a quite
unsatisfactoy way: its vortex boundary quickly moves away from the numer-
ical one and also the point vortex runs on a rather different trajectory, with
respect to the one obtained by means of the contour dynamics simulation.
This behaviour of the 0th order point vortex is especially clear in figure 6-
c. The 1st order approximation strongly improves the agreement with the
numerical simulations, in terms of both vortex boundary and point vortex
position. Significant differences in the boundaries appear only at later times
(t = 0.5, figure 5-c), still in high curvature regions. Finally, note the im-
portant improvement in the point vortex position with respect to the 0th
order one, in figure 6-c.

The calculation of the 1st order approximation is more complicated
when the circle CH crosses C. In this case, the functions (15), FΛ and G′1
involve logarithms, as in the formulae (16), and time integrals have to be
numerically computed. A sample case is shown in the figures 7. Times t′H
and t′′H are drawn in a vs. the argument of ξ (the times T ′H and T ′′H are
also indicated) and snapshots of the vortices at two consecutive times are
shown in b and c. As before, the 0th order approximation behaves in a
unsatisfactory way, leading to large errors in the region pushed inside the
core by the point vortex. The 1st order approximation strongly improves
the description of the vortex motion, even if it is not able to completely
follow the above inward motion of the boundary. At the same time, it gives
a satisfactory approximation of the trajectory of the point vortex.
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Figure 4. As in Fig. 3, but for Γ = −1.5 and y0 = 0.6. Maximum errors are −3.29 ·
10−7, 3.32 · 10−7 and −3.38 · 10−7.
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Figure 5. As in Fig. 3, but at times t = 0.1 a, 0.3 b, 0.5 c and for Γ = 1, y0 = 1.6.
Maximum errors are 3.97 · 10−8, 4.41 · 10−8, 4.41 · 10−8.

5. Concluding remarks and future work

An analytical approach to investigate the motion of a uniform vortex
in presence of a pointwise one has been built and tested by means of com-
parisons with contour dynamics simulations. It is found on the use of the
Schwarz function of the boundary of the uniform vortex and its integral
relation with the corresponding induced velocity. The solution of the re-
sulting integrodifferential problem has been approached by evaluating its
successive approximations of orders 0 and 1. The comparison with numer-
ical simulations has been shown that the 1st order approximation behaves
in a quite satisfactory way, at least for small times.

The present work is aimed to show that the numerical simulation is not
the only way for investigating the planar vortex dynamics. Important, and
often unexpected, information about this flow come also from the analyti-
cal handling of the strongly nonlinear equations of motion. The successive
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Figure 6. As in Fig. 3, but at times t = 0.1 (a), 0.3 (b), 0.5 (c) and for Γ = −0.5,
y0 = 1.5. Maximum errors are 1.85 · 10−8, 1.75 · 10−8 and 6.82 · 10−9.
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Figure 7. In a, the times t′H (blue line) and t′′H (red) are drawn vs. the argument θ
of ξ, for Γ = −1 and y0 = 0.8. Times and angles are in sexagesimal degrees. In b and
c, the snapshots of the vortices at t = 0.1 and 0.2 are shown. Colours and symbols are
the same used in figure 3, with the only difference in using black lines to draw arcs of
∂P (0,1) such that the corresponding points ξ ∈ C are mapped inside C by the function
H (11). Maximum errors in numerical simulations are −2.30 · 10−6, 1.53 · 10−6 and
−1.03 · 10−6.

approximations appear as a flaw of the present analysis, at least in the au-
thor opinion: a more powerful analytical approach could lead to the exact
solution.

At the present time, the same approach is extended to the motion of
two uniform vortices. A system of two singular nonlinear integrodifferential
equations in the Schwarz functions of the boundaries is written and its
analytical solution is approched by means of successive approximations.
Numerical calculations show that the 1st order approximation agrees quite
well with contour dynamics simulations of the motion, also in this kind of
flow.

A. Necessary and sufficient condition for CH intersecting C

The present appendix investigates the position of the circle CH with
respect to C. The modulus ofH (11) is unitary in a point ξ = exp(i θ) ∈ C
if the time t and the angle θ satisfy the trigonometric equation:

(22) (α− β cos 2t)︸ ︷︷ ︸
c

cos θ + β sin 2t︸ ︷︷ ︸
s

sin θ = γ − δ cos 2t︸ ︷︷ ︸
n

,

where α := w0[(Γ+2)w2
0−2], β := w3

0Γ, γ := w4
0(Γ2 +2Γ+2)/2−1

and δ := w4
0Γ(Γ + 2)/2. The trigonometric equation in θ (22) possesses

real and distinct solutions if c2 + s2 > n2, i.e. if the polynomial in cos 2t

−δ2 cos2 2t− 2(αβ − γδ) cos 2t+ (α2 + β2 − γ2) =: P (cos 2t)
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is positive. In order to enforce this condition, the discriminant of P must
be positive. Introduced the functions of the point vortex circulation Γ:

Y+(Γ) :=
[
1 +

( Γ

Γ + 2

)1/2 ]−1/2
Γ < −2 or Γ > 0

Y−(Γ) :=
[
1−

( Γ

Γ + 2

)1/2 ]−1/2
Γ > 0 ,

this condition is verified if y0 > Y+ for Γ < −2, for any y0 when −2 <
Γ < 0 and if Y+ < y0 < Y− for Γ > 0. Moreover, the roots of P are
cosines of (real) angles and then they must lie in the interval [−1,+1]. A
quite tedious discussion leads to the constraint:

(23)

Γ ≤ −9/4 : Y+ < y0 <
√
−Γ + 1

−9/4 < Γ < 0 : |
√
−Γ− 1| < y0 <

√
−Γ + 1

Γ > 0 : Y+ < y0 < Y− ,

which is necessary and sufficient for the existence of two (distinct) intersec-
tion points between the circles CH and C.

