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Abstract

In this paper we study the model of the chemical reaction of fully competitive inhibition and determine the appropriate

parameter ε (related to the chemical constants of the model), for the application of singular perturbation techniques. We

determine the inner and the outer solutions up to the first perturbation order and the uniform expansions. Some numerical

results are discussed.
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1. Introduction

Mathematical modelling of chemical reactions is one of the bases of theoretical studies of actual
biochemical research and has given important contributions to advances in biomedical and pharmaceutical
researches.

At present, a widely used approach to model intracellular mechanisms is to break up the mechanism
network into simpler subnetworks (usually called modules) and to give kinetic models for these modules
in terms of systems of first order nonlinear ordinary differential equations (ODEs). A module is identified
as a (discrete) protein-protein interaction. A network is a set of modules linked by inflow and outflow
processes known as pathways.

The long-term goal of these studies is the integration of different modules, in order to reproduce the
global behavior of a specific cell type and put the description of the dynamics and control characteristics
of living organisms on physico-chemical bases.

The ODE systems governing the models are related to the rate of change of the concentrations of
molecular species and depend on a set of parameters, i.e., the initial concentration of dynamical molecular
species and the kinetic constants which quantitatively describe the velocity of every single reaction.

The fully competitive inhibition is one of the most common reactions characterizing any intracellular
reaction network.

Inhibition is used in the production of drugs and toxic agents. Here we just give some hints about the
use of inhibition in pharmacology. For a more complete analysis see [1].

Many enzymes can be inhibited by the binding of specific molecules, hence inhibiting enzyme activity
is a useful control mechanism in biological systems.

Two well-known examples of inhibitors employed as drugs are penicillin, that acts by modifying the
enzyme transpeptidase, thus preventing the synthesis of bacterial cell walls and consequently killing the
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bacteria, and aspirin, which modifies the enzyme cyclooxygenase, reducing the synthesis of inflammatory
signals.

Let us now focus our attention on competitive inhibition, where two substrates S1 and S2 compete
for the same enzyme E: the enzyme can bind either the substrate or the inhibitor, but not both simulta-
neously. The competitive inhibitor is similar to the substrate, binds to the active site of the enzyme and
does not allow the substrate to bind to the same active site. So a competitive inhibitor diminishes the
rate of catalysis by diminishing the amount of enzyme molecules bound to a substrate. This mechanism
can naturally be utilized for the production of drugs. An example is given by methotrexate, that is a
chemotherapy drug which prevents the cancer cells from growing and dividing.

Actually there exists also noncompetitive inhibition, in which substrate and inhibitor can bind simul-
taneously two enzymes at different sites.

In the classification of inhibitors into group-specific reagents, substrate analogs and suicide inhibitors,
the last ones play a fundamental role in pharmacology as they are able to inactivate the enzyme.
“Monoamine oxidase deaminates neurotransmitters such as dopamine and serotonin, lowering their levels
in the brain. Parkinson disease is associated with low levels of dopamine, and depression is associated with
low levels of serotonin. The drug (-)deprenyl, which is used to treat Parkinson disease and depression, is
a suicide inhibitor of monoamine oxidase” ( [1]).

The ODEs governing enzyme reactions are based on the so-called Michaelis-Menten kinetics (briefly
described here below) and on the mass conservation principle, according to which a single molecule can
interact with other species and change the activity, but the total mass must be conserved.

Let us consider a reaction where a substrate S binds reversibly to an enzyme E to form a complex C.
The complex can decay irreversibly to a product P and the enzyme, which is then free to bind another
substrate molecule. This is summarized in the scheme

(1) E + S
a−⇀↽−
d
C

k−→ E + P ,

where a, d, k are kinetic parameters (supposed constant) associated with the reaction rates.
Assuming that the complex concentration is approximately constant (Ċ ∼= 0 ) after a short transient

phase leads to the usual standard quasi-steady-state approximation (sQSSA)) [2], which is valid when the
enzyme concentration is much lower than either the substrate concentration or the Michaelis constant
KM = d+k

a . The total QSSA (tQSSA) [3–5] is another approximation, and is valid for a broader range of
parameter values covering both high and low enzyme concentrations.

The sQSSA and tQSSA are related to the asymptotic expansions of the solutions of the ODEs govern-
ing the process with respect to an appropriate parameter [2,6–8]; the topic can also be read in terms of
center manifold, normal forms and bifurcation theory [9–11]. The two approximations are both developed
setting the derivative of the intermediate complexes equal to zero. The theoretical justification for this
assumption is given by Tikhonov’s Theorems [12–17]

In Tikhonov’s framework, the assumption Ċ = 0 is equivalent to impose the aforementioned “appropri-
ate parameter” (the perturbation parameter, usually denoted by ε) equal to zero (see, for example, [18,19].

In particular, Kumar and Josić [19] derive the mathematical expression of the center manifold for
the tQSSA system just putting ε = 0. This result remains as true for a wide class of systems (including
the tQSSA model) and has a mathematical explanation, related to the connection between Tikhonov’s
theorem and center manifold theory, as shown in the framework of Geometric Singular Perturbation The-
ory [20,21]. The theoretical investigation of the validity of the tQSSA in the case of successive reactions,
where more parameters appear, relies on the theorems reported in [14], which represent the generalization
of Tikhonov’s Theorem [13,17] to the case of more parameters.

The question is: what is the most appropriate parameter to develop an asymptotic expansion of the
solutions of the ODEs modelling the reactions?

In a series of papers written by Palsson et al. [22–25], the possibility to choose the required parameter
has been related to the decoupling of the eigenvalues of the Jacobian matrix of the differential system.
In [24] the authors focused on chains of reactions, obtaining a block form for the resulting Jacobian matrix.
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The mechanism we are studying in this paper does not belong to this class of reactions. Nevertheless
Palsson’s technique was adapted to the fully competitive inhibition, too [26].

