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ABSTRACT

The aim of the present study was to investigate
the distribution of CYP2CS8 variants *3 and *5, as
well as their effect on carbamazepine pharmacoki-
netic properties, in 40 epileptic pediatric patients on
carbamazepine treatment. Genotyping was conducted
using polymerase chain reaction-restriction fragment
length polymorphism (PCR-RFLP), and allele-spe-
cific (AS)-PCR methods, and steady-state carbam-
azepine plasma concentrations were determined by
high performance liquid chromatography (HPLC).
The CYP2C8 *3 and *5 polymorphisms were found
at frequencies of 17.5 and 0.0%, respectively. Af-
ter dose adjustment, there was a difference in daily
dose in CYP2C8*3 carriers compared to non carri-
ers [mean + standard deviation (SD): 14.19 £+ 5.39
vs. 15.46 + 4.35 mg/kg; p = 0.5]. Dose-normalized
serum concentration of carbamazepine was higher in
CYP2C8*3 (mean + SD: 0.54 £0.18 vs. 0.43 +0.11
mg/mL, p = 0.04), and the observed correlation be-
tween weight-adjusted carbamazepine dose and car-
bamazepine concentration after dose adjustment was
significant only in CYP2C8*3 non carriers (= 0.52,
p=10.002). However, the population pharmacokinetic
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analysis failed to demonstrate any significant effect of
CYP2C8 *3 polymorphism on carbamazepine clear-
ance [CLL/h=0.215+0.0696*SEX+0.000183*DD].
The results indicated that the CYP2C8*3 polymor-
phism might not be of clinical importance for epi-
lepsy treatment in pediatric populations.
Keywords: Carbamazepine pharmacokinetics;
Children; CYP2C8%*3; Population pharmacokinetics.

INTRODUCTION

Carbamazepine belongs to the older generation
of anticonvulsants, which is almost completely me-
tabolized in the liver through processes that involve
several liver enzymes, including CYP2C8 [1-4]. To
date, there are 16 different CYP2CS alleles described
http://www.cypalleles. ki.se/cyp2c8.htm), most of
them associated with altered enzyme activity [5].
Although genes could affect the drug metabolism
there is a general lack of evidence of influence of
CYP2(C8 genetic variations on carbamazepine phar-
macokinetics, especially in children [6]. Since the
drug metabolism in the pediatric population is spe-
cific [7], the extrapolation of knowledge from adults,
without prior evidence of how various factors influ-
ence drug metabolism, may lead to improper man-
agement of pediatric therapy [8]. Therefore, the main
aim of this study was to investigate the effect of the
CYP2(C8 genetic polymorphisms on carbamazepine
dosing, serum concentration and clearance, in epi-
leptic pediatric patients.
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MATERIALS AND METHODS

The study was conducted at the Clinical Centre,
Kragujevac, Serbia, and involved 40 epileptic pediat-
ric patients on ongoing therapy with carbamazepine
[9]. Except for four patients, who were on comedica-
tion with valproate, all others were on monotherapy.
The study was approved by the relevant Ethics Com-
mittee (approval No. 01-7848) and conducted in ac-
cordance with the Declaration of Helsinki and its
subsequent revisions.

Blood samples for drug concentration analysis
were collected twice, both times at the minimal con-
centration point (8-12 hours after the administration
of the last dose): at the beginning of the study, and
4 weeks after dose adjustment. The steady-state car-
bamazepine serum concentrations were determined
by validated high pressure liquid chromatography
(HPLC) assay, as described by Jankovic et al. [10].
An additional blood sample was taken for CYP2CS8
genotyping, and DNA was isolated using the Pure-
linkTM genomic DNA kit (Invitrogen, Carlsbad,
CA, USA). CYP2C8*3 (416G>A, rs11572080)
and CYP2C8*5 (475delA, rs72558196) were geno-
typed using polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP) and
allele-specific (AS)-PCR methods, respectively, ac-
cording to Nakajima et al. [11]. Primers and restric-
tion enzyme were from Invitrogen and New England
Biolabs (Ipswich, MA, USA), respectively, while all
other reagents used were made by Thermo Scientific
(Waltham, MA, USA) or Qiagen GmbH (Hilden,
Germany). Electrophoresis on a 1.2% agarose gel,
stained with Sybr® safe DNA gel stain (Invitrogen),
was used to detect the obtained PCR products and
restriction fragments.

