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Abstract  
 

Background: The concept of value at risk gives estimation of the maximum loss of 

financial position at a given time for a given probability. The motivation for this 

analysis lies in the desire to devote necessary attention to risks in Montenegro, and to 

approach to quantifying and managing risk more thoroughly. Objectives: This paper 

considers adequacy of the most recent approaches for quantifying market risk, 

especially of methods that are in the basis of extreme value theory, in Montenegrin 

emerging market before and during the global financial crisis. In particular, the 

purpose of the paper is to investigate whether extreme value theory outperforms 

econometric and quantile evaluation of VaR in emerging stock markets such as 

Montenegrin market. Methods/Approach: Daily return of Montenegrin stock market 

index MONEX20 is analyzed for the period January, 2004 – February, 2014. Value at 

Risk results based on GARCH models, quantile estimation and extreme value theory 

are compared. Results: Results of the empirical analysis show that the assessments of 

Value at Risk based on extreme value theory outperform econometric and quantile 

evaluations. Conclusions: It is obvious that econometric evaluations (ARMA(2,0)-

GARCH(1,1) and RiskMetrics) proved to be on the lower bound of possible Value at 

Risk movements. Risk estimation on emerging markets can be focused on 

methodology using extreme value theory that is more sophisticated as it has been 

proven to be the most cautious model when dealing with turbulent times and 

financial turmoil.  
 

Keywords: extreme value theory, Value at Risk, fat tails, GARCH, RiskMetrics, peak 

over threshold, generalized Pareto distribution 
 

JEL classification: C13, C22, G10 

Paper type: Research article 
 

Received: 10th May, 2014 

Accepted: 31st October, 2014 
 

Citation: Cerović, J., Lipovina-Božović, M., Vujošević, S. (2015). “A Comparative 

Analysis of Value at Risk Measurement on Emerging Stock Markets: Case of 

Montenegro”, Business Systems Research, Vol. 6, No.1, pp. 36-55. 

DOI: 10.1515/bsrj-2015-0003 

 

 

 



  

 

 

37 

 

Business Systems Research Vol. 6 No. 1 / March 2015 

Introduction  
The risk from extreme events is present in all fields of risk management, especially in 

financial markets. Methodology used for the assessment of financial markets 

participants’ rate of exposition to risk, gives the estimation of value at risk (Cerović, 

2014). Value at risk (Value-at-risk, or abbreviated VaR) is the maximum loss of 

financial position over a given time period at a given confidence interval (Jorion, 

2007). It includes all types of financial risk and the application in the analysis of 

market risk is to be presented in this manuscript.  

Recent approaches to quantification of market risk using econometric evaluation, 

RiskMetrics methodology, quantile estimation and estimation based on extreme 

value theory are presented in many papers. Econometric evaluation is derived from 

GARCH model, while RiskMetrics methodology uses integrated GARCH (IGARCH) 

model. Da Silva, Beatriz, and de Melo Mendes (2003), Gencay and Selcuk (2004), 

Bao, Lee, and Saltoglu (2006), Žiković (2007) and Bučevska (2013), among others, 

used GARCH models in market risk evaluation. Quantile estimation assumes that the 

return distribution in future is the same as in the sampling period, and VaR is 

calculated as a quantile of its cumulative distribution (Tsay, 2010). Extreme value 

theory is a well-known technique used in numerous fields of applied sciences (Onour, 

2010; Gilli and Kelezi, 2006; McNeil, et al. 2005; McNeil and Frey, 2000; Longin, 1996; 

etc). When dealing with extreme value theory in practice the peak over threshold 

method is often used and it models a distribution of excess over a given threshold.  

  The purpose of this paper is to compare performance of econometric models, 

quantile estimation and extreme value theory in evaluating Value-at-Risk in 

Montenegrin stock exchange over long period that includes years of financial crisis. 

Results will be interesting given the recession period is included, and are relevant on 

micro and macroeconomic level. In particular, the manuscript investigates whether 

extreme value theory can outperform econometric calculation of VaR in 

Montenegrin emerging stock market. Insofar, Montenegrin stock market in VaR 

modeling has been discussed in empirical literature recently. Karadžić and Cerović 

(2014) investigated whether asymmetric GJR GARCH model is appropriate in 

evaluation of VaR in emerging stock markets of the Western Balkans, so this analysis 

included Montenegro in comparing relative performance of only econometric VaR 

modeling of four countries of the Western Balkans (Croatia, Serbia, Bosnia and 

Herzegovina and Montenegro) with Slovenian case.  The contribution of this paper is 

to extend the limited empirical research on VaR estimation and forecasting in 

emerging financial markets by comparing performance of econometric models, 

quantile estimation and extreme value theory on Montenegrin stock market for the 

first time.   

 The paper is organized as follows. A brief literature review is presented in next 

section. The third section reviews the methodology used in VaR calculation. Data 

and descriptive statistics are given in fourth section. The fifth section presents 

empirical results, and discussion with conclusion is presented in the sixth section. 