In [27], Schnell and Mendoza determine a closed formula for the sQSSA of the fully competitive
inhibition, in terms of the Lambert function, as already obtained by the same authors in [28] for a single
reaction.

In [29,30] the authors study the tQSSA of this reaction, applying it also to double phosphorylation,
which can be considered a peculiar case of inhibition, where the monophosphorylated substrate competes
with the inactive substrate for the same enzyme.

In [26] the authors study the chemical reaction of inhibition and determine the appropriate parameter
for the application of Tikhonov’s Theorem, compute explicitly the equations of the center manifold of
the system and find sufficient conditions to guarantee that in the phase space the curves which relate the
behavior of the complexes to the substrates by means of the tQSSA tend asymptotically to the center
manifold of the system. In other words, the above quoted paper gives another example of connection
among Tikhonov’s Theorem, center manifold and tQSSA, after the fundamental article [20].

As already observed, any QSSA can be interpreted as the leading order term of an asymptotic ex-
pansion of the solutions with respect of an appropriate parameter.

In this paper, we determine the asymptotic expansions beyond the tQSSA, up to the 1-st order in
the parameter ε (introduced in [26], adopting Palsson’s technique) for the inner and outer solutions and
the corresponding uniform expansions.

The paper is organized in the following way: in Section 2 we recall the most important mathematical
background concerning Palsson’s theory. In Section 3 we recall the mathematical model of the enzymatic
inhibition reaction and its adimensionalization, as done in [26], arriving at a suitable perturbation pa-
rameter ε which will be used in Section 4, in a study case, to determine the 0-th and the 1-st order
asymptotic expansions for the inner and outer solutions and the corresponding uniform expansions, ob-
tained by means of singular perturbation techniques. Numerical results are shown, for different values of
ε. Section 5 contains some conclusions, problems and perspectives.

2. Preliminary results and notations - Palsson’s technique

As already observed in the previous Section, the tQSSA not only is much more efficient than the
sQSSA, since it is valid in a much wider set of parameters and initial conditions, but also is a much more
natural approximation. This fact can be confirmed considering the studies by Palsson and collaborators
(in particular see [22]), where the authors are able to determine a sufficient condition for the validity of
any QSSA in terms of the trace and the determinant of the Jacobian matrix J of the system of nonlinear
ODEs, governing the mechanism, with J evaluated in its stationary point.

In their paper [22] Palsson and Lightfoot consider a generalized Michaelis-Menten reaction:

I−→ S + E
a−⇀↽−
d
C

k−⇀↽−
b
P + E

R−→ ,

where the complex C breaks down reversibly to form the product P and to regenerate the free enzyme
E and where the input I and the removal R represent exchanges of mass across the system boundaries.

Of course the irreversible Michaelis-Menten reaction is a particular case of the above process.
In [22] the authors adopt the following techniques:

1. They use suitable scaled variables and concentrate individual parameters into the smallest number
of combinations. In doing this, they introduce dimensionless parameters that separate two well
distinguished categories: the ones measuring the concentrations and the ones related only to
kinetic parameters. As to time, they set τ = aET t.

2. They find the Jacobian matrix J of the differential system, evaluate J in its stationary point and
find det(J) and tr(J)

3. Finally they find the eigenvalues λ1 , λ2 which are given by
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λ1,2 =
1

2

[
tr(J)±

√
tr(J)2 − 4det(J)

]
.

4. By setting τ1 =

∣∣∣∣ 1

λ1

∣∣∣∣ (slower timescale) and τ2 =

∣∣∣∣ 1

λ2

∣∣∣∣ (faster timescale), it follows that, if
4det(J)

tr2(J)
is small, then

|λ2| � |λ1| i.e. τ1 � τ2 .

Thus the two timescales are well separated if

(2)
det(J)

tr2(J)
� 1 ,

which is a sufficient condition for the existence of fast and slow variables.
5. The authors prove that upon condition (2) the time constants may be approximated by

τ1 ∼
∣∣∣∣ tr(J)

det(J)

∣∣∣∣ ; τ2 ∼
∣∣∣∣ 1

tr(J)

∣∣∣∣ .
Let us now apply Palsson’s technique to the classical Michaelis–Menten kinetics with total substrate.

For notation convenience we will use the same variable names to denote both a chemical species and its
concentration. For example, E denotes both an enzyme and its concentration.

The system of equations, called full system, governing the scheme represented in (1), is formed by
two independent equations:

(3)


dS

dt
= −a(ET − C)S + dC

dC

dt
= a(ET − C)S − (d+ k)C

with the initial conditions

(4) S(0) = ST , C(0) = 0

and the conservation laws

(5) E + C = ET , S + C + P = ST .

The initial conditions give the concentrations of S and C at the beginning of the reaction, and
their time development is described by the ODEs, while E and P are linked to S and C through the
conservation laws.

Introducing the total substrate S(t) = S(t) + C(t), (3) then become

(6)



dS

dt
= −kC

dC

dt
= a[C2 − (ET + S +KM )C + ETS]

S(0) = ST

C(0) = 0
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with conservation laws

(7) E + C = ET , S + P = ST .

It is easy to see that the origin X∗ := (s∗, C∗) = (0, 0) is the only stationary point of the system,
with Jacobian matrix at the origin

(8) J(0, 0) =

(
0 −k

aET −a(ET +KM )

)
.

An easy computation shows that

|J − λI| = λ2 + a(ET +KM )λ+ kaET ,

so that the eigenvalues are

λ1, 2 =
−a(ET +KM )±

√
a2(ET +KM )2 − 4akET

2
=

a(ET +KM )

2

(
−1±

√
1− 4KET

(ET +KM )2

)
,

where
4KET

(ET +KM )2
=

4det(J)

tr2(J)
and K =

k

a
is the Van Slyke-Cullen constant. Now it is clear that

(9)
KET

(ET +KM )2
� 1 =⇒ |λ1| � |λ2|

and we have a sufficient condition for the separation of time scales.

