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ABSTRACT

We use Lagrange, Hermite and Birkhoff operator that interpolates a function f
and certain of its derivatives, defined on a triangle, for construction of some surfaces.
We construct this type of surfaces using concrete examples.
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1. Introduction

The blending interpolation has many
practical applications. Remind that blending
interpolation is to interpolate a function at
an infinite set of points: segments, curves,
surfaces, etc. Thus, if one gives the contour
of an object by such elements (segments,
curves, surfaces) wusing a  blending
interpolation, we can generate a surface that
contains the given contour. Hence, we can
construct a surface (a blending function
interpolant) which matches a given function
and certain on its derivatives on the boundary
of a plane domain (rectangle, triangle, etc).

Using such a surface fitting technique, we
construct some surfaces in given interpolation
conditions with concrete examples.

For this, will be used Lagrange, Hermite
and Birkhoff operator that interpolates a
function f and certain of its derivatives,

defined on a given domain Q c R”.

2. Surfaces Generation

Let Q be the domain
D, ={(x,y)eR’ ||x|+| y|<h},h>0 (Figure no. 1)
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Figure no.1 Domain D,

Such surface is constructed, first, on the
standard triangle

T, ={(x,y) € R* | x>0,y >0,x+y < h},

after that it is extended, by symmetry, with
respect to the coordinate axes, on all domain
D,.

The operators used are: — Lagrange’s

operators: P and P’ given by
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(PXf)(xy)——yYf(o >+— fh=y,»),
h—x—-y

(P Ney)= f(x 0)+—f(x h—x);

(1)
— Hermite operators H " defined by
(1) (x,y) = VXY

1

f(0,x+y)+
(x+y)
2
xy (=) 0,x+y)+
(x+y)
2
+ Mf(x +vy,0) -
(x+ y)
Xy ("0 —fOx +y,0);
C(x+y)

(2)
and B’

defined by : :

— Birkhoff operators B"

(B )x,») = f0,0)+(x+y—h) O (h—y,y),
(B N)x,3)= f(x,0)+(x+y—h) [ (x,h—x).
3)

For the beginning, we construct a scalar
interpolating formula generated by the

X y X y Xy
operators /", B’ and B, B}, H,

two levels of interpolation.
First, the function f is approximated by

, using

the Boolean sum of the operators A" and
P’

1
h—x—
P OPH(x,y) = £0,y)+
1 2 h . y
h—x—
O T e, 0)+
h—x

XY 400) -
h
_yh=x=y)
h(th-y) fOh)
4)

In order to obtain a scalar approximant
of f, we use in the second level the following

approximations £(0, y) ~ (Bly )0,y),
JSx0)~ (B[ )x,0), f(x,h—x)~(H)x,h—x).

One obtains
(h—x—y)(h* —xy)

F ) =i f 00+
[y(h=x)@x+h)  yh=x=1]
+L . Hi—3) J £(0,h) +
x* y(3h - 2x)
- _
G /@0
W (h—x— y)+ xp(h—x)
- FOY0,n)+
h2
+ 72 FO0h,0)-
ﬁ}éjh—x—y!+lef(1,0)(h,0)+
XJ’(h xﬁlf(m)(o h),
h2

)

that uses the information

Ar(f) =11 0,0), £(0,h), £ (h,0),
o0, h), £V (h,0),
FU00,h), £ (h,0) }

Example no. 1:
For A (f) ={4,0,0,0,1,1,0}, one
F

obtains

4(h—x—y)(h* —xp) N X’y

h(h—x)(h—y) "
xy(h - x)
+

h2

F(x,y)=

(Figure no. 2)
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z=F,(x.y)
L

-
n
. i

Figure no. 2 Fi(x,y)

Example no. 2: The following function

4(h—x = y)(I* = xy)

F,(x,y)= -
D= )
x*y(3h — 2x) Xy x(h—x)
an*(h-x) 2K 20
is obtained from (5) for
AF (f) = {4909_1/490,_1/2,_1/2,0} (Flgure
no. 3)

Figure no. 3 F,(x, y)

Now, one supposes that 490,1 =0, which
is equivalent with f'(x,h—x) =0,x €[0, A].

In this conditions (4) becomes

h—x—
L(x, y)=£ 70, y)
h—y

+ﬁ;zc;u f(x,0)- h_x—_yf((),()),
h—x h
(6)

J0,y)=(B7 f)0,y)  and

f(x,O) = (Bl f)(x,O) 5 in the same
conditions  f(x,h—x)=0,x<€[0,4], one

Taking

obtains

(h=—x— 5~ 10.0)-

HOD =00y
~(h=x= ) OO~ (h—x =) [0 (0)

™

with

An () ={£0,0), £ 0,h), £ (1,0) }.

Example no. 3: For A,(f)=1{4,0,0},
one obtains the surface from the Figure no. 4.

Figure no. 4 H(x,y)

3. Conclusions

Interpolation operators have many
applications. We used Lagrange, Hermite
and Birkhoff operator for construction of
some surfaces using blending interpolation.
We constructed this type of surfaces using
concrete examples.
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