B. Trajectories of the poles Ξy and Ξw

In the present appendix the time behaviour of the poles Ξy and Ξw is
investigated, with particular regard to their relative positions with respect
to C. At time t, they are the roots of the equation in ζ: x(0)(ζ; t) = y(0)(t).
The two cases y0 < 1 and y0 > 1 are discussed below.

B.1. Point vortex inside the uniform one

The poles Ξy and Ξw are roots of the quadratic equation: ζ2 − [y0 +
w0(1 + Γ τ )] ζ + 1 = 0, so that ΞyΞw = 1. They are:

(24) Ξy,w =
y0 + w0

2
+

Γw0

2

[
τ ∓

√
(τ − τ ?1 )(τ − τ ?2 )

]
,

the branch points belonging to the real axis: τ ?1,2 = −(1 ∓ y0)2/Γ. The
complexified time τ runs (clockwise) on the circle C1 with radius 1/2 and
center in 1/2, by starting form the origin at t = 0 and crossing the real axis
in the point 1 at t = π/2. As a consequence, it is important to order the
above branch points and to point out their relative positions with respect
to 1. This is made in figure 8-a for any Γ and y0. In the case in which the
branch cut of the square root (24) includes the point 1, the trajectories of
the poles jump at t = π/2, as shown in figure 8-b.
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B.2. Point vortex outside the uniform one

The poles are the roots of the quadratic equation in ζ: ζ2 − {y0 +
w0 + [Γw0 − 2(y0 − w0)]τ}ζ + [1 − 2(1 − w2

0)τ ] = 0. Named as a
and b the coefficients of ζ1 and ζ0, |b| = 1 just at t = 0 (or t = π),
while |b| < 1 at the other times. The above equation is rewritten in terms

of the new unknown ζ′ := ζ/
√
b as ζ′

2
+ (a/

√
b) ζ′ + 1 = 0. As it

occurs in the previous case, the roots Ξ′y,w of that equation can be defined

in such a way that one lies inside the unit circle (Ξ′w) and the other (Ξ′y)

is external. It follows that Ξw =
√
b Ξ′w, is always internal to C, while the

other Ξy =
√
b Ξ′y can lie outside or inside the same circle. The necessary

and sufficient condition for Ξy crossing C is investigated, but it will not be
discussed here, for shortness.

Once the singular (Γp := 2(y2
0 − 1)) and the branch (Γb := 2(y0 −

w0)2) circulations have been defined, the poles are written for Γ 6= Γp as:

(25) Ξy,w =
1

2

{
(y0+w0)+w0(Γ−Γp)

[
τ±σ

√
(τ − τ ?1)(τ − τ ?2)

]}
where σ := sign(Γ− Γp) and τ ?1,2 = −y2

0{Γ− Γb +w2
0Γ± 2w0[Γ(Γ−

Γb)]
1/2}/(Γ−Γp)

2, while special formulae must be employed for Γ = Γp.
Figure 9 shows the different kinds of trajectories of the poles (25), for sample
values of y0 and Γ.
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Figure 8. In (a) the relative positions of the branch points τ?1,2 are defined in the plane
(Γ, y0): a: τ?2 < τ?1 < 0; b: 1 < τ?1 < τ?2 ; c: 0 < τ?1 < 1 < τ?2 ; d: 0 < τ?1 < τ?2 < 1.
Red and blue curves are defined by the equations: y0 = 1−

√
−Γ and y0 =

√
−Γ− 1,

respectively. In (b) the trajectories of the poles Ξy (blue) and Ξw (red) are drawn for
Γ = −9/4, y0 = 5/8. In the picture the τ -plane (the circle C1 on which τ runs is drawn
with a green line and the branch points τ?1,2 with orange symbols) and the ξ-plane (C is
drawn with a black line and the points y0, w0 with black symbols) are superimposed.
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Figure 9. Samples of trajectories of the poles (25) Ξy (blue) and Ξw (red) are drawn
for t ∈ [0, π). The points y0 and w0 are drawn with black filled circles, the branch
points τ?1,2 with orange filled squares and the points in which the curve Ξy crosses C
with empty red squares. The initial position of the point vortex is fixed to y0 = 1.35
in the first row and to y0 = 1.5 in the second one, while the circulation Γ takes the
following values: a: −3, b: −3/2, c: 0.28, d: 4, e: −5/2, f : −1/2, g: 0.55, h: 6.
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