Moreover we could choose ε̃ =
KET

(ET +KM )2
as perturbation parameter.

It easy to show that ε̃ <
1

4
for every choice of data.

However, in order to follow [3,8,31], we take

(10) ε =
KET

(ET +KM + ST )2

as perturbation parameter (note that ε < ε̃).
Thus Palsson’s results give a wide range of parameters and initial conditions assuring the validity of

the tQSSA and imply that the perturbation parameter ε given in (10) arises as the natural parameter to
be used in any efficient quasi-steady state approximation.

3. Mathematical model of the inhibition mechanism

A fully competitive inhibition reaction, where an inhibitor S2 competes with a substrate S1 for the
same enzyme E, is summarized by the following scheme

(11)


E + S1

a1−⇀↽−
d1

C1
k1−→ E + P1

E + S2
a2−⇀↽−
d2

C2
k2−→ E + P2,

where P1, P2 are the reaction products and C1, C2 the enzyme-substrate complexes. In this kind of
reaction, it is clear that S1 and S2 have the same role of reciprocal inhibitors (S1 inhibits S2 as S2

inhibits S1). Introducing the total substrates

(12) S1 = S1 + C1, S2 = S2 + C2,
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by conservation laws we have

(13) S1 + P1 = S1T , S2 + P2 = S2T , E + C1 + C2 = ET .

Then we can write the following Cauchy Problem:

(14)



dS1
dt = −k1C1

dC1
dt = a1

[
(S1 − C1)(ET − C1 − C2)−K1MC1

]
dS2
dt = −k2C2

dC2
dt = a2

[
(S2 − C2)(ET − C1 − C2)−K2MC2

]
S1(0) = S1T ; S2(0) = S2T ; C1(0) = C2(0) = 0,

where

(15) K1M =
d1 + k1

a1
, K2M =

d2 + k2

a2

are the Michaelis constants.
It is easy to see that the origin X∗ := (S1

∗
, C∗1 , S2

∗
, C∗2 ) = (0, 0, 0, 0) is the only fixed point of the

system. The linear approximation of the system around X∗ is represented by the following system:

(16)


dS1
dt = −k1C1

dC1
dt = a1

[
ETS1 − ETC1 −K1MC1

]
dS2
dt = −k2C2

dC2
dt = a2

[
ETS2 − ETC2 −K2MC2

]
,

with Jacobian at the origin

(17) J(0, 0, 0, 0) =


0 −k1 0 0

a1ET −a1(ET +K1M ) 0 0
0 0 0 −k2

0 0 a2ET −a2(ET +K2M )

 ,

characterized by two blocks. The Jacobian allows the separation between the eigenvalues of the first
reaction and the eigenvalues of the second reaction, so that we can apply Palsson’s technique to find the
perturbation parameter ε, as one can see considering the results obtained in [26]. An easy computation
shows that

|D − λI| =
[
λ2 + a1(ET +K1M )λ+ k1a1ET

] [
λ2+

+a1(ET +K2M )λ+ k2a2ET ] ,

then the eigenvalues are

(λ±)i =
−ai(ET +KiM )±

√
a2
i (ET +KiM )2 − 4aikiET

2
=

(18)
ai(ET +KiM )

2

(
−1±

√
1− 4KiET

(ET +KiM )2

)
,

where we have denoted the Van Slyke-Cullen constants by Ki = ki
ai

, i = 1, 2. Now it is clear that

(19)
4KiET

ET +KiM
� 1 =⇒ |(λ+)i| � |(λ−)i|,
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i = 1, 2, i.e., according to Palsson [24], we have a sufficient condition for the separation of time scales.
We could then choose

ε̃ := max

{
ε̃i :=

KiET
(ET +KiM )2

; i = 1, 2

}
,

as perturbation parameter. It easy to show that ε̃i <
1
4 for every choice of data. However, in order to

follow the paper [8], it is more convenient to take

(20) ε = max

{
εi :=

KiET
(ET +KiM + SiT )2

; i = 1, 2

}
<

1

4

as perturbation parameter (note that εi < ε̃i). Furthermore, thanks to the symmetry of the problem, it
is sufficient to consider just one case (see again [26]): we can suppose that ε = ε1. With this choice, the
change of variables Si = αisi, Ci = βici, t = γτ , with

(21) αi = SiT , βi =
ETSiT

ET +KiM + SiT
, γ =

1

a1(ET +K1M + S1T )
,

i = 1, 2, provides an adimensionalization of the model equations (see [6–8,26,32]:

(22)



α1
γ
ds1
dτ = −k1β1c1

β1

γ
dc1
dτ = a1

[
β2

1c
2
1 − (ET + α1s1 − β2c2 +K1M )β1c1+

−α1s1β2c2 + α1s1ET ]
α2
γ
ds2
dτ = −k2β2c2

β2

γ
dc2
dτ = a2

[
β2

2c
2
2 − (ET + α2s2 − β1c1 +K2M )β2c2+

−α2s2β1c1 + α2s2ET ]

thanks to which we obtain the system of equations for the inner solutions:

(23)



ds1
dτ = −εc1

dc1
dτ = σ1η1c

2
1 − (η1 + κ1M )c1 − σ1s1c1 + σ2η1c1c2 + s1 − σ2c2s1

= (s1 − η1c1)(1− σ1c1 − σ2c2)− κ1Mc1

ds2
dτ = −εk2η2

k1η1
c2

dc2
dτ = a2

a1

[
η1σ2c

2
2 −

(
η1 + K2M

K1M
κ1M

)
c2+

+
(
η1σ1c1 − η1

η2
σ2s2

)
c2 + η1

η2
s2 − σ1η1

η2
s2c1

]
= a2

a1

[(
η1

η2
s2 − η1c2

)
(1− σ1c1 − σ2c2)− K2M

K1M
κ1Mc2

]
where

σi =
SiT

ET +KiM + SiT
; ηi =

ET
ET +KiM + SiT

; κiM =
KiM

ET +KiM + SiT
, i = 1, 2

(note that σi + ηi + κiM = 1), while, for the system of equations that gives the outer solution, setting

