Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement

Open access

Abstract

The paper presents the design process and test results of warm mix asphalt concrete produced with modified foamed bitumen and recycled synthetic fiber reinforcement. Recycling and low-temperature asphalt production techniques are now seen as the possibilities to increase the sustainability and energy effectiveness of road construction. Although low processing temperatures permit increased use of reclaimed and recycled materials in new asphalt mixes, they sometimes result in impaired service performance. The aim of this article was to present a possibility of producing a better performing asphalt concrete (in comparison to a control hot-mix) at lower temperatures. For this purpose two road paving bitumens modified with a surface active agent and a Fischer-Tropsch wax thoroughly tested for their basic, rheological characteristics and foaming performance. Selected binders were used for producing two control mixes (hot-mix and foamed warm mix with 35/50 bitumen) as well as the experimental mix with the modified 50/70 bitumen and an addition of synthetic fiber material from recycling of automotive tires. Basic properties of the mixes were tested (air void content, moisture susceptibility with one freeze-thaw cycle, wheel tracking) along with stiffness moduli and fatigue resistance. It was concluded that the control foamed warm-mix performed significantly worse than the hot-mix, while the experimental warm-mix with modified bitumen and fiber additive exhibited increased performance and resistance to fatigue and moisture.

[1] J. Komacka, E. Remisova, G. Liu, G. Leegwater, and E. Nielsen: “Influence of reclaimed asphalt with polymer modified bitumen on properties of different asphalts for a wearing course,” Sustainability, Eco-efficiency, and Conservation in Transportation Infrastructure Asset Management [Proc. ICTI], 179‒185 (2014), doi: 10.1201/b16730‒27.

[2] A. Chomicz-Kowalska, M.M. Iwański, and J. Mrugała, “Basic performance of fiber reinforced asphalt concrete with reclaimed asphalt pavement produced in low temperatures with foamed bitumen,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, 1‒9 (2017).

[3] M. Wasilewska, W. Gardziejczyk, A. Plewa, and P. Gierasimiuk, “Use of reclaimed asphalt pavement to asphalt concrete base course,” Rocznik Ochrony Środowiska, 17 (2), 973‒997 (2015).

[4] M. Iwański and A. Chomicz-Kowalska, “Evaluation of the pavement performance”, Bull. Pol. Ac.: Tech. 63 (1), 97‒105 (2015), doi:10.1515/bpasts-2015‒0011.

[5] A. Woszuk, A. Zofka, L. Bandura, and W. Franus: “Effect of zeolite properties on asphalt foaming,” Construction and Building Materials, vol 139, 247‒255 (2017), doi: 10.1016/j.conbuildmat.2017.02.054.

[6] A. Chomicz-Kowalska, W. Gardziejczyk, and M.M Iwański, “Moisture resistance and comactibility of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen,” Construction and Building Materials, vol. 126, 108‒118 (2016), doi:10.1016/j.conbuildmat.2016.09.004.

[7] M.F.C Van De Ven, K.J. Jenkins, J.L.M. Voskuilen, and R. Van Den Beemt: “Development of (half-) warm foamed bitumen mixes: State of the art,” International Journal of Pavement Engineering, vol. 8(2), 163‒175 (2007), doi: 10.1080/10298430601149635.

[8] A. Vaitkus, D. Cygas, A. Laurinavicius, V. Vorobjovas, and Z. Perveneckas, “Influence of warm mix asphalt technology on asphalt physical and mechanical properties,” Construction and Building Materials, vol. 112, 800–806 (2016), doi:10.1016/j.conbuildmat.2016.02.212.

[9] B. Dołżycki, M. Jaczewski, and C. Szydłowski, “The Influence of Binding Agents on Stiffness of Mineral-cement-emulsion Mixtures,” Procedia Engineering, Modern Building Materials, Structures and Techniques, vol. 172, 239–246 (2017), doi:10.1016/j.proeng.2017.02.103.

[10] J. Król, K. Kowalski, and P. Radziszewski, “Rheological behavior of n-alkane modified bitumen in aspect of Warm Mix Asphalt technology,” Construction and Building Materials, vol. 93, 703–710 (2015), doi:10.1016/j.conbuildmat.2015.06.033.

[11] M. Iwański, P. Buczyński, and G. Mazurek, “The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen,” Bull. Pol. Ac.: Tech. 64(4), 763‒773 (2016), doi:10.1515‒0085.

[12] J. Čorej, M. Korenko, and E. Remišová, “Climatic characteristics and the temperature regime of asphalt pavements,” Komunikacie, vol. 6(3), 31‒36 (2004).

[13] M. Kadela, “Model of multiple-layer pavement structure-subsoil system,” Bull. Pol. Ac.: Tech. 64 (4), 173–181 (2016), doi: 10.1515/bpasts-2016‒0084.

[14] P. Mackiewicz, “Fatigue Tests of Bituminous Mixtures with Inclusion of Initial Cracks”, Journal of Materials in Civil Engineering, Vol. 25 (1), (2013), doi.org/10.1061/(ASCE)MT.1943‒5533.0000581.

[15] A.C. Pronk, M. Gajewski, and W. Bańkowski, “Application of a material fatigue damage model in 4PB tests”, International Journal of Pavement Engineering, 2016, doi.org/10.1080/10298436.2016.1210441.

[16] B. Goszczyńska, G. Świt, and W. Trąmpczyński, “Monitoring of active destructive processes as a diagnostic tool for the structure technical state evaluation”, Bull. Pol. Ac.: Tech. 61(1), 97–108 (2013), doi:10.2478/bpasts-2013‒0008.

[17] L. Czarnecki and P. Woyciechowski, “Prediction of the reinforced concrete structure durability under the risk of carb onation and chloride aggression”, Bull. Pol. Ac.: Tech. 61 (1), 173–181 (2013), doi: 10.2478/bpasts-2013‒0016.

[18] TG-2 2010. Nawierzchnie asfaltowe na drogach krajowych. Mieszanki mineralno-asfaltowe [Asphalt pavements on government road. Bituminous mixtures]. Wymagania Techniczne [Technical Guide]. GDDKiA, Warszawa.

[19] P. Radziszewski, K. Kowalski, J. Król, M. Sarnowski, and J. Piłat, “Quality assessment of bituminous binders based on the viscoelastic properties: polish experience,” Journal of Civil Engineering and Management, vol. 1(20), 111‒120 (2014), doi:10.3846/13923730.2013.843586.

[20] A. Chomicz-Kowalska, J. Mrugała, and K. Maciejewski, “Evaluation of foaming performance of bitumens modified with the addition of surface active agent,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, 1‒10 (2017).

[21] E. Remisova, “Theory and measurements of bitumen binders adhesion to aggregate,” Komunikacie, vol. 6(1), 58‒63 (2004).

[22] M. Carmen Rubio, G. Martinez, L. Baena, and F. Moreno, “Warm mix asphalt: an overvie” Journal of Cleaner Production, vol. 24, 76‒84 (2012), doi:10.1016/j.jclepro.2011.11.053

[23] H Silva, J. Oliveri, J. Peralta, and S. Zoorob, “Optimization of warm mix asphalt using different blends of binders and synthetic paraffin wax contents,” Construction and Building Materials, 24(9), 1621‒1631 (2010), doi:10.1016/j.conbuildmat.2010.02.030.

[24] M. Iwański and G. Mazurek, “Optimization of the synthetic wax content on example of bitumen 35/50,” 11th International Conference on Modern Building Materials, Structure and Techniques, Vilnius, Lithuania, Elsevier, Procedia Engineering, Vol. 57, 414‒423 (2013), doi. 10.1016/j.proeng.2013.04.054

[25] M. Iwański, A. Chomicz-Kowalska, and K. Maciejewski, “Application of synthetic wax for improvement of foamed bitumen parameters,” Construction and Building Materials, vol. 83, 62–69 (2015), doi: 10.1016/j.conbuildmat.2015.02.060.

[26] A. Chomicz-Kowalska, “Statistical methods for evaluating associations between selected foamed bitumen parameters,” In: Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements – ICONFBMP 2015. CRC Press/Balkema, 3–12 (2015).

[28] I. Gaweł, M. Kalabińska, and J. Piłat, 2001. Asfalty drogowe [Road bitumen], WKŁ, Warszawa, Poland, 255 p.

[29] M. Iwański, A. Chomicz-Kowalska, and J. Mrugała, “Application of the synthetic wax to improve the foamed bitumen parameters used in half-warm bituminous mixtures,” International Conference on Environmental Engineering (ICEE), 154, 1‒9 (2014).

[30] TG-1 2010. Kruszywa do mieszanek mineralno-asfaltowych i powierzchniowych utrwaleń na drogach krajowych [Aggregates for mineral-bitumen mixes on national roads and highways]. Wymagania Techniczne [Technical Guide]. GDDKiA, Warszawa.

[31] Aprobata Techniczna IBDiM, Nr AT/2006‒03‒1991. Nazwa wyrobu: Włóknisty materiał stabilizująco-wzmacniająco-modyfikujący TOFIC do mieszanek mineralno-asfaltowych.

[32] D. Sybilski, A. Wróbel, and W. Bańkowski, Nowe włókno TOFIC® do poprawy właściwości mieszanek mineralno-asfaltowych. IBDiM.

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 24
PDF Downloads 79 79 13