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Abstract

The Wigner transport equation can be solved stochastically by Monte Carlo techniques based on the theory of piecewise
deterministic Markov processes. A new stochastic algorithm, without time discretization error, has been implemented and

studied in the case of the quantum transport through a rectangular potential barrier.
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1. Introduction

Modelling of electronic transport in nanometer systems requires a theory that describes open,
quantum-statistical systems which cannot be provided simply from the Schrédinger equation. Several
formulations of quantum transport have been employed practically, such as those based on the density
matrix, non-equilibrium Green’s functions and the Wigner function.

The Wigner function is a real-valued but not necessarily positive definite quasi-distribution, repre-
senting a quantum generalization of Boltzmann distribution. The Wigner function formalism is attractive
as it allows the expression of quantum dynamics in a phase-space formulation, directly comparable with
the classical analogue, more intuitive compared with the more abstract density matrix and Green’s func-
tion approaches. At the same time the Wigner equation can be augmented by a Boltzmann-like collision
operator accounting for the process of decoherence.

Although the Wigner equation has been introduced in 1932, the first finite-difference based solver
appears in the mid 1980s (see [1] for a review), and more efficient solvers have been developed nowadays
[2-8]. We have to wait until the beginning of 2000, to have particle Monte Carlo (MC) solvers for the
Wigner equation [9,10]. From that period up to now, several papers have been published on this subject
(see [11] for a review) and, recently, very interesting device simulations have been provided [12,13].

In the realm of the particle Monte Carlo methods, we have focused ourselves on the so called Signed
Monte Carlo method [14]. Here, the Wigner potential is treated as a scattering source which determines
the electron-potential interaction, and consequently new particles with different signs are stochastically
added to the system. Recently this method has also been be understood in terms of the Markov jump
process theory [15-18], producing a class of new stochastic algorithms.

In this paper a thorough validation of one of these algorithms will be presented, by comparing the
Wigner MC results with the Schrodinger equation solution in an already traditional benchmark exper-
iment which consists of the interaction of a Gaussian wave packet with a rectangular potential barrier.
The MC simulation data show an excellent quantitative agreement with the corresponding Schrodinger
solution, with reasonable computational times.
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Wigner Monte Carlo simulation

2. The Signed particle Monte Carlo method

The Wigner equation has the form [19]

) O Fultm )+ kT fu(t 2, k) = Qfu)

where 2 € R? is the particle position, k € R? the wave vector (and Ak the momentum), m* the particle
mass, which includes the quantum evolution term

@) O(f) = / Vi ke — k) fuo(ts 2, ) R

where V,, is the Wigner potential

(3) Vo (z, k) = ih(;ﬂ)d/daz'e—ik“’ [V <:c + g) -V (x - g)]

and V (z) the potential energy. The Wigner potential is a non-local potential operator which is responsible
of the quantum transport, is real-valued, and anti-symmetric with respect to k.

The solution f,(t,z, k) is real valued, but not necessarily nonnegative, and it is related to the solu-
tion 9 (x, t)of the Schrédinger equation. Under certain hypothesis on the ¥ (x,t), the function f (¢, z, k)
satisfies

() na(o.8) = [ fultsa k) di =0l O 2 0.

Solving the Wigner equation, from the numerical point of view, is a quite difficult task. The main
complication arising in the direct solution based on finite-difference scheme, is the discretization of the
diffusion term k-V, f,, due to the typically fast variation in the phase space. Particle based MC techniques
do not require the discretization of this term, but they need costly computational times.

In the following we shall follow the so called Signed particle Monte Carlo approach developed initially
n [14]. This technique is based on the observation that the quantum evolution term (2) looks like the
Gain term of a collisional operator in which the Loss term is missing. But the Wigner potential (3) is
not always positive and cannot be considered a scattering term. For this reason, it can be separated into
a positive and negative parts V5, V..~ such that

In this way, we can define an integrated scattering probability per unit time as

(6) v(z) = /dkz' Vii(z, k—K) = /dk" Vo (z, k— k)

and rewrite the quantum evolution term as the difference between Gain and Loss terms, i.e.

(7) O(fu) = / AR w (k' k) oty 2, K) — 2(2) ot 2, )
(8) w(k', k) =V, (x,k —K) =V, (2, k — k) +~(x)d(k — k)

Now the term w(k’, k) is interpreted as a new scattering rate which produces, from the old particle, a
new pair of particles having weight (or Affinity) A and —A. In conclusion, an initial parent particle (with
sign) evolves on a free-flight trajectory and, according to a generation rate given by the function v(x),
two new signed particles are generated in the same position having weight A and —A respectively. The
momentum of the new particles is generated with probability V! (z, k) /v(x).

However this procedure suffers from many drawbacks such as: efficiency issue in particle generation,
because v usually is a rapidly oscillating function, and exponential growth of particle numbers. In order
to contain the particle number, a cancellation procedure must be introduced in such a way that, if the
total number of particles exceeds a certain bound N.unc, then pairs of particles with similar positions
and wave vectors, but with opposite signs, are removed from the system.
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3. The no-splitting algorithm

The previous creation process has been understood in terms of the Markov jump process theory. The
particle system is characterized by the state space

(9) 2(8) = (Aj(0), 25 (1), k(1) £20 . j=1,..N()

where the first component is the weight A; € {—1,+1}, the second component is the position vector, and
the third component is the wave-vector. The time evolution of the system is determined by the flow

Bk

m*

F(t,z) = (A, z+v(k)t. k) , v(k)

and a jump kernel \(z). The random waiting time 7 until the next jump satisfies

(10) P(r > 1) = exp {— /Ot M (s, 2) ds}

In our case the jump is the creation of a pair whose creation rate and the offspring distribution are
determined by the kernel \. It is possible to prove that this piecewise deterministic Markov jump satisfies
a weak form of the Wigner equation [15], and some examples of creation kernel are given in [16]. In
particular, we have considered the creation procedure which uses an upper bound of the Wigner potential,
ie.

