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Abstract 
 

Background: Internet of Things (IoT), earth observation and big scientific experiments 

are sources of extensive amounts of sensor big data today. We are faced with large 

amounts of data with low measurement costs. A standard approach in such cases is 

a stream mining approach, implying that we look at a particular measurement only 

once during the real-time processing. This requires the methods to be completely 

autonomous. In the past, very little attention was given to the most time-consuming 

part of the data mining process, i.e. data pre-processing. Objectives: In this paper 

we propose an algorithm for data cleaning, which can be applied to real-world 

streaming big data. Methods/Approach: We use the short-term prediction method 

based on the Kalman filter to detect admissible intervals for future measurements. 

The model can be adapted to the concept drift and is useful for detecting random 

additive outliers in a sensor data stream. Results: For datasets with low noise, our 

method has proven to perform better than the method currently commonly used in 

batch processing scenarios. Our results on higher noise datasets are comparable. 

Conclusions: We have demonstrated a successful application of the proposed 

method in real-world scenarios including the groundwater level, server load and 

smart-grid data. 
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Introduction 
Big Data is a term that is used for datasets that are too large in size and complexity 

to be handled with the current methodologies (Fan et al., 2013). The meaning of this 

definition changes constantly with the development of technology and advances in 

computer science. However, translating the data analysis into a streaming on-line 
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process is always considered a good approach. Stream mining exposes another 

benefit of the methodology - real-time responsiveness of the system, which has been 

identified as desirable by many different authors regarding reporting (Belfo et al., 

2015), intrusion detection (Al Quhtani, 2017) and others. 

 The field has received a lot of attention. Many stream modelling (regression, 

classification, clustering etc.) and evaluation methods have been developed. 

However, some data mining process phases as identified in the cross-industry 

standard process for data mining (CRISP-DM) methodology (Shearer, 2000), have 

been left aside (Kandel et al., 2011; Krempl et al., 2014). One of those phases, which 

data cleaning is a part of, is “Data preparation” and is crucial for real-world data 

mining applications (Zekić-Sušac et al., 2015). 

 Even in classical data mining task, where all the data is available beforehand, the 

practitioners claim that data preparation takes up to 80% of the time (Press, 2016). A 

lot of work is done manually. In stream mining scenario there is no possibility for a 

constant human intervention, all the data pre-processing needs to be completely 

autonomous. 

 Data cleaning represents the first step in data pre-processing. It represents a 

permanent challenge in data analytics. If not done or badly performed it can result 

in inaccurate predictions and later in unreliable business decisions. The issue has 

been tackled recently both by industry and academia, mostly to address the issues 

of scalability (Big Data), interfaces, new abstractions and statistical techniques (Chu 

et al., 2016). 

 The field of time-series analysis has been lively for a number of decades. Kalman 

published his work on linear filtering already in 1960 (Kalman, 1960). Kalman stands 

out of the crowd due to the successful application of the equations to trajectory 

estimation in the NASA Apollo space program. Different applications have been 

reported since then and the field of time-series analysis has been reinvented in 

correspondence with advances in computer science and technology. In the last 

years many applications were created for on-line streaming data analysis. 

 Outlier detection in time series has been thoroughly discussed already in 1993 by 

Chen and Liu (1993). The paper identifies five different types of time series outliers: (1) 

Additive Outlier (AO), (2) Innovation Outlier (IO), (3) Level Shift (LS), (4) Temporary 

Change (TC) and (5) Seasonal Level Shift (SLS). Authors propose usage of different 

models from ARIMA family (AR, MA, IMA, Seasonal IMA) for outlier detection, using its 

short-term prediction capabilities. 

  To the best of our knowledge the usage of Kalman filter for cleaning of streaming 

sensor data has firstly been proposed in our work (Kenda et al., 2013). The paper 

proposed an algorithm for additive outlier detection in a stream mining setting using 

short-term prediction based on Kalman filter. The very same idea has been proposed 

in (Xu, 2015), where it has been studied in depth and extended to a wider context. 

The authors coined the methodology as time series Kalman filter (TSKF). The method 

has been improved in (Kenda et al., 2017), where we proposed the usage of 

unsupervised machine learning approach for automatic parameter fine-tuning and 

tested the method on an artificial data set. In the current work we further extend the 

methodology by introducing the indirect modelling-based evaluation procedure 

and extensive testing on 5 real-world data sets. 