To determine the factors affecting carbamaze-
pine clearance, population pharmacokinetic model-
ing was employed, using the nonlinear mixed effect
model (NONMEM) software, version 7.3.0 (Icon
Development Solution, Hanover, MD, USA), and
ADVAN 1 subroutine (within NONMEM) (one com-
partment model with no absorption). Carbamazepine
serum concentrations, age, body weight, sex, total
carbamazepine daily dose, CYP2C8 genotype and
concomitant therapy with valproate, were included
as covariates by the stepwise addition process in the
model construction, and their significance was esti-
mated by the likelihood ratio test. The final model
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was built through a backward deletion from the full
model, using covariates that met criteria of the mini-
mum objective function value difference of more than
6.6 for nominal p <0.01 and degree of freedom (df) =
1. Inter-patient varia-bility of the clearance and intra-
patient (residual) variability in the concentration was
estimated by exponential, additive, or proportional
error model. Data distribution was assessed through
the ratio of predicted (PRED) and measured the de-
pendent variable (DV) concentrations of the drug, as
well as the ratio in the weighted residuals (WRES)
and PRED values of carbamazepine from the base to
the final model. Bootstrapping analysis, as a prefer-
able validation procedure for the small study sample
size, was used to evaluate the predictive performance
of the final model.

Statistical Analyses. The haplotype analysis
was done by the population genetic software pro-
gram Arlequin, version 3.11 (http://cmpg.unibe.
ch/software/arlequin3), and Statistica, version 7.1
(StatSoft, Tulsa, OK, USA) was used for all other
statistical analyses. The observed and expected al-
lele frequencies were compared by the y? test, and
consistency of the data with the normal distribution
was assessed by the Shapiro-Wilk test. The Spearman
analysis was used to correlate doses and concentra-
tions of carbamazepine, and the Student z-test for
independent groups was used for assessment of dose
requirements and carbamazepine serum concentra-
tions in the CYP2C8*3 carrier and non carrier groups.
A p value of <0.05 was considered significant.

RESULTS

The assessment included 24 male and 16 female
pediatric patients, aged 4-16 years (median: 11 years),
weighing 17 to 65 kg (median: 39 kg). All patients
received daily doses of 260 to 1000 mg orally as tab-
lets or syrup, and four of them were on concomitant
therapy with valproate. Observed CYP2C8 genotype
frequencies (Table 1) were in accordance with the
Hardy-Weinberg equilibrium (y* <1.111, p = 0.05).
As there was only one carrier of the CYP2C8*3/*3
genotype (no CYP2C8*5 was observed), all sub-
jects were designated as either CYP2C8*3 carriers
(CYP2C8*1A/*3 or CYP2C8%*3/*3) or CYP2C8*3
non carriers (CYP2C8*14/*1A).

After dose adjustment based on the serum
concentration, the daily carbamazepine dose was
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Table 1. Nucleotide change, haplotype and genotype frequencies of CYP2C8 in Serbian epileptic pediatric patients on

carbamazepine treatment.

Observed Frequency 95% CI1

Nucleotide change:

416G>A 0.100 (8/80) 0.050, 0.188
475delA 0.000 (0/80) 0.000, 0.056
Haplotype:

CYP2C8*14 0.900 (72/80) 0.812, 0.950
CYP2C8*3 0.100 (8/80) 0.050, 0.188
CYP2C8*5 0.000 (0/80) 0.000, 0.056
Genotype:

CYP2C8*1A4/14 0.825 (33/40) 0.676, 0.861
CYP2C8*1A/*3 0.150 (6/40) 0.068, 0.245
CYP2C8*3/*3 0.025 (1/40) 0.000, 0.109

95% CI: 95% confidence interval.

found to be lower in CYP2(C8*3 carriers compared
to CYP2C8*3 non carriers, although the difference
was not statistically significant [mean + SD (standard
deviation): 14.19 + 5.39 mg/kg vs. 15.46 + 4.35
mg/kg, p = 0.5]. The observed dose and p values
remained exactly the same when valproate users
were excluded from comparison. At the same time,
higher dose-normalized serum concentration of car-
bamazepine was observed in CYP2C8*3 carriers
compared to CYP2CS8 *3 non carriers (mean + SD:
0.54 £ 0.18 vs. 0.43 = 0.11 mg/mL, p = 0.04) (Fig-
ure 1). The observed correlation between weight-
adjusted carbamazepine dose and carba-mazepine
concentration after dose adjustment was significant
only in CYP2C8%*3 non carriers (»=0.52, p=0.002)
(Figure 2).