(11) Vi (2, k)| < Vw(l',k) Vw,k‘,GRd
and, in this case, we have (see [18] for details)

N
. . 1 .
(12) AF(s5,2) = 3 A +olhy)s) o 3(2) = 5 / V(o k) dk
=1 R
If we substitute eq.(12) into eq.(10), due to the complexity of the integral in the exponent, it is impractical
to generate stochastic waiting times 7 and, for this reason, a time-splitting procedure must be introduced,

producing a time-step error. But if 4(x) does not depend on z, i.e. it is constant, we have

S
1
IP’(TZS):eXp<—/ ’yNds)zeXp(—@Ns)% T=——=logr
0 AN

where r € U(0,1) is a uniform random number, and the random waiting time 7 is completely deter-
mined. In this case, a new no-splitting generation algorithm has been introduced in [18] without time
discretization error, which will be validated with a well-known benchmark model in the next section.

4. The rectangular barrier benchmark

The benchmark test we choose for the validation of the no-splitting generation algorithm, consists of
the interaction of a Gaussian wave packet with a one dimensional rectangular potential barrier. The one
dimensional potential barrier is

(13) V(x) = ax-p2p/2(x) ,reR

and the corresponding Wigner potential is

2a . .
(14) Vw(z, k) = s sin(2kzx) sin(kb) xz,k e R
The upper bound (11) is
~ 2ab 2abc
1 w 7k =z Y =
(15) Vale by = 220 5 20

22



Wigner Monte Carlo simulation

where c is a cutoff in k in the integral (12). The initial condition for the Wigner equation is

1 x —x0)?
(16) Ful0s.8) = g exp |50 o [0k~ ko
Tog 200
where z9 = -6 nm, ko= 0.46 nm~!, oy = 1 nm, which it is plotted in figure 1 whereas in figure 2 the

corresponding mean density (4) is shown. The height and width of the potential barrier (13) are
(17) a=03eV , b=214nm

In the z-space we have considered an uniform mesh [-20, 20](nm) with N, = 200 grid-points; also in the
k-space we have an uniform mesh [-7.78, 7.78](nm~!) with N;=256. We have chosen absorption boundary
conditions, i.e. if a particle is out of the mesh then it is erased. The cutoff has been fixed ¢ = 7.68 nm ™",
the initial particle number is N;,; = 160000, the cancellation parameter N q,. = 480000.

Since for a pure state the Wigner and Schrodinger equations are equivalent, we shall compare the
MC results with the corresponding analytic solution of the Schrédinger equation found by Los et al. [20].
The initial condition for the Schrodinger equation is

T —;ex —M exp(ikox
(19 o0 = e |~ exptiko)

In the figures 3-10 we show the Wigner distribution function f,, (¢, x, k) and the corresponding mean
density (4), for some values of the simulation time. The mean density plots show no visible deviation of
the MC numerical approximation from the analytic curve.

The CPU time for the no-splitting algorithm was 435 sec., which is considerable smaller than the CPU
time consumed by a splitting-based algorithm ( 3929 sec.). The results presented have been obtained using
an AMD Phenom IT X6 1090T 3.2GHz and 8 Gb RAM.

5. Conclusions

The Wigner equation has been solved by using the Signed particle Monte Carlo method, where a new
pair of particles characterized by a sign are created randomly and added to the system. This creation
mechanism has been recently interpreted in terms of the Markov jump process, producing a class of new
stochastic algorithms [16]. One of these algorithms has been implemented without time discretization
error, and it has been applied to the rectangular potential barrier benchmark. The results are compared
with the corresponding analytic solution for the Schrédinger equation, showing an excellent agreement
as well as a low-cost computational effort. Future researchers will develop this MC methodology for the
simulation of realistic devices, such as silicon nanowires according to the guidelines in [21-25].
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Figure 1. Wigner distribution function fu (z,k,t) at t = 0 fsec.
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Figure 2. Mean density (4) versus position at t = 0 fsec.
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Figure 3. Wigner distribution function fu,(z,k,t) at t = 6 fsec.
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Figure 4. Mean density (4) versus position for t = 6 fsec., obtained with MC simulation and the corresponding analytic
solution of the Schrédinger equation [20].
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Figure 5. Wigner distribution function fu (z,k,t) at t = 10 fsec.
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Figure 6. Mean density (4) versus position for t = 10 fsec., obtained with MC simulation and the corresponding analytic
solution of the Schrodinger equation [20].
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Figure 7. Wigner distribution function fu (z,k,t) at t = 20 fsec.
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Figure 8. Mean density (4) versus position for t = 20 fsec., obtained with MC simulation and the corresponding analytic
solution of the Schrédinger equation [20].
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Figure 9. Wigner distribution function fu (z,k,t) at t = 30 fsec.
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Figure 10. Mean density (4) versus position for t = 30 fsec., obtained with MC simulation and the corresponding analytic
solution of the Schrodinger equation [20].
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