Analytical description of power losses in a transformer operating in the dual active bridge converter

Open access

Abstract

The paper presents an analytical approach to the determination of power losses in a high-frequency transformer operating in the dual active bridge (DAB). This transformer, having two single-phase transistor bridge inverters, couples two DC circuits that significantly differ in voltages (280 V and 51 V ±20%). Power losses in the core and windings of the planar transformer 5600 VA /100 kHz were calculated taking into account changes in the value and direction of the energy flow between the coupled DC circuits. These circuits represent storage or renewable energy sources and intermediate circuits of the converters used in distributed generation systems. Calculations were performed using the Steinmetz’s and Dowell’s equations. The analytical results have been verified experimentally.

[1] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. Timbus, “Overview of control and grid synchronization for distributed power generation systems”, IEEE Trans. Ind. Electron. 53 (5), 1398–1409 (2006).

[2] S. P. Engel, N. Soltau, H. Stagge and R. W. De Doncer, “Dynamic and balanced control of three-phase high-power dual–active bridge dc-dc converters in dc-grid applications”, IEEE Trans. Power Electron. 28(4), 1880–1889 (2013).

[3] B. Zhao, Q. Song and W. Liu, “Efficiency characterization and optimization of isolated bidirectional DC-DC converter based on dual-phase-shift control for DC distribution application”, IEEE Trans. Power Electron. 28(4), 1711–1727 (2013).

[4] B. Zhao, Q. Yu and W. Sun, “Extended-phase-shift control of isolated bidirectional dc-dc converter for power distribution in microgrid”, IEEE Transactions on Power Electronics 27(11), 4667–4680 (2012).

[5] M. Nowak, J. Hildebrandt and P. Łuniewski, “Converters with AC transformer intermediate link suitable as interfaces for supercapacitor energy storage”, Proc. IEEE Power Electron. Spec. Conf. 5, 4067–4073 (2001).

[6] F. Krismer and J. W. Kolar, ”Accurate power loss model derivation of a high-current dual active bridge converter for an automotive application”, IEEE Trans. Ind. Electron. 57 (3), 881–891 (2010).

[7] R. T. Naayagi, A. J. Forsyth and R. Shuttleworth, “High-power bidirectional DC-DC converter for aerospace applications”, IEEE Transactions on Power Electronics, 27(11), 2276–2287 (2012).

[8] R. De Doncer, D. Divan and M. Kheraluwala, “A three-phase soft switched high-power-density DC/DC converter for high-power applications”, IEEE Trans. Ind. Appl. 27(1), 63–73 (1991).

[9] R. Barlik, M. Nowak, P. Grzejszczak, “Power transfer analysis in a single phase dual active bridge”, Bull. Pol. Ac.: Tech., 61(4), 809–828 (2013).

[10] F. Krismer and J. W. Kolar, “Closed form solution for minimum conduction loss modulation of DAB converters”, IEEE Trans. Power Electron. 27(1), 174–188 (2012).

[11] M. Sippola and R. S. Sepponen, “Accurate prediction of high-frequency power transformer losses and temperature rise”, IEEE Trans. Power Electron. 17(5), 835–847 (2002).

[12] M. A. Bahmani, T. Thiringer, H. Ortega, ”An accurate Pseudoempirical Model of Winding Loss Calculation in HF Foil and Round Conductors in Switch mode Magnetics”, IEEE Transactions on Power Electronics, 29(8), 4231–4236 (2014).

[13] Y. Han, W. Eberle and A. Liu, “A practical copper loss measurement method for the planar transformer in high-frequency switching converters”, IEEE Transactions on Industrial Electronics 54(4), 2276–2287 (2007).

[14] A. Stadler and Ch. Gulden, “Improved thermal design of a high frequency power transformer”, Proc. of the 14thEuropean Conference on Power Electronics and Applications (2011).

[15] I. Villar, U. Viscarret, I. Etxeberria-Otadui and A. Rufer, “Global loss evaluation methods for nonsinusoidally fed medium-frequency power transformers”, IEEE Trans. Ind. Electron. 56(10), 4132–4140 (2009).

[16] D. K. Conroy, G. F. Pierce and P. R. Troyk, “Measurement techniques for the design of high-frequency SMPS transformers”, Proc. IEEE 3rd Annu. Power Electron. Conf., 341–351 (1988).

[17] M. Nowak, P. Grzejszczak, M. Zdanowski and R. Barlik, “The thermovision metod for windings power losses assessment of high frequency planar transformer”, Przegląd Elektrotechniczny 88(11), 60–63 (2012).

[18] J. Reinert, A. Brockmeyer and R. W. A. A. De Doncer, “Accurate calculation of power losses in ferro- and ferromagnetic materials based on the modified Steinmetz equation”, IEEE Trans. Ind. Appl. 37(4), 1055–1060 (2001).

[19] P. Dowell, “Effects of eddy currents in transformer windings”, Proc. IEEE 113(8), 1387–1394 (1966).

[20] G. G. Oggier, G. O. Garcia, and A. R. Oliva, „Switching control strategy to minimize dual active bridge converter losses”, IEEE Trans. Power Electron. 24(7), 1826–1838 (2009).

[21] R. Petkov, “Optimum design of a high-power, high-frequency transformer”, IEEE Trans. Power Electron. 11(1), 33–42, (1996).

[22] J.A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components”, IEEE Trans. on Power Electronics 9(1), 127–131 (1994).

[23] H. Rossmanith, M. Doebroenti, M. Albach and D. Exner, “Measurement and characterization of high frequency losses in nonideal litz wires”, IEEE Trans. Ind. Electron. 26(11), 3386–3394 (2011).

[24] Z. Ouyang, O. C. Thomsen and M. A. E. Andersen, “Optimal design and tradeoff analysis of planar transformer in high – power dc-dc converters”, IEEE Trans. Ind. Electron. 59(7), 2800–2810 (2012).

[25] W. G Hurley, W. H. Wölfe and J. O. Breslin, “Optimized transformer design: inclusive of high-frequency effects”, IEEE Transactions on Power Electronics 13(4), 651–659 (1998).

[26] M. Nowak, Grzejszczak P., Zdanowski M., Barlik R., “Thermal measurement for verification of Power loss in semiconductor switching devices”, Przegląd Elektrotechniczny 88(4b), 163–168 (2012).

Bulletin of the Polish Academy of Sciences Technical Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.156
5-year IMPACT FACTOR: 1.238

CiteScore 2016: 1.50

SCImago Journal Rank (SJR) 2016: 0.457
Source Normalized Impact per Paper (SNIP) 2016: 1.239

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 7
PDF Downloads 65 65 1