(24) γ :=
1

k1η1

and noting that putting T = t
γ , we see that T = γ

γ τ = ετ , we obtain [26]

(25)



ds1
dT = −c1

εdc1dT = σ1η1c
2
1 − (η1 + κ1M )c1 − σ1s1c1 + σ2η1c1c2 + s1 − σ2c2s1

= (s1 − η1c1)(1− σ1c1 − σ2c2)− κ1Mc1

ds2
dT = −k2η2

k1η1
c2

εdc2dT = a2
a1

[
η1σ2c

2
2 −

(
η1 + K2M

K1M
κ1M

)
c2+

+
(
η1σ1c1 − η1

η2
σ2s2

)
c2 + η1

η2
s2 − σ1η1

η2
s2c1

]
= a2

a1

[(
η1

η2
s2 − η1c2

)
(1− σ1c1 − σ2c2)− K2M

K1M
κ1Mc2

]
.
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Putting ε = 0, and applying Tikhonov’s theory, we obtain the reduced system of equations, a system
which is of differential-algebraic (DAE) type:

(26)



ds1
dT = −c1

σ1η1c
2
1 − (η1 + κ1M )c1 − σ2c2s1 − σ1s1c1 + σ2η1c1c2 + s1 = 0

ds2
dT = −k2η2

k1η1
c2

η1σ2c
2
2 −

(
η1 + K2M

K1M
κ1M

)
c2 − σ1η1

η2
s2c1+

+
(
η1σ1c1 − η1

η2
σ2s2

)
c2 + η1

η2
s2 = 0

which corresponds to the tQSSA of the system [26,29,33].

4. Asymptotic Expansions

4.1. Inner expansions

From now on we will write si instead of si, i = 1, 2.
Starting from the system of equation for the inner solutions (23) and setting

s1 = s10 + εs11 + o(ε), c1 = c10 + εc11 + o(ε),

s2 = s20 + εs21 + o(ε), c2 = c20 + εc21 + o(ε),

we obtain, for the 0-th order,

(27)

{
ds10
dτ = ds20

dτ = 0

s10(0) = s20(0) = 1
=⇒ s10(τ) = s20(τ) = 1

(28)


dc10
dτ = (1− η1c10)(1− σ1c10 − σ2c20)− κ1Mc10;
dc20
dτ = a2

a1

[(
η1

η2
− η1c20

)
(1− σ1c10 − σ2c20)− K2M

K1M
κ1Mc20

]
;

c10(0) = c20(0) = 0

and for the 1-st order

(29)



ds11
dτ = −c10;
dc11
dτ = (s11 − η1c11)(1− σ1c10 − σ2c20) + (s10 − η1c10)(−σ1c11 − σ2c21)− κ1Mc11;
ds21
dτ = −k2η2

k1η1
c20;

dc21
dτ = a2

a1

[(
η1

η2
s20 − η1c20

)
(−σ1c11 − σ2c21) +

(
η1

η2
s21 − η1c21

)
(1− σ1c10 − σ2c20)+

−K2M
K1M

κ1Mc21

]
;

c11(0) = c21(0) = s11(0) = s21(0) = 0

A Study Case In order to determine explicit solutions of the system (29), we impose some conditions
on the parameters and initial conditions: K1M = K2M = KM , a1 = a2 = a, S1T = S2T = ST , from which
a1 = a2 = a, κ1M = κ2M = κM , σ1 = σ2 = σ and η1 = η2 = η.

Let us observe that these conditions are a bit restrictive, leaving only three degrees of freedom:
d1; k1; k2, while d2 is related to the other rates by the relation d2 = k1 − k2 + d1. Nevertheless the study
case can be useful to capture the quantitative behaviour of the system, by means of explicit approximating
formulas.
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Let us first study the 0-th order expansions. We have:

(30)


dc10
dτ = (1− ηc10)[1− σ(c10 + c20)]− κMc10

dc20
dτ = (1− ηc20)[1− σ(c10 + c20)]− κMc20.

c10(0) = c20(0) = 0

Putting
c10 + c20 = u, c10 − c20 = v,

we find

(31)


du
dτ = ησu2 − (1 + σ)u+ 2
dv
dτ = [σηu+ σ − 1]v.

u(0) = v(0) = 0

from which

u(τ) =
2

ησ

[
e
√

∆τ − 1

u+e
√

∆τ − u−

]
,

where

u± =
1 + σ ±

√
(1 + σ)2 − 8ησ

2ησ
, ∆ = (1 + σ)2 − 8ησ > 0,

and v(τ) = 0 (singular solution).
Let us observe that

(32) u+ + u− =
1 + σ

ησ
; u+ − u− =

√
∆

ησ
; u+ · u− =

2

ησ
;

u+ − u−
u+

=

√
∆

ησu+
=

√
∆u−
2

.

Thus
lim

τ→+∞
u(τ) = u− .

It follows that

(33) c10(τ) = c20(τ) =
1

ησ

[
e
√

∆τ − 1

u+e
√

∆τ − u−

]
=: c0(τ)

and
lim

τ→+∞
c10(τ) = lim

τ→+∞
c20(τ) =

u−
2
.

At order 1, starting from (29) and (33), we have

(34) s11(τ) =
−u+

2
τ +

1

2ησ
ln

(
u+e

√
∆τ − u−

u+ − u−

)
∼τ→∞

−u−
2

τ − 1

2ησ
ln

(√
∆u−
2

)
=: sas11(τ) ,

s21(τ) =
k2

k1
s11(τ) =

k2

k1

[
−u+

2
τ +

1

2ησ
ln

(
u+e

√
∆τ − u−

u+ − u−

)]

∼τ→∞
k2

k1

[
−u−

2
τ − 1

2ησ
ln

(√
∆u−
2

)]
=: sas21(τ)

(35)

and

(36) sas11(0) = − 1

2ησ
ln

(√
∆u−
2

)
; sas21(0) = −k2

k1

[
1

2ησ
ln

(√
∆u−
2

)]
.
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Let us now determine c11(τ) and c21(τ).
Since

(37)


d(c11+c21)

dτ = [1− σ(c10 + c20)][s11 + s21 − η(c11 + c21)]−
−σ(c11 + c21)[s10 + s20 − η(c11 + c21)]− κM (c11 + c21)

d(c11−c21)
dτ = [1− σ(c10 + c20)][s11 − s21 − η(c11 − c21)]−

−σ(c11 + c21)[s10 − s20 − η(c11 − c21)]− κM (c11 − c21),

setting p := c11 + c21 and q := c11 − c21, we rewrite the system in the form

(38)


dp
dτ = (−σ − 1 + 4ησc10)p+ (1− 2σc10)ys11
dq
dτ = (σ − 1 + 2ησc10)q + (1− 2σc10)ws11

p(0) = q(0) = 0 ,

where y =

(
1 +

k2

k1

)
; w =

(
1− k2

k1

)
. Solving, we obtain

(39)

p(τ) = e
∫ τ
0 (−σ−1+4ησc0(t))dt

[
y
∫ τ

0 (1− 2σc0(t))s11(t)e
∫ t
0 (σ+1−4ησc0(s))dsdt

]
q(τ) = e

∫ τ
0 (σ−1+2ησc0(t))dt

[
w
∫ τ

0 (1− 2σc0(t))s11(t)e
∫ t
0 (1−σ−2ησc0(s))dsdt

] .

Since ∫ τ

0
c0(t)dt =

1

ησ

[
1

u−
τ − 1

2
ln

(
u+e

√
∆τ − u−

u+ − u−

)]
,

we find

p(τ) =
ye−

√
∆τ

(u+ − u−e−
√

∆τ )2

∫ τ

0

[
1− 2

η

(
e
√

∆t − 1

u+e
√

∆t − u−

)]
·

·

[
−u+

2
t+

1

2ησ
ln

(
u+e

√
∆t − u−

u+ − u−

)](
u+e

√
∆t − u−

)2
e

(
σ+1− 4

u−

)
t
dt .

The integration steps are simple, but tedious (see, for example, [8]). Since some integrals cannot be
explicitly computed, it is easier to solve numerically (38). On the other hand, in order to build the uniform
expansions, according to [2,6–8,32], we need also the asymptotic behaviour of the inner solutions.

Taking into account that c0(τ) ∼τ→+∞ u−/2, it is possible to show with simple computations that
both the exponents in the integrating factors in (39) are negative, thus we can eventually ignore all the
converging integrals in the square brackets.

Thus,

(40) p(τ) ∼τ→+∞ pas(τ) :=

(
1 +

k2

k1

)
(1− σu−)

[
− u−

2
√

∆
τ +

1

2ησ
√

∆
ln

(
u+

u+ − u−

)
+
u−
2∆

]
and

(41) pas(0) = −
(

1 +
k2

k1

)
(1− σu−)

2
√

∆

[
1

ησ
ln

(
u−
√

∆

2

)
− u−√

∆

]
.

Analogously we see that

q(τ) ∼τ→+∞ qas(τ) :=

(
1− k2

k1

)
(1− σu−)·

·
{[
−u−

2
τ +

1

2ησ
ln

(
u+

u+ − u−

)]
1

1− σ − ησu−
+

u−
2(1− σ − ησu−)2

}(42)
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and

(43) qas(0) =

(
1− k2

k1

)
(1− σu−)

[
−1

2ησ(1− σ − ησu−)
ln

(√
∆u−
2

)
+

u−
2(−1 + σ + ησu−)2

]
.

Finally, we obtain

(44) cas11(τ) =
pas(τ) + qas(τ)

2
; cas21(τ) =

pas(τ)− qas(τ)

2

(45) cas11(0) =
pas(0) + qas(0)

2
; cas21(0) =

pas(0)− qas(0)

2

4.2. Outer expansions

Starting from the system of equations for the outer solutions (25) and setting

c1 = Γ10 + εΓ11 + o(ε), s1 = Σ10 + εΣ11 + o(ε);

c2 = Γ20 + εΓ21 + o(ε), s2 = Σ20 + εΣ21 + o(ε);

we obtain the following relations:
0-th order:

(46)


dΣ10
dT = −Γ10;

(Σ10 − η1Γ10)(1− σ1Γ10 − σ2Γ20)− κ1MΓ10 = 0;
dΣ20
dT = −k2η2

k1η1
Γ20;(

η1

η2
Σ20 − η1Γ20

)
(1− σ1Γ10 − σ2Γ20)− K2M

K1M
κ1MΓ20 = 0;

from which

(47) Γ10 =

Σ10

[
(η1σ2Σ

k2
k1
10 + η2σ1Σ10) + η2(η1 + κ1M )

]
2η1(η1σ2Σ

k2
k1
10 + η2σ1Σ10)

+

−
Σ10

√[
(η1σ2Σ

k2
k1
10 + η2σ1Σ10) + η2(η1 + κ1M )

]2

− 4η1η2(η1σ2Σ
k2
k1
10 + η2σ1Σ10)

2η1(η1σ2Σ
k2
k1
10 + η2σ1Σ10)

;

(48) Γ20 =

Σ
k2
k1
10

[
(η1σ2Σ

k2
k1
10 + η2σ1Σ10) + η2(η1 + κ1M )

]
2η2(η1σ2Σ

k2
k1
10 + η2σ1Σ10)

+

−
Σ
k2
k1
10

√[
(η1σ2Σ

k2
k1
10 + η2σ1Σ10) + η2(η1 + κ1M )

]2

− 4η1η2(η1σ2Σ
k2
k1
10 + η2σ1Σ10)

2η2(η1σ2Σ
k2
k1
10 + η2σ1Σ10)

.
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1-st order:

(49)



dΣ11
dT = −Γ11;
dΓ10
dT = (Σ10 − η1Γ10) (−σ1Γ11 − σ2Γ21) +

+ (Σ11 − η1Γ11) (1− σ1Γ10 − σ2Γ20)− κ1MΓ11;
dΣ21
dT = −k2η2

k1η1
Γ21;

dΓ20
dT = a2

a1

[(
η1

η2
Σ20 − η1Γ20

)
(−σ1Γ11 − σ2Γ21)

]
+

+a2
a1

[(
η1

η2
Σ21 − η1Γ21

)
(1− σ1Γ10 − σ2Γ20)− K2M

K1M
κ1MΓ21

]
with the appropriate initial conditions, respectively, to be determined by means of appropriate matching
conditions.

Study Case. Let us recall that we set

K1M = K2M = KM ; a1 = a2 = a; κ1M = κ2M = κM ; σ1 = σ2 = σ; η1 = η2 = η.

Thus the equations become

(50)


dΣ10
dT = −Γ10;

(Σ10 − ηΓ10) [1− σ(Γ10 + Γ20)]− κMΓ10 = 0;
dΣ20
dT = −k2

k1
Γ20;

(Σ20 − ηΓ20) [1− σ(Γ10 + Γ20)]− κMΓ20 = 0;

from which

(51) Γ10 =
Σ10 [σ(Σ20 + Σ10) + 1− σ)]

2ησ(Σ20 + Σ10)
+

−
Σ10

√
[σ(Σ20 + Σ10) + (1− σ)]2 − 4ησ(Σ20 + Σ10)

2ησ(Σ20 + Σ10)
;

(52) Γ20 =
Σ20 [σ(Σ20 + Σ10) + (1− σ)]

2ησ(Σ20 + Σ10)
+

−
Σ20

√
[σ(Σ20 + Σ10) + (1− σ)]2 − 4ησ(Σ20 + Σ10)

2ησ(Σ20 + Σ10)
.

We find

Γ10 =
Σ10

Σ20

η2

η1
Γ20 =⇒ Γ10

Γ20
=

Σ10

Σ20
;(53)

=⇒ dΣ10

dΣ20
=

Γ10

Γ20

k1η1

k2η2
=
k1

k2

Σ10

Σ20
.(54)

Since lim
τ→+∞

s10(τ) = lim
τ→+∞

s20(τ) = 1, then, from the matching conditions [2,6–8,32], we have

Σ10(0) = Σ20(0) = 1. Thus we have

(55) Σ10 = (Σ20)
k1
k2 , Σ20 = (Σ10)

k2
k1 .
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From (51), (52) it automatically follows that

(56) Γ10(0) = Γ20(0) =
(1 + σ)−

√
∆

4ησ
= lim

τ→+∞
c10(τ) = lim

τ→+∞
c20(τ) =

u−
2
.

Finally, we have the uniform expansions at 0-th order:

(57)


sun10 (τ) = s10(τ) + Σ10(ετ)− 1 = Σ10(ετ),

sun20 (τ) = Σ20(ετ) = (Σ10(ετ))k2/k1 ,

cuni0 (τ) = ci0(τ) + Γi0(ετ)− u−
2 =

= 1
ησ

[
e
√

∆τ−1

u+e
√

∆τ−u−

]
+ Γi0(ετ)− u−

2 .

Let us observe that the presence of different values of k1 and k2 is ”felt” by the solutions only in the
outer contributions, thanks to formula (55).

At 1-st order we have

(58)


dΣ11
dT = −Γ11

dΓ10
dT = −σ(Σ10 − ηΓ10)(Γ11 + Γ21) + (Σ11 − ηΣ11)[1− σ(Γ10 + Γ20)]− κMΓ11

dΣ21
dT = −k2

k1
Γ21

dΓ20
dT = −σ(Σ20 − ηΓ20)(Γ11 + Γ21) + (Σ21 − ηΣ21)[1− σ(Γ10 + Γ20)]− κMΓ21,

with the appropriate initial conditions, respectively, to be determined by means of appropriate matching
conditions.

From (51), (52) we see that

(59)


Γ10 + Γ20 = 1

2ησ

[
σ(Σ10 + Σ20) + 1− σ −

√
[σ(Σ10 + Σ20) + 1− σ]2 − 4ησ(Σ10 + Σ20)

]
Γ10 − Γ20 = Σ10−Σ20

2ησ(Σ10+Σ20) ·
·
[
σ(Σ10 + Σ20) + 1− σ −

√
[σ(Σ10 + Σ20) + 1− σ]2 − 4ησ(Σ10 + Σ20)

]
.

Let us set
Σ10 + Σ20 = X, Σ10 − Σ20 = Y, Γ10 + Γ20 = U, Γ10 − Γ20 = V ;

Σ11 + Σ21 = W, Σ11 − Σ21 = Z, Γ11 + Γ21 = P, Γ11 − Γ21 = Q.

From (36) and the matching conditions, we have

(60) Σ11(0) = sas11(0) =
−1

2ησ
ln

(√
∆u−
2

)
; Σ21(0) = sas21(0) =

k2

k1

[
−1

2ησ
ln

(√
∆u−
2

)]
and

(61) W (0) = (Σ11 + Σ21)(0) =
−1

2ησ

(
1 +

k2

k1

)
ln

(√
∆u−
2

)

(62) Z(0) = (Σ11 − Σ21)(0) =
−1

2ησ

(
1− k2

k1

)
ln

(√
∆u−
2

)

X(0) = 2 ; Y (0) = 0 ;
dX

dT
(0) = −

(
1 +

k2

k1

)
u−
2

dY

dT
(0) = −

(
1− k2

k1

)
u−
2

; U(0) = u− ; V (0) = 0 .

(63)
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Moreover, we rewrite (59) in the form

(64) U(T ) =
1

2ησ

[
σX(T ) + 1− σ −

√
[σX(T ) + 1− σ]2 − 4ησX(T )

]
and

(65) V (T ) =
Y (T )

{
σX(T ) + 1− σ −

√
[σX(T ) + 1− σ]2 − 4ησX(T )

}
2ησX(T )

.

We have now to obtain P and Q. Since, from (58)

dU

dT
− (1− σU)W = [−σ(X − ηU)− (1− σU)η − κM ]P

dV

dT
+ σP (Y − ηV )− (1− σU)Z = [−(1− σU)η − κM ]Q ,

we find

(66) P =
(1− σU)W − dU

dT

σ(X − ηU) + (1− σU)η + κM

(67) Q =
dV
dT + σP (Y − ηV )− (1− σU)Z

−(1− σU)η − κM
.

Knowing U(0), V (0), dUdT (0), dVdT (0), X(0), Y (0),W (0), Z(0) we can compute P (0) and Q(0). Since, dif-
ferentiating (64) and (65),

(68)


dU
dT (0) = −

(
1 + k2

k1

)
u−
4η

[
1− 1√

∆
(σ + 1− 2η)

]
=

= −
(

1 + k2
k1

)
u−

2
√

∆
(1− σu−)

dV
dT (0) =

−u2
−

4

(
1− k2

k1

)
,

we have

(69) Q(0) =

(
1− k2

k1

)
2(σ − 1 + σηu−)

[
−
u2
−
2

+
(1− σu−)

ησ
ln

(√
∆u−
2

)]

(70) P (0) = − 1

2
√

∆

(
1 +

k2

k1

)
(1− σu−)

[
1

ησ
ln

(√
∆u−
2

)
− u−√

∆

]
= pas(0)

from which we can obtain back

(71) Γ11(0) =
P (0) +Q(0)

2
; Γ21(0) =

P (0)−Q(0)

2
.

Observing that, by (32), the following relation

u2
−
2

=
u−(1− σu−)

1− σ − ησu−
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is identically satisfied by u−, we obtain Q(0) = qas(0), as expected from the matching conditions.
We can finally come back to the original variables, setting

c11(τ) =
p(τ) + q(τ)

2
; c21(τ) =

p(τ)− q(τ)

2

Γ11(T ) =
P (T ) + q(T )

2
; Γ21(T ) =

P (T )− q(T )

2
.

and obtain the first order correction to the uniform expansions:

(72)


sun11 = s11(τ) + Σ11(ετ)− sas11(τ)

sun21 = s21(τ) + Σ21(ετ)− sas21(τ)

cun11 = c11(τ) + Γ11(ετ)− cas11(τ)

cun21 = c21(τ) + Γ21(ετ)− cas21(τ) .

Figure 1. Fully competitive inhibition. Case A. ε = 0.082 - first order. Comparison between the solutions c1 and c2 and their
uniform 1-st order asymptotic expansions beyond the tQSSA. Though the 0-th order approximation is already satisfactory,
in the plots we can anyway clearly observe the effects of the 1-st order correction. Parameters: a1 = k1 = 1, d1 = 0.5, K1 =
1, K1M = 1.5, a2 = k2 = 1, d2 = 2, K2 = 1, K2M = 3, E0 = 1, Si0 = 1, ε ∼= 0.082, ε2 = 0.04, εSS = 0.4, εHTA = 1.

Figure 2. Fully competitive inhibition. Case A. ε = 0.082 - first order. Comparison between the solutions s1 and s2 and
their uniform 1-st order asymptotic expansions beyond the tQSSA. The 0-th order approximation is already satisfactory.
Parameters: a1 = k1 = 1, d1 = 0.5, K1 = 1, K1M = 1.5, a2 = k2 = 1, d2 = 2, K2 = 1, K2M = 3, E0 = 1, Si0 = 1, ε ∼=
0.082, ε2 = 0.04, εSS = 0.4, εHTA = 1.

In figures (1)-(2) and (3)-(4) we show the time behaviour of c1, c2, s1 and s2 in the cases ε ∼= 0.082
and ε ∼= 0.25, respectively.
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Figure 3. Fully competitive inhibition. Case B. ε = 0.25 - first order. Comparison between the solutions c1 and c2 and their
uniform 1-st order asymptotic expansions beyond the tQSSA. Since, in this case, ε = 0.25, in the plots we can clearly observe
that the 1-st order corrections are not sufficient to guarantee a satisfactory approximation of the numerical solutions, even
if they clearly improve the approximations. Parameters: ai = ki = 1, di = 0.01, Ki = 1, KiM = 1.01, E0 = 1, Si0 =
0.01, ε ∼= 0.25, εSS

∼= 1, εHTA = 100.

Figure 4. Fully competitive inhibition. Case B. ε = 0.25 - first order. Comparison between the solutions s1 and s2 and their
uniform 1-st order asymptotic expansions beyond the tQSSA. Though, in this case, ε = 0.25, in the plots we can appreciate
the fact that the 1-st order corrections give a satisfactory approximation of the numerical solutions and clearly improve the
approximations. Parameters: ai = ki = 1, di = 0.01, Ki = 1, KiM = 1.01, E0 = 1, Si0 = 0.01, ε ∼= 0.25, εSS

∼= 1, εHTA =
100.

The values of parameters and initial conditions are reported in the figure captions.
In the first case the approximation is absolutely satisfactory, mainly for s1 and s2, while for c1 and

c2, as expected, the 0-th order approximation can be not completely satisfactory in the matching zone.
Nevertheless, we can appreciate the improvement of the approximation from 0-th to 1-st order and the
fact that the matching time is obtained with great precision.

In the second case we have stressed the initial conditions and the kinetic parameters in order to obtain

ε ∼= 0.2475, which is very close to the upper bound
1

4
.

In this case we cannot expect a completely efficient approximation. Nevertheless, we can appreciate
the improvement of our approximation from the 0-th order to the 1-st order and the detection of the
matching time with great precision.

Let us underline that, in the case of the single enzymatic reaction, the sQSSA was obtained in [6] and

in [7] as the leading order term of an asymptotic expansion with respect to the parameters εHTA =
ET
ST

and εSS = ET
ST+KM

, respectively. In the first case explored in this paper (ε ∼= 0.082), we would have
εSS = 0.4 and εHTA = 1, which implies that any sQSSA would be unsatisfactory. In the second case
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(ε ∼= 0.25), we would have εSS ∼= 1 and εHTA ∼= 100, implying that any sQSSA would dramatically fail.

5. Conclusion and perspectives

In this paper we studied the asymptotic properties of the fully competitive inhibition mechanism.
Our studies have been carried out in the tQSSA framework, which proves to be always roughly valid for
a broad range of parameter values covering both high and low enzyme concentrations.

Since, as already observed in other papers (see, for example, [2,6–8]), any QSSA can be interpreted
as the leading order term of an asymptotic expansion of the solutions of the ODEs governing the process
with respect to an appropriate parameter, the main goal of this paper was to approximate the solutions
of the system by asymptotic expansions in terms of a suitable perturbation parameter.

Thus, applying Palsson’s technique and Tikhonov’s theorem, in a study case we determined the
asymptotic expansions up to the 1-st order in ε for the inner and the outer solutions and the corresponding
uniform expansions.

We have also given numerical results for different values of the perturbative parameter ε used in the
uniform approximations. Numerical results show the influence of the initial concentration of dynamical
molecular species and the kinetic constants and guarantee that the predictions made by our analysis are
sufficiently accurate.

Our choice of the total approximation has been reinforced by its recent application to complex mecha-
nisms, like the completely reversible enzyme kinetics [34], the antagonist toggle switch [35], the completely
competitive inhibition [26,27,29,36], the double phosphorylation [29], the Goldbeter-Koshland switch,
which models the single phosphorylation - dephosphorylation cycle [33,37–39], the double phosphoryla-
tion - dephosphorylation cycle and the ubiquitous MAPK cascade, which is one of the most important
mechanisms present in the great majority of the reaction networks in eukaryotic cells [30,40–44].

In all the cases studied, the tQSSA has shown to be much more efficient than the sQSSA, as the
sQSSA predicts phenomena which do not appear when the mechanisms are studied by means of the
full system of equations describing the systems or by means of the tQSSA. Representing in any case
an approximation, also tQSSA can fail when the system undergoes oscillations, because in this case we
cannot expect that the system can reach any equilibrium or quasi-equilibrium state [30].

Palsson’s theory seems very promising in order to handle more complex mechanisms by means
of Tikhonov theory and Center Manifold Theory. In two works in preparation, we apply these tech-
niques to the double phosphorylation mechanism [45] and the Goldbeter-Koshland switch, or single
phosphorylation-dephosphorylation cycle [46].

Let us underline once again the relevant role played by the mechanisms we have focused on in this pa-
per and in [45,46] and the importance of the approximations we adopted to gain qualitative characteristics
and to allow biologists to quantify real magnitudes.

Of course several problems are still open. In particular:
In order to determine the asymptotic expansions, we needed in some passages the numerical integra-

tion of the equations. However, it would be greatly helpful to find the explicit formulas of all the uniform
expansions up to the first order (as done in the sQSSA framework [27,28]), as they provide such a reliable
approximation of the full system. For example, one could make use of the coordinate transformations
introduced in [47], in order to yield explicit formulas in terms of generalized Lambert functions also for
the outer expansions, at least for the 0-th order (which is the most important, from an experimental
viewpoint).

One of the most important consequences of these further studies is the fact that the explicit expressions
of these uniform approximations, which can be considered valid at every time, in particular the 0-th order
approximations, can be very useful for fitting the experimental data in any phase (fast transient and
quasi-steady state) of the time evolution of the different reactant concentrations in the above described
reactions and to determine the values of the parameters characterizing them and that are, in general, not
easy to be determined experimentally.
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Let us observe that, for in vitro experimental purposes, it would be sufficient to take values of ET
and ST such that the corresponding values of ε are sufficiently small to guarantee a good approximation
of the time course of the concentrations. Let us remark once again that our choice of the perturbation
parameter is such that ε can be very small for very large parameter ranges.

In fact, if we go back to the figures shown in this chapter, it is astonishing to notice the validity of
uniform approximations up to the first order, so that uniform approximations arise as a promising and
efficient tool to study even complex mechanisms, besides the individual Michaelis-Menten reaction.

Moreover also approximate formulas are particularly relevant: another important consequence of our
results concerns the possibility to describe even complex reaction networks by means of modules repre-
senting simpler mechanisms (phosphorylation-dephosphorylation cycle, double phosphorylation reaction,
inhibition, etc.) interconnected by inflows and outflows. Explicit, though approximate, formulas can highly
help to capture qualitative characteristics of the networks that couldn’t be observed by the numerical
integration of the equations.

The eventual goal of our and similar works is to give efficient tools to understand the cell behavior
and, more importantly, the cell malfunctioning. In fact, the theoretical study of protein networks and the
related numerical results can help to identify the “sensitive” nodes (i.e., interactions) the global behavior
mainly depends on, and the dose and chemical structure of potential drugs acting into the cell. In this
sense, a reliable mathematical modeling can be a valid tool for pharmacological pre-clinical research.

So far we have considered studies on the molecular level. The examples about inhibition and drugs,
given in the Introduction, underline that the understanding of the interaction between molecules and
pathways is the basis to understand complex biological systems such as cells, tissues, organs, or even the
human body.

Thereby our and similar studies can allow a transition from microscopic scale to macroscopic scale,
as their applicability has an effective relevance in the understanding of the workings of the human body
under normal conditions and in various disease states ( [48]).
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