 

Literature review  
There is a general opinion in literature data that there is no universal model giving the 

best estimation and forecast of VaR. Numerous papers observing the application of 

different approaches in developed financial markets confirm this, e.g.  – Manganelli 

and Engle (2001), Christoffersen, et al. (2001), Angelidis, et al. (2004), Wong, et al. 

(2002), Alexander and Leigh (1997), Harmantzis, et al. (2006), Embrechts, et al. (1998), 

McNeil, et al. (2005), Guermat and Harris (2002).  
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On the other hand, there are very few papers observing the comparison of VaR 

models in developing financial markets. Gençay and Selçuk (2004) analyzed 

parameter models and quantile estimation of VaR of stock exchange indices in 

developing Central and Eastern European countries. Their results show that 

generalized Pareto distribution and extreme value theory are basic tools in risk 

management in developing countries. Žiković (2007) observed different approaches 

to VaR measuring on the example of new members and candidate countries for EU 

membership. The conclusion of this research is that application of VaR models is not 

successful enough in financial markets of these countries because the returns show 

the existence of heavy tails, asymmetry and heteroscedasticity. Further researches 

followed in 2009, where Žiković and Aktan (2009) analized VaR models of the returns 

of Turkish and Croatian stock-exchange indices with the onset of global financial 

crisis. It was concluded in this paper that extreme value theory and hybrid historical 

simulation are the best, while other models underestimate the level of risk. Anđelić, 

Djaković and Radišić (2010) observed Slovenian, Croatian, Serbian and Hungarian 

markets and concluded that under stable market conditions, the analyzed models 

give good forecasts of VaR estimations with 5% level of significance, while, under the 

conditions of market volatility, analyzed models give good estimations of VaR 

parameters with 1% level of significance. Anđelić, Milošev and Djaković (2010) 

investigated the performance of extreme value theory with the daily stock index 

returns of four different emerging markets (Serbian, Croatian, Slovenian and 

Hungarian stock indices), and concluded that EVT approach should include 

continuous monitoring, with special emphasis on the role of optimal threshold 

determination. Nikolić-Đorić and Đorić (2011) observed the movement of stock-

exchange index in Serbian financial market and concluded that GARCH models 

combined with extreme value theory – peaks over threshold method, decrease the 

mean value of VaR, as well as that given models are better than RiskMetrics method 

and IGARCH model. Also, Mladenović, Miletić and Miletić (2012), based on analysis 

of stock-exchange indices in Central and Eastern European countries (Bulgaria, 

Czech Republic, Hungary, Croatia, Romania and Serbia), came to conclusion that 

the methodology of extreme value theory is slightly better than GARCH model 

regarding the calculation of VaR, but general suggestion is to use both approaches 

for better measuring of market risk.  

 Insofar, Montenegrin stock market has not been discussed in empirical literature 

until recently, so the main contribution of this paper is to extend the limited empirical 

research on VaR estimation and forecasting in emerging financial markets. The 

capital market in Montenegro is characterized by a relatively simple structure. A 

strong growth in the Montenegrin stock market begins in 2005, continued in 2006, 

and finally in 2007 it reached a peak. After that, bubble begins to crack and what 

followed was a drastic fall in prices (80-85%) in the end of 2007 and in 2008. The 

general "lethargy" of the market has continued until the end of 2013. A key trend in 

the Montenegrin economy in the last decade is certainly a strong inflow of foreign 

direct investments, which has acted as a strong positive shock to economic growth, 

but also as a shock to many other macroeconomic variables. A positive shock inflow 

of foreign direct investment hit both the capital market and real estate market. The 

slightly positive trend from 2009 is mostly due to part of privatization of EPCG 

(Elektropivreda Crne Gore, a. d. Niksic). If there was not the set of these transactions 

(which affected the sales and prices of other securities), the state in capital market 

of Montenegro would hardly deviated significantly from the rest of the period 2008-

2013. The year 2009, was actually a recession year, and this year is with a high rate of 

decline in economic activity. 
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Table 1 

Brief review of research insofar 

Author(s) Year Countries
 

Used methods
 

Short conclusion
 

Gençay, 

Selçuk 

2004 CEE 

countries 

Parameter models 

and historical 

simulation 

GPD and EVT are the best for 

developing countries. 

Žiković 2007 10 EU new 

member 

states and 

candidate 

countries 

for EU 

ARMA-GARCH 

models and hybrid 

historical simulation 

The application of VaR models 

is not successful enough in 

financial markets of these 

countries because the returns 

show the existence of heavy 

tails, asymmetry and 

heteroscedasticity. 

Žiković, 

Aktan 

2009 Croatia 

and 

Turkey 

Conditional and 

unconditional EVT; 

hybrid historical 

simulation, GARCH 

models 

EVT and hybrid historical 

simulation are the best; other 

models underestimate the level 

of risk. 

Anđelić, 

Djaković, 

Radišić 

2010 Slovenia 

Croatia, 

Serbia 

and 

Hungaria 

Historical simulation 

and delta normal 

VaR 

Under stable market conditions, 

the analyzed models give 

good forecasts of VaR 

estimations with 5% level of 

significance, while, under the 

conditions of market volatility, 

good estimations of VaR 

parameters are obtained with 

1% level of significance. 

Anđelić, 

Milošev, 

Djaković 

2010 Slovenia 

Croatia, 

Serbia 

and 

Hungaria 

EVT EVT approach should include 

continuous monitoring, with 

special emphasis on the role of 

optimal threshold 

determination 

Nikolić-

Đorić, Đorić 

2011 Serbia Garch models 

combined with EVT 

(POT method), 

RiskMetrics 

(IGARCH)  

GARCH models combined with 

extreme value theory – peaks 

over threshold method, 

decrease the mean value of 

VaR, as well as that given 

models are better than 

RiskMetrics method and 

IGARCH model 

Mladenović, 

Miletić, 

Miletić 

2012 Bulgaria, 

Czech 

Republic, 

Hungary, 

Croatia, 

Romania 

and 

Serbia 

Garch models and 

EVT 

The methodology of extreme 

value theory is slightly better 

than GARCH model regarding 

the calculation of VaR, but 

general suggestion is to use 

both approaches 

Source: Author’s calculation 

 

A sample period (from 5th January 2004 to 21st February 2014) covers the period of 

the financial crisis, and it is known that, in such circumstances, it is important for 

investors to locate risk and measure it in the best way possible. For this reason, the 

research results may have important implications for investors and risk managers who 
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operate in the turbulent markets of countries that are still developing. The reason for 

that is a fact that these markets are much less liquid and have a significantly smaller 

market capitalization. Because of these conditions, there is a need for modelling tail 

distribution in these markets. 

 Furthermore, these results refer to Montenegrin stock market which is a small 

emerging economy. That is, however, the main limitation of this study and the results 

obtained in the analysis cannot be generalized on emerging financial markets.  

 

Methodology  
We are going to observe a portfolio of some risky assets and determine portfolio 

value as Vt at a moment in time t. Let us assume that we want to determine the level 

of risk over the period [t,t+h]. We mark the random variable of portfolio loss as 

       ( )t h t h tL V V V h . Cummulative function of loss distribution is marked as FL where 

   ( )LF x P L x . In this case, VaR at significance level α ( (0,1)- most often α=0.01 or 

α=0.05, i.e. 1% and 5%) is actually an α-quantile of distribution function FL and 

represents the smallest real number satisfying the inequation ( )LF x , i.e.: 

  inf( ( ) ).LVaR x F x  (1) 

 The type of value at risk estimation can be: 1. Econometric evaluation (GARCH 

models), 2. Quantile estimation (historical simulation), and 3. Estimation based on 

extreme value theory.  

GARCH model  
Generalized autoregressive conditional heteroscedasticity (GARCH) model, 

introduced by Bollersev (1986) and Taylor (1986), represents the generalization of 

autoregressive conditional heteroscedasticity model – ARCH, developed by Engle in 

1982. Log returns, usually expressed in percents, are marked as rt. Innovation at 

moment t is  t t ta r . Then, the model can be presented as follows (Tsay, 2010): 

  

 

 

 

   



 0

1 1

p q

t i t i t j t j

i j

t t t

r r a a

a

 (2) 



     

 

   2 2 2
0

1 1

.
u

t i t i j t j

i j

a     (3) 

Parameters of equation (2) representing autoregressive moving-average model 

(ARMA) of orders p and q, ARMA (p,q), are marked as     0 1 1, ,..., , ,...,p q . The random 

member of the model, 
ta , is the function of  t  - series of independent and identically 

distributed random variables having a normal or t-distribution with zero mean and 

variance equal to 1. By the second equation in the model - (3), conditional variance 

of returns tr  is modeled,    2 2
1(( ( )) )t t t tE r E r , where 

 1t  is available data set with 

moment t-1 inclusive. In other words, conditional variance (volatility) is expected 

squared deviation of observations from the mean given the available data set.  

Parameters     0 1 1, ,..., , ,...,u  of conditional variance equation satisfy the 

conditions  0 0,    1,..., 0,u    1,..., 0, 


 


 
max( , )

1

( ) 1

u

i i

i

.  
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If the series  t  is a random variable with standardized normal distribution, i.e. 

 : (0,1),t N  then conditional distribution of random variable 
1hr  for available data with 

the moment h inclusive, also has a normal distribution with mean ˆ (1)hr  and variance

)1(ˆ 2

h . Then, 5%-quantile of conditional distribution, representing the estimation of 

VaR at 95% confidence level and for forecast horizon 1 step ahead, is computed as:  

ˆ (1) 1,65 (1).ˆh hr     (4) 

If random variable t  has Student’s t distribution, with υ degrees of freedom, then 

the 5%-quantile of conditional distribution is computed as follows: 

 









(1 )
ˆ (1) (1),ˆ

2

h h

t p
r  (5) 

where  (1 )t p  is the corresponding critical value of (1-p) quantile from t 

distribution with υ degrees of freedom.  

GARCH(1,1) model has the following form: 

  

  

 

 

   



 0

1 1

, : (0,1)

p q

t i t i t j t j

i j

t t t t

r r a a

a N

 (6) 

      2 2 2
0 1 1 1 1.t t ta  (7) 

If the model GARCH(1,1) satisfies the parameters sum   1 1 1, then the model 

describes the process of unlimited growth of conditional variability. Such a model is 

known as integrated GARCH model – IGARCH(1,1). It is in the basis of VaR estimation, 

representing the standard approach to risk measuring – RiskMetrics. 

This methodology was developed by company J. P. Morgan (Longerstaey et al.,  

1995), and it implies that conditional distribution of the series of log daily returns is 

  2
1 : ( , )t t t tr N , where t  is conditional mean, and  2

t  is conditional variance of series 

rt. The following relations are valid for them: 

 

          2 2 2
1 10, (1 ) , 0 1.t t t tr  (8) 

 

Volatility forecast for one period ahead in time shows that      2 2 2
1 (1 )t t tr . The 

previous relation indicates that    2
1( )t i t tVar r  for 1i , and therefore,     

2 2
1t tk k . If 

the significance level is 5%, portfolio risk according to RiskMetrics methodology is 

computed using formula  11.65 t , i.e. daily VaR value of the portfolio is  

 

   1Value of financial position  1.65 tVaR   (9) 

 

Quantile estimation (Historical simulation)  
Historical simulation begins from the assumption that return distribution in forecast 

period is the same as in the sampling period. Thus, the given return values of the 

sample are arranged according to size into a growing series in the form 

  (1) (2) ( )... nr r r  with the first minimal and last maximal value. 
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Let us assume that returns are independent and identically distributed random 
variables with constant distribution whose probability density function is ( )f x , and 

corresponding function of cumulative distribution ( )F x . Let px  be p-quantile of the 

function ( )F x . If ( ) 0pf x , then the statistic 
)(lr , where   , 0 1l np p , has 

approximately normal distribution with mean value px  and variance      

2
1 / ( )pp p n f x

, i.e. 


( ) 2

(1 )
: ( , ), .

( )
l p

p

p p
r N x l np

nf x
 (10) 

Extreme Value Theory – Peaks over Threshold method (POT) 
The extreme value theory is a very good methodological frame for the research of 

the behavior of distribution tail. If we consider the problem of sample maximum, we 

come to the main mathematical problem which is in the basis of the extreme value 

theory.  

Let 1 2, ,...X X  be the series of independent, non-degenerate random variables 

having an even distribution, with the common distribution function F. Let us observe 

the maximum values of variables ( 1 1M X ) 

 1max( ,..., ),n nM X X  (11) 

where  2n . 

For the joint limiting distribution function of maxima Mn, based on the character of 

their independence, it is: 

 

        1

1 1

( ) ( ,..., ) ( ) ( ) ( ).
n n

n
n n i

i i

P M x P X x X x P X x F x F x  (12) 

We will mark the right end of distribution F with 

  sup( : ( ) 1).Fx x R F x  (13) 

Then, for every  Fx x ,  

   ( ) ( ) 0, ,n
nPM x F x n  (14) 

and, if  Fx , for  Fx x  

  ( ) ( ) 1.n
nP M x F x  (15) 

Therefore, distribution function, as n , becomes degenerate. In order to obtain 

non-degenerate marginal distribution, it is necessary to carry out normalization (De 

Haan et al., 2006).  

The problem comes to the determination of real constants  0na  and nb , so the 

variable 
n n

n

M b

a
 has non-degenerate marginal distribution,  as n , i.e. 


 lim ( ) ( )n

n n
n

F a x b G x . G represents the non-degenerate distribution function and such 

distributions are called extreme value distributions. 

Let the real constants be na  i nb  (  0na ), so for every n applies 

 
 

    lim ( )/ lim ( ) ( ),n
n n n n n

n n
P M b a x F a x b G x (16) 
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for non-degenerate distribution function G(x). If this condition applies, it is said that 
F is in the domain of attraction of maxima from G, i.e.  ( )F DG . 

Extreme value distribution includes three parameters -   - shape parameter, n  - 

location parameter, and   0n
 is scale parameter. They can be assessed in two ways: 

using parametric or non-parametric methods. Traditional approach – block maxima 

method largely dissipates data because only maximum values from great blocks are 

used. This is reported as the biggest disadvantage of this model, so in practice it is 

increasingly being replaced with the method based on peaks over threshold, where 

all data representing extremes are used, in the context of exceeding some high 

level. The given method is to be exposed as follows.  

If we mark a certain threshold as u, and observe the series of daily log returns tr , 

then if  ith excess happens on the ith day, this model is focused on the data                   

( ,
ii tt r u ). The basic theory of this new approach observes conditional distribution 

from   r x u  which is for  r x u  given that threshold is exceeded, r u : 

      
    

  

( ) ( ) ( )
( ) .

( ) 1 ( )

Pu r x u P r x u P r u
P r x u r u

P r u P r u
 (17) 

The main distribution used for the modeling of excess over the threshold is 

generalized Pareto distribution, defined in the following way (Tsay, 2010): 



 










  


 
   


1/

, ( )

1 (1 ) , 0,
( )

( )

1 exp( ), 0,
( )

u

x

u
G x

x

u

 (18) 

where  ( ) 0,u  and  0x  for   0 , and    0 ( )/x u  when   0 . Therefore, we 

conclude that conditional distribution from r, if r u , approximates well with 

generalized Pareto distribution with parameters   and      ( ) ( )u u . Parameter 

( )u  is called scale parameter, and   is shape parameter. 

Generalized Pareto distribution has a very significant feature. If the excess 

distribution from r with the given threshold 0u  is generalized Pareto distribution with 

shape parameter   and scale parameter  0( )u , then for arbitrary threshold  0u u , 

the given excess distribution for threshold u is also generalized Pareto distribution with 

shape parameter   and scale parameter     0 0( ) ( ) ( )u u u u .  

When the parameter   0 , then generalized Pareto distribution is exponential 

distribution. Therefore, it is suggested to carry out a graphic examination of the tail 
behavior using QQ plot. If   0 , then the graph of the excess is linear.  

Peaks over threshold model has a problem regarding the choice of an adequate 

threshold. This is how the given problem is usually solved in practice. 

For the given high threshold 0u , let the excess  0r u  follow generalized Pareto 

distribution with parameters   and  0( )u , where  0 1.  Then, the mean excess over 

the threshold 0u : 




  



0
0 0

( )
( ) .

1

u
E r u r u  (19) 

The mean excess function e(u) is defined, for every   0u u , as: 



  

 

 

44 

 

Business Systems Research Vol. 6 No. 1 / March 2015 

 



 
   



0 0( ) ( )
( ) ( ) .

1

u u u
eu E r u r u  (20) 

Therefore, for the given value  , the mean excess function is the linear function of 

excess  0u u . Hence, for the determination of the given threshold 0u , a simple 

graphic model is used, forming the empirical mean excess function as 



 
1

1
( ) ( ),

u

i

N

T t
u i

e u r u
N

 (21) 

where uN  is the number of returns exceeding the threshold u, and 
it
r are the 

values of given returns. Threshold u is chosen so the empirical mean excess function 

is approximately linear for  .r u   

For the given probability p in the upper tail, (1-p)-quantile of log return tr  is 

 
 



  


       

 
      

1 ln(1 ) 0,

ln ln(1 ) 0.

D p
VaR

D p

 (22) 

 To illustrate these methods, we will use data that are explained in the next section. 

 

Data and descriptive statistics  
We examined daily log returns of Montenegrin stock index MONEX20 that is the 

adequate indicator of the state of Montenegrin stock market. Stock market index 

MONEX20 consists of 20 the most liquid stocks from Montenegrin stock market, so this 

is why it best reflects the price movements on Montenegrin market (All mentioned 

references in this paper examined stock market indices of aforementioned 

countries). MONEX20 is weighted index – each issuer's share is determined by its 

capitalization. The market capitalization includes ordinary shares that are in free 

float. Shares of twenty the best ranked companies by liquidity ratio constitute 

MONEX20. MONEX20 index is calculated according to the following formula 
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where ,i tp  is price of ith  stock on day t, ,0ip  is base price of ith stock on the date of 

formation of the index, ,i Rq  is number of stocks in free float, and TC  is correction 

factor for ensuring continuity of the index in the time before calculation of the index 

at new composition.  

 Time series of observed log returns of stock index MONEX20 on daily basis consists 

of 2508 data in total (from 5th January 2004 to 21st February 2014), and it is presented 

in Figure 1. Log daily returns (or continuously compounded returns) represent the 

difference between logarithmic levels of prices in two successive days. It can also be 

expressed in percents, when these differences are multiplied by 100. The data are 

taken from the website of Montenegro Stock Exchange 

(http://www.montenegroberza.com). Empirical results are obtained by using 

program package R. 

 Expressed volatility of Montenegrin stock index MONEX20 which includes the 20 

most liquid stocks from Montenegrin capital market can be seen on Figure 2. It is also 
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evident that this series is stationary. Its empirical distribution deviates from normal 

distribution, as Q-Q plot (Figure 3) shows. Namely, the quantiles of an empirical 

distribution are plotted against the quantiles of a normal distribution. From the Figure 

3 it is clear that QQ plot is not linear and that empirical distribution differs from the 

hypothesized normal distribution. So, fat-tail nature of observed logarithmic return 

series is expressed, as well as skewness, kurtosis and Jarque-Bera test-statistics (JB) 

show. These descriptive statistics are given in Table 2 with corresponding p-values in 

parenthesis. 

 

Table 2 

Basic Descriptive Statistics of Daily Logarithmic Return for MONEX20 

Variance Skewness Kurtosis JB Box-Ljung 

(m=10) 

Box-Ljung   

( 2

ta ) 

2.869291 0.686 6.537 4672.701 

(<2.2e-16) 

219.636 

(<2.2e-16) 

1003.793 

(<2.2e-16) 

Note: Standard errors are given in parenthesis 

Source: Author’s calculation 

 

Figure 1 

Time Series of MONEX20 Stock Index from January 2004 to February 2014 

 
Source: Montenegro stock exchange and Author’s calculation 

 

 The skewness shows that the series is not sharply asymmetric, but there is a 

particular positive asymmetry. Normality deviation is mostly due to high kurtosis, 

which means “fat tails” existence – tails are heavier than normal distribution tails.  

Jarque-Bera (JB) normality test shows that the hypothesis of normality of returns 

can be abandoned even when the level of significance is 1%. JB test-statistic has an 

asymptotic  2  distribution with two degrees of freedom.  

 Box-Ljung test-statistic (Box-Ljung) is used for the determination of autocorrelation 

of order m between squared data and has asymptotic  2  distribution with m 

degrees of freedom. Null hypothesis in this test implies that the first m autocorrelation 

coefficients of squared data are zero and it is abandoned here. Value m is chosen in 

several ways and in practice the best form is  ln( ),m T  where T is the number of data 

of the observed variable (Tsay, 2010). In our case, this value is 10. 
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Figure 2 

Daily Return of Monex20 Stock Index 

 
Source: Montenegro stock exchange and Author’s calculation 

 

Figure 3 

Q-Q Plot of Daily Return of Monex20 Relative to Normal Distribution 

Source: Author’s calculation 

 

 To determine the existence of time-changing variability, the same Box-Ljung test-

statistic is used, but for squared residual series (Tsay 2010). Return residual is defined 

as the difference between return level and mean of the return, i.e.   .t t ta r  For the 

daily logarithmic return of MONEX20, first the serial correlation was determined 

according to Box-Ljung test-statistic for the return data, and the same statistic for 

squared residuals also shows high volatility.  

 

Empirical Results  
In this part of the paper the results of the empirical research particularly focused on 

the application of VaR methodology on the emerging market of Montenegro are 

presented.  

 By the specification analysis based on sample functions of autocorrelation (Figure 

4), it is estimated that the best model for modeling logarithmic return series is 

ARMA(2,0). Volatility movement is well described by model GARCH(1,1) with 

Student’s t-distribution.    

 Jointly estimated ARMA(2,0)-GARCH(1,1) model is: 
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 

 

 

  

 

1 1

2 2 2
1 1

0.14806 0.07338 ,

0.11691 0.88209 .

t t t t

t t t

r r r a

a
 

 

Table 3 

Tests of ARMA(2,0)-GARCH(1,1) Model: Test-statistic and p-value 

  Box-Ljung Q(10)  Box-Ljung    ( 2

ta ) LM ARCH Test 

18.079 (0.003) 5.741 (0.33) 10.448 (0.402) 

Note: Standard errors are given in parenthesis 

Source: Author’s calculation 

 

Figure 4 

Autocorrelation Functions (ACF) for MONEX20 Series 

Source: Author’s illustration 

 

Figure 5 

Autocorrelation Function of Squared Standardized Residuals of Estimated Model 

ARMA(2,0)-GARCH(1,1) 

Source: Author’s illustration 

 

 The tests of residual normality, autocorrelation and conditional heteroscedasticity 

are given in Table 3. Therefore, it can be observed that the chosen model describes 

volatility really well. Also, the estimated GARCH model removed autocorrelation 

successfully, which can be seen from Box-Ljung test for squared standardized 

residuals. So, autocorrelation was reduced enough, which can be concluded based 
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on the autocorrelation function of standardized residuals, shown in Figure 5. Figure 6 

presents Q-Q plot of standardized residuals, so the fit is reasonable based on this 

plot. 

 

Figure 6 

Q-Q plot of Standardized Residuals from Estimated Model ARMA(2,0)-GARCH(1,1) 

Source: Author’s illustration 

 

 In Table 4, forecasted levels of return and volatility (conditional standard 

deviations) for one day time horizon, which are used for the evaluation of VaR, are 

presented. The evaluation is computed for level of confidence 95% and 99%.   

 Interpretation of the obtained result for VaR is as follows: if one possesses some 

value of stocks (for example, 1000€), described by stock market index MONEX20, 

then the possible loss for the owner of stocks for a one-day period, does not exceed 

1.518% of the value (15.18 €) with probability 95%. With the 99% probability, the 

estimation of the maximum loss is 2.573% of the value (25.73 €).  

 

Table 4 

Econometric Evaluation of VaR for a One-Day Period (MONEX20 return) 

Return forecast Forecast of 

conditional st. dev. 

VaR (95%) VaR (99%) 

-0.0005641 0.0101 1.518% 2.573% 

Source: Author’s calculation 

 

Riskmetrics method for the calculation of VaR assumes that conditional mean 

value is zero and that return volatility follows IGARCH(1,1) model. The adjusted model 

is 

         2 2 2
1 1, , 0.079913 (1 0.079913) ,t t t t t t t tr a a a   

 where t  is standard Gaussian series of white noise. Q statistic for squared 

standardized residuals is statistically significant and equals 19.54.  

 Following the adjusted model, volatility forecast for one period in advance is 

,00976.0)1(ˆ   so 95% quantile of conditional distribution is  1.65 0.00976 0.016104,  or 

1.6104%. VaR for 95% probability, one period in advance, for the position of, for 

example, 1000 €, will be: 
  1000€ 0.016104 16.104€.VaR  
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 According to the same principle, 99% quantile is ,... 0227017600097603262   so 

VaR, for the given probability is approximately 22.7€ (approximately 2.27%). 

Quantile assessment of VaR is obtained as empirical 99% quantile, with the value 

of daily logharitmic return for MONEX20. It is 4.722598%, which means if we possess 

1000 € of stocks described by stock market index MONEX20, the loss in one-day 

period does not exceed 47.226€, with 99% probability. With confidence level 95%, 

VaR amounts to 2.381442%. 

 The following is the evaluation of VaR based on the new approach of extreme 

value theory – peaks over threshold method. Negative logarithmic returns of 

MONEX20 stock index are observed, and selection for threshold u is based on the 

graph of mean excess function. The graph of mean excess function has linear 

tendency from the threshold level 2-3%, which can be seen from Figure 7, so we give 

results for 3 varying values of threshold: 2%, 2.5% and 3%.  

 The set of extreme events exceeding the 2.5% threshold has 115 data. For 

thresholds of 2% and 3%, the numbers of exceeding are 160 and 77, respectively. 

Based on these data sets, the distribution of maximal negative logarithmic returns for 
MONEX20 is modeled. Table 5 contains the evaluate parameters  ,  and   for the 

given data sets, with given variation of threshold from 2% to 3%. Given parameters 

are used for the calculation of VaR and the adequacy of the given model can be 

based on plots which can be seen in Figures 8 -11.  

 

Figure 7 

Mean Excess Function Plot for Daily Negative Log Returns of MONEX20 

Source: Author’s illustration 

 

Table 5 

Result Estimates of Two-Dimensional Poisson Process of MONEX20 Daily Negative Log 

Returns 

Threshold Number of 

exceeding 
n  n  n  

3% 77 -0.103 (0.08) 0.023 (0.008) -0.037 (0.015) 

2.5% 115 -0.026 (0.066) 0.015 (0.004) -0.021 (0.008) 

2% 160 -0.051 (0.059) 0.017 (0.004) -0.025 (0.006) 

Note: Standard errors are given in parenthesis 

Source: Author’s calculation 
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 Highly adjusted generalized Pareto distribution to the daily negative log returns of 

MONEX20 is seen in Figures 8 and 9. Figure 8 shows exceeding fit to the generalized 

Pareto distribution (excess distribution), and Figure 9 shows tail of underlying 

distribution.  At Figure 10 we present scatter plot of residuals, and Figure 11 gives Q-Q 

plot that contains empirical quantiles that form a straight line. Hence, the empirical 

quantiles form approximately straight line, and we have one more indicator leading 

to conclusion that negative log returns of index Monex20 are properly modeled by 

generalized Pareto distribution.  

 

Figure 8 

Plots for Generalized Pareto Distribution to Daily Negative Log Returns of MONEX20 – 

Excess Distribution 

Source: Author’s illustration 

 

Figure 9 

Plots for Generalized Pareto Distribution to Daily Negative Log Returns of MONEX20 – 

Tail of Underlying Distribution 

Source: Author’s illustration 

 

 Peaks over thresholds method gives results for VaR summed in the Table 6. It is 

evident here that results of VaR differ less depending on different values of threshold 

excess, and with the same confidence level.  

 In order to compare the results, Value at risk estimates are as follows: If we possess 

1000€ worth stocks described by stock market index MONEX20, with probability 0.05, 

meaning there is 95% probability the loss would be lower or the same as VaR for the 

following trading day, the parameter estimated value is: 
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o 15.18€ applying ARMA(2,0)-GARCH(1,1) model, 

o 16.104€ when using RiskMetrics, 

o 23.82€ by quantile estimation, and 

o 23.8€ when using peak over threshold method (threshold is 2.5%).  

 

 The corresponding VaR with the probability 0.01 is:  

o 25.73€ applying ARMA(2,0)-GARCH(1,1) model, 

o 22.7€ when using RiskMetrics, 

o 47.226€ by quantile estimation, and 

o 46.34€ when using peak over threshold method (threshold is 2.5%).  

 

Figure 10 

Plots for Generalized Pareto Distribution to Daily Negative Log Returns of MONEX20 – 

Scatterplot of Residuals  

Source: Author’s illustration 

 

Figure 11 

Plots for Generalized Pareto Distribution to Daily Negative Log Returns of MONEX20 –

Q-Q plot of Residuals 

 

[

Source: Author’s illustration 

 

Due to different treatment in the estimation of distribution tail behaviour, there are 

different results obtained as well. The result of econometric assessment (ARMA-

GARCH models and RiskMetrics), in case all assumptions for its applications are 

accomplished, depends on the chosen model. Therefore, it is necessary, as we have 

shown on the example, to have a detailed analysis of the specification of potential 
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models in the first phase of the performance of Value at Risk evaluation. It can be 

concluded that econometric estimation is on the lower bound of possible VaR 

movement interval.  

 

Table 6 

Evaluation of VaR and Expected Shortfall Based on Peak over Threshold Method 

Threshold p-value VaR 

3% 

 

0.05 2.38% 

0.01 4.63% 

0.001 7.70% 

2.5% 0.05 2.36% 

0.01 4.67% 

0.001 7.65% 

2% 0.05 2.20% 

0.01 4.70% 

0.001 7.64% 

Source: Author’s calculation 

 

Further, the choice of tail distribution probability also has an important role in the 

calculation of VaR. The value of the observed sample of 2508 data may be 

considered large enough for empirical quantiles with 99% and 95% probability for 

giving good parameter estimation. For both levels of significance, quantile Value at 

Risk evaluation is very close to the assessment of the new approach of extreme 

value theory. We note that these two assessments are on the upper bound of the 

possible VaR parameter range.  

Also, within the latter approach (Table 6), we can see that using a very low 0.1% 

probability, less reliable VaR evaluation are obtained. Therefore, that significance 

level was not used in other approaches.  

 

Discussion and Conclusion  
We discussed empirical evaluation of Value at risk in Montenegrin stock market and 

compare relative performance of econometric, quantile estimation and estimation 

based on extreme value theory. Using the daily returns of Montenegrin market index 

MONEX20, in the period from 5th January 2004 to 21st February 2014, we have 

measured VaR and tested performance of ARMA(2,0)-GARCH(1,1) model with 

Student’s t-distribution, RiskMetrics methodology (IGARCH(1,1)), quantile estimation 

and estimation based on extreme value theory (peaks over threshold method). 

 Descriptive statistics show the presence of fat tails in observed time series, due to 

skewness and kurtosis, and it is concluded that its empirical distribution deviates from 

normal distribution. Box-Ljung test-statistic for squared residuals also shows high 

volatility.

 Our empirical results show that extreme value theory is more adequate for 

estimating Value at Risk in the Montenegrin stock market comparing to econometric 

evaluation and quantile assessment. Namely, predictive performance of peaks over 

threshold method better fit residuals to generalized Pareto distribution, compared to 

results obtained by econometric evaluation (GARCH and IGARCH model – 

RiskMetrics methodology) and quantile estimation. So results of analyzed methods for 

Montenegro are similar as for other developing countries (Gencay and Selcuk, 2004; 

Mladenović, Miletić and Miletić 2012).              

 Results of empirical analysis have multiple benefits. They show that the 

assessments of Value at Risk based on extreme value theory outperform 
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econometric evaluations. It is obvious that econometric evaluations (ARMA(2,0)-

GARCH(1,1) and RiskMetrics) proved to be on the lower bound of possible Value at 

Risk movements. Therefore, it is possible to say econometric evaluations 

underestimate the given parameter, but the estimation should significantly change 

for a more volatile stock depending on the level of confidence.   

Taking these results into account, a suggestion can be given to financial 

institutions to quantify risk using peaks over thresholds method that is the latest 

approach of extreme value theory, instead of historical evaluation (quantile) and 

econometric method. For the purpose of simplicity, risk estimation on emerging 

markets can be focused on methodology using extreme value theory that is more 

sophisticated as it has been proven to be the most cautious model when dealing 

with turbulent times and financial turmoil.  

 Furthermore, these results refer to Montenegrin stock market, that is small 

emerging economy and the results obtained in the analysis cannot be generalized 

on emerging economies and financial markets that are still developing. These 

markets are characterized by a greater influence of internal trade and high volatility 

compared to developed countries, so evaluation of VaR with standard methods 

that assume a normal distribution is much more difficult.  Good point for future 

research is to use a wider sample of emerging markets (EU candidates) and 

compare used methodology among them in predictive performance.  

 Also, the observation period for measuring Value at Risk includes period of 

financial crisis, so that fact should be taken into account because of possible 

derogation of parameter results. 
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