 Recently, literature is examining other potential Kalman filter extensions for data 

cleaning. For example, (Marczak et al., 2018) studies usability of augmented Kalman 

filters (AKF). 

 The paper is structured as follows. “Methodology” section describes Kalman filter 

algorithm and how it was implemented in our methodology. In the “Results” section 
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we provide evaluation of our methodology on artificial and real-world datasets. We 

also describe the indirect evaluation procedure. Next, we discuss the usability of our 

methodology in real-world scenarios and compare it to current state-of-the-art in 

batch setting. Finally, we conclude the paper. 

 

Methodology 
The notion of additive outlier 
Additive outlier is a point outlier, which occurs at a given timestamp 𝑡𝑗 and affects a 

single observation. In sensor data such outliers can be a consequence of a sudden 

change in ambient conditions, communication glitch or some similar unexpected 

event. With sensor measurements we assume that they arrive much faster than the 

data changes. 

 We propose a method with short-term prediction, based on previous 

measurements. Short term prediction is compared to the new measurement and 

classified as an outlier if the difference exceeds a specified threshold. As proposed in 

(Kenda et al., 2013) we introduce a safe guard to overcome a potential instability of 

the algorithm and enlarge the threshold in case that the detected outlier is a false 

positive, which might be an indication of a sudden concept drift in the data.  

 

Kalman Filter 
Kalman filter is a very suitable algorithm to be applied to data cleaning in a 

streaming scenario. It is an on-line algorithm that can produce short term predictions 

and even calculate covariance error matrix (used to calculate a threshold for outlier 

classification). Algorithm assumes that our process can be described as a Gauss-

Markov process. 

 

Figure 1 

Diagram of Gauss-Markov process 

 

 

Source: (Kenda et al., 2017) 

 

 The process is depicted in Figure 1. Arrows from internal state 𝜃𝑗 to another internal 

state 𝜃𝑗+1 depict transitions (transition equation) and arrows from internal state 𝜃𝑗 to 

observation 𝑥𝑗 depict observation equations. The process has two properties: 

o Every consequent internal state 𝜃𝑗+1 only depends on a prior internal state 

𝜃𝑗. Both states are connected through transition matrix 𝚽𝒋.  

o Each internal state 𝜃𝑗 can be inferred through its observation 𝑥𝑗, which is linked 

to the internal state via observation matrix 𝑯𝒋 and is a subject of Gaussian 

noise. 
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Figure 2 

Kalman filter application cycle 
 

 

Source: (Kenda, Mladenić, 2017) 

 
 In general, matrices 𝑯𝒋 and 𝚽𝒋 can change over time, but in our case they remain 

the same as we assume the underlying process does not change through time. 

Kalman filter equations are depicted in Figure 2.  

 Kalman filter application cycle starts with initialization of a priori estimates for 

internal state 𝜃1
− and covariance matrix 𝑹𝟏

−. With each new observation 𝑥𝑗 the state 

and covariance matrix get updated. The next phase is dedicated to short-term one 

step ahead prediction (projection). Finally, optimal new mixing matrix gets 

calculated (responsible for optimal updating of the projected state with an 

observation). 𝑼𝒌 represents normal distribution variance noise matrix. 

 Computational complexity of our implementation of Kalman filter is 𝑂(𝑛3) where 𝑛 

is the dimension of internal state space. In the proposed 2nd degree model the 

number of internal state components is 𝑛 = 3. 

 

Parameter Learning 
Initialization of Kalman filtering algorithm can be very demanding and there can be 

many free parameters involved, depending on the observation and transition matrix 

dimensions. Usage of expectation maximization (EM) algorithm (Dempster et al., 

1977; Xu, 2015) can yield estimates for the initial internal state of the system and 

corresponding covariance matrices. Clean initial dataset is needed to obtain these 

parameters. 

 In our experiments with time series data the results from EM algorithm have not 

provided good results (confidence into last state was exaggerated), therefore we 

propose an additional data-oriented approach. EM calculates estimates of the 
following parameters: a priori initial state 𝜃1

−, transition covariance 𝑸, observation 

covariance 𝑹𝒌 and initial state covariance 𝑹𝟏
−. We propose multiplying EM estimates 

with an additional factor in order to minimize 𝐹1 score of outlier classification on a 
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labelled dataset. Parameters can be obtained by a grid search over a predefined 

multiplier space. 

 Grid search is time consuming, but it can find configurations which result in much 

smoother model that better follows the underlying dynamic processes in the data. 

We have implemented exhaustive and randomized grid searches in our solution, 

reported results are based on the randomized version. 

 

Streaming Sensor Data Platform with Data Cleaning 
We propose the usage of the filter at the lowest possible level in the pre-processing 

platform. The data-cleaning component should be implemented at the entry point 

of a particular data source to the pre-processing platform (see Figure 3). Clean data 

is then inserted into stream pre-processing engine, which is in charge of data 

enrichment and heterogeneous data fusion and finally this data is pushed into the 

appropriate stream modelling method. Cleaning at this level uses only 

autoregressive features. On a higher level, however, data-cleaning, which takes 

advantage of data fusion, could be used. 

 

Figure 3 

Position of data-cleaning system within the stream-mining analytical platform 

 

Source: (Kenda, Mladenić, 2017) 

 

Results 
We tested our results on artificial and real-world data sets. Functionality of the 

algorithm is illustrated in Figure 4. It shows the impact of Kalman filter’s short-term 

prediction and its variance on additive outlier detection. The measurement 

(depicted in dark blue) that falls outside the admissible interval around short term 

prediction (depicted in light blue) is considered an outlier. 

 

Results on Annotated Artificial Data Set 
We provide an artificial dataset, following the usual daily profile of a family of typical 

sensors. Each time-series in the dataset introduces a different level of Gaussian noise 
𝑁(𝜇 = 0; 𝜎). We have made the dataset publicly available at ResearchGate (Kenda, 

2017). Data points are a subject of noise, 1% of data points have been considered as 

candidates for an additive outlier. Amplitude of additive outliers has been uniformly 

sampled on the interval from 0 to 0.714 ⋅ max(𝑓(𝑡)), where max(𝑓(𝑡)) is the maximum 

value of the underlying dynamics function. Amplitudes that were lower than 2 × σ 

have been dismissed. 

 Artificial set experimental results are depicted in Table 1. Different data sets (from 

1 to 9) introduce different Gaussian noise, which makes it more and more difficult to 

correctly classify the outliers, which can be observed in decreasing values of 

precision, recall and 𝐹1 in Table 1. As expected, ARIMA (batch) method gives slightly 

better results than Kalman (streaming) method. 𝐹1 scores are similar, whereas ARIMA 

method is optimized towards better precision and Kalman towards better recall. 
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Figure 4 shows algorithm results with 2 different datasets: left - little noise (σ = 0.036), 

right - more noise (σ = 0.179). Kalman filters’ short-term prediction is depicted in 

orange, measurements in dark blue. Any measurement outside of the admissible 

light-blue interval (defined by Kalman filter variance) is considered as an outlier. 

 

Table 1 

Comparison of Kalman filter additive outlier detection results with current batch 

methodology (Chen et al., 1993) 
 

  Kalman filter method ARIMA method 

Dataset  Noise 𝝈 Precision Recall F1 Precision Recall F1 

1 0.036 0.866 0.967 0.914 0.624 0.874 0.728 

2 0.071 0.776 0.983 0.867 0.940 0.829 0.881 

3 0.107 0.737 0.872 0.799 0.906 0.750 0.821 

4 0.143 0.681 0.946 0.792 0.944 0.740 0.830 

5 0.179 0.695 0.592 0.640 0.902 0.643 0.751 

6 0.213 0.455 0.873 0.598 0.896 0.520 0.658 

7 0.250 0.587 0.373 0.456 0.790 0.448 0.571 

8 0.286 0.435 0.779 0.558 0.816 0.461 0.589 

9 0.321 0.353 0.545 0.428 0.741 0.336 0.462 

Source: (Kenda et al., 2017). 

 

Figure 4 

Illustration of the algorithm results with 2 different datasets: lower noise (left) and 

higher noise (right); measurements outside the admissible intervals are detected as 

outliers 
 

 
Source: (Kenda, Mladenić, 2017) 

 

Results on Real-world Data Sets 
There are two major problems concerning real-world sensor data sets: (1) these data 

sets are not annotated, therefore it is impossible to calculate proper accuracy 

measures of a data cleaning algorithm, (2) without accuracy measures it is also 

impossible to apply machine-learning techniques for parameter learning. 

 To overcome these shortcomings, we need to take a look into characteristics of 

sensor data. We have observed in many sensor data sources that outliers are rare. 

Most of the data is clean. It is therefore easy to introduce artificial outliers into original 

data and use such augmented data set to solve the problem (2). With the algorithm 

we are able to learn adequate parameters for a successful application of the 

algorithm. Solving problem (1) is more difficult. We can apply human-based 

anomaly classification for the rare detected outliers, which enables us to calculate 
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precision (is detected outlier really an outlier?). The second method is to compare 

modelling performance (i.e. regression) between the clean and the original 

datasets. 

 

Figure 5 

Illustration of the algorithm results with underground water level dataset: (a) time-

series without outliers, (b) and (c) time-series with true and false positive outliers, (d) 

time-series with obvious outliers  
 

 
(a)  (b) 

 
(c)  (d) 

Source: Authors’ work 

 

 We have analysed performance of our method on 340 time-series data sets of 

groundwater levels from Slovenia. Results are depicted in Figure 5. Y-axis depicts 

groundwater levels in meters above sea level, x-axis depicts unix timestamp. Figure 

5(a) shows a smooth and clean time series, which is easy to model with Kalman filter. 

The algorithm successfully identifies even bigger shifts in the groundwater levels. 

Figures 5(b) and (c) show sensors with more noise. The timestamps where potential 

outliers were detected are marked with a vertical red dotted line. We can observe 

two true positives (first two outliers) and one probable false positives in Figure 5(b), 

which is a consequence of a fast change in the data and is difficult to model in an 

on-line setting. Similarly, we can notice one true and two false positives in Figure 5(c). 

Figure 5(d) depicts extreme errors in the data that get detected correctly, even in 

cases, where there is more than one consecutive noisy measurement present. 
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Indirect Evaluation of Data Cleaning with Modelling Results 
Without a labelled dataset from real-world scenarios, we cannot directly estimate 

the effect of data cleaning. Thus we are estimating the benefits of data cleaning 

through observation of the improvements of machine learning models on the data. 

It has been previously shown that data cleaning can significantly improve the model 

accuracy (Krishnan et al., 2016). We have compared root mean squared error 

(RMSE) of ARIMA (1, 1, 0) models on raw and on cleaned datasets. Lower RMSE 

measure means better fit of the models to the dataset. 

 Furthermore, we have developed a meta-classification algorithm for time-series to 

detect suitable candidates, where RMSE can be improved. Based on the meta-data 

obtained from the time-series (such as variance, mean data frequency, Kalman filter 

parameters, confidence of the Kalman model, etc.) and from the data cleaning 

algorithm learning phase, such as (learning parameters, number of errors, length of 

data frame and cleaning model score), we were able to build a classifier, which can 

predict whether our cleaned time-series can be modelled worse, better or equally 

good on cleaned data. The classifier has been built using the random forests 

algorithm (Breiman, 2001).  

 Experiments have been conducted on 5 different datasets: (i) 340 time-series of 

groundwater levels in Ljubljana region, (ii) 67 time-series from Yahoo! A1 Server Load 

(Yahoo! Webscope, 2015), (iii) 400 time-series from smart-grid observations (active 

power) in SW Slovenia, (iv) and (v) 100 synthetic time-series from Yahoo! anomaly 

detection benchmark. Results are depicted in Table 2. Table presents KPIs related to 

the algorithm and the meta-classifier performance as follows. Improvement 

indicates fraction of time-series with better fit after cleaning (0.805 means that 80.5% 

of time-series benefited from the proposed data cleaning). RMSE ratio expresses 

ratio of improvements of RMSE against the losses (443.6 indicates that RMSE is 

improved much more than it deteriorates in cases, where data cleaning fails; this 

happens as groundwater data contains significant human-made errors). Precision, 

recall and F1 are standard classifier evaluation measures for our meta-classification 

algorithm. 

 

Table 2 

Algorithm performance on unlabelled data and prediction of the meta-classifier 

regarding the success of the algorithm 
 

 Algorithm performance Classification performance 

Dataset  Improvement RMSE ratio Precision Recall F1 

Groundwater  0.513 443.6 0.737 0.737 0.737 

Server load 0.530 1.400 0.746 0.740 0.739 

Smart-grid 0.805 1.270 0.850 0.861 0.850 

Yahoo! A2 (synthetic) 1.000 N/A 1.000 1.000 1.000 

Yahoo! A3 (synthetic) 0.000 N/A N/A N/A N/A 

Source: Authors’ work 

 

 The most illustrative are results on the two synthetic datasets. On the first dataset 

(Yahoo! A2) our algorithm works perfectly, while on the second dataset (Yahoo! A3) 

it fails completely. The main difference between these two datasets is that the 

periodicity in the first dataset is much larger and noise is much lower. The same 

properties are illustrated on real-world datasets, where we see the best performance 

(80.5%) of the algorithm on a smart-grid dataset. Typical period in this dataset is one 

day and measurements are taken every 15 minutes. Groundwater (i) and server load 

(ii) datasets have a sampling interval much closer to the typical period (significant 
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change in the data can happen within a single sampling interval, i.e. groundwater 

can rise significantly in a day with substantial amount of rainfall). Performance of our 

algorithm is 51.3% and 53.0%, respectively. 

 Usability of the cleaning algorithm was further improved with a meta-classifier. 

Based on time-series metadata the classifier is able to identify the data sources 

which are likely to improve with our algorithm with a precision, that is much higher 

than the improvement ratio (between 73.7% and 85.0%). 

 

Discussion 
As presented in the previous section our algorithm achieves the best performance 

with a typical stream of sensor data, as we can find in Internet of Things. In such 

scenarios sensor measurements are frequent and systematic changes in the data 

are low (sampling interval is much shorter than periodicity). In comparison with a 

commonly used ARIMA methodology in batch data pre-processing (Chen et al., 

1993), our method works better with lower noise data. An obvious downside of the 

ARIMA methodology is that it requires fitting of ARIMA model to the whole dataset, 

which makes it unusable with data streams. 

 Our approach is applicable in any kind of streaming scenario. However, there are 

some additional restrictions that need to be considered. When testing on real-world 

dataset we have observed heterogeneous characteristics of sensor data with 

respect to noise, volatility and measurement intervals. When dealing with large and 

diverse amounts of sensors (nowadays it is not unusual to have more than 10.000 

sensors in the system, i.e. in a regional smart-grid system) it is not feasible to do 

individual cleaning model learning, therefore some basic clustering of sensors into 

groups with similar properties is needed. Fine tuning of the parameters can be 

performed on a representative time-series only and then applied to the whole 

cluster. 

 Based on their characteristics efficiency of our methodology differs between the 

datasets. However, efficiency of the algorithm can be further improved with a 

classification algorithm on the top of time-series/learning-phase metadata, which is 

able to select a suitable time-series for the data-cleaning algorithm. In this way we 

were able to achieve precisions between 73-85%. 

 

Conclusion 
In this paper we have identified that efficient data pre-processing is very important in 

streaming data scenarios. We have focused on the first part of the data pre-

processing pipeline: data cleaning. We conducted a short research on the state-of-

the-art in the field and proposed our own method based on Kalman filter. The 

method has been quantitatively tested on an artificial data set. We have compared 

our method to the ARIMA state-of-the-art method and have obtained better results 

on the datasets with lower noise ratio and comparable results on the datasets with 

higher noise ratio. The main advantage of our method is, that it can work with Big 

Data in a streaming scenario.  

 Additionally, we have applied our method to a heterogeneous set of real-world 

time-series. We have tested the efficiency of our cleaning method with an indirect 

approach, where we tried to fit an ARIMA model to raw data and to clean data to 

compare the respected error measures. The proposed data cleaning was shown to 

be beneficial on time-series that have properties like majority of sensor streams 

available in the IoT domain. We also developed a meta-classification method which 

can predict the success of the data cleaning with 75%-85% precision. 
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 By observing differences in Yahoo! A2 and Yahoo! A3 datasets we identified the 

major limitation of our algorithm. When changes in a time-series are rapid (i.e. if 

periodicity is short in comparison to measurement frequency) many valid 

measurements are classified as outliers and algorithm accuracy is low. Future work 

should therefore be directed into improving Kalman filter parameter fine-tuning 

procedure, which should capture such behaviour. Additionally, usability of the 

algorithm should be tested on different real-world datasets and in the production 

environment. 
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