The mean population value for carbamazepine
clearance, estimated by the base population phar-
macokinetics model, was 4.04 L/h. Inter- and intra-
patient variability was best described by exponential
model error, with the values of 41.37 and 22.64%,
respectively. Out of six examined factors, only three
met the minimum objective function value (MOF)
difference requirement, and thus, were included in
the full model: the total carbamazepine daily dose,
sex and concomitant therapy with valproate. The pro-
cess of backward deletion of covariates from the full
model resulted in the following equation:

CL (L/h)=0.215+0.0696*SEX+0.000183*DD,

where SEX has a value of 1 if male and 0 if fe-
male, and DD is the total carbamazepine daily dose
(mg/day). Value of MOF in the final model was
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Figure 1. Comparison between CYP2CS§ genotype groups
in terms of obtained dose-normalized serum concentration
of carbamazepine after dose adjustment.

Figure 2. Correlation between weight-adjusted daily dose
of carbamazepine and carbamazepine serum concentra-
tions according to the CYP2C8*3 genotype group.
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Table 2. The final model parameter estimates.

Parameters NONMEM Bootstrap Analysis
Estimate 95% CI* Estimate 95% CI®
Clearance (L/h) 0.215 0.176-0.254 0.207 0.189-0.225
Sex 0.0696 0.0545-0.0847 0.0698 0.0527-0.869
Daily dose of carbamazepine (mg/L) 0.000183 0.000079-0.000287 0.000194 0.000141-0.000247
Inter-individual variance of CL 0.0626 0.0371-0.0881 0.0669 0.058-0.0758
Residual variance (exponential) 0.0249 0.018-0.318 0.0262 0.023-0.0294

NONMEM: nonlinear mixed effect model.

* Estimate + 1.96 x (standard error of the estimate).

® Percentile (2.5 and 97.5) of the ranked bootstrap parameter estimates.

148.759 units lower compared to the base model.
The final model parameter estimates are presented
in Table 2. Both inter- and intra-patient variability
were decreased by 25.42 and 15.88%, respectively.
The bootstrapping analysis that was conducted on 200
replicated data with replacement, resulted in similar
values of carbamazepine clearance, effects of total
carbamazepine daily dose, sex, and inter- and intra-
patients variability, indicating a good precision and
stability of the final model.

DISCUSSION

The present study investigated the distribution
frequency of CYP2C8 variations *3 (g.416G>A) and
*5 (g.475delA), and their influence on carbamazepine
dosing, serum concentration and clearance, in Serbian
epileptic pediatric patients. Additionally, we esti-
mated the effect of standard covariates such as body
weight, age, sex, total daily dose of carbamazepine
and other anticonvulsants on carbamazepine clear-
ance. The results rendered sex and total carbamaze-
pine daily dose relevant for carbamazepine treatment.
The CYP2C8 genetic polymorphism significantly
affects carbamazepine metabolism, but its role seems
not to be clinically important.

CYP2C8 is a phase I metabolizing enzyme
involved in biotransformation of numerous drugs
[12,13]. Although not the major role player in carba-
mazepine pharmacokinetics, it is considered to be of
importance as it promotes conversion of the drug to its
active metabolite carbamazepine-10,11-epoxide [ 14].
In addition, the CYP2C8 enzyme is inducible, with
the induction mediated, among others, by pregnane
X and the constitutive androstane receptor [15]. As
both of these receptors might be activated by carba-
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mazepine [16,17], it could be speculated that the con-
tribution of CYP2CS in carbamazepine metabolism
is more complicated compared to its other substrates.
Therefore, the polymorphism of the CYP2C8 coding
gene could partly explain observed inter-individual
variation in response to carbamazepine treatment
[18]. In Caucasians, CYP2C8*3 (g.416G>A) is the
most common nonsynonymous variant, frequently
associated with decreased enzyme activity [12]. On
the other hand, CYP2C8 *5 (g.475delA) belongs to
rare variations, but raises attention as one of the few
that yield highly truncated and most probably com-
pletely inactive enzyme [19]. Based on the present
study, the frequencies of CYP2C8*3 and CYP2C8 *5
polymorphisms in the Serbian population are in ac-
cordance with the data obtained from other Caucasian
populations [5,20-22].

Effects of the CYP2CS8 polymorphism on drug
metabolism have already been investigated [6,21-26].
Although the activity of the most frequent CYP2C8
variant *3 appears to be substrate-dependent [6],
its influence on carbamazepine pharmacokinetics
was not explored. In the present study, there was
a tendency toward lower daily dose and higher se-
rum concentrations of carbamazepine in CYP2C8*3
carriers, indicating decreased enzyme activity and
slower metabolism of the drug. In addition, the ob-
served correlation between carbamazepine dose and
concentration was found to be significant only in
carriers of the CYP2C8 wild type allele. The lack of
similar correlation in the presence of the *3 variant
suggests the existence of other factors that might
affect carbamazepine pharmacokinetics, e.g., by al-
tering the binding activity of the variant CYP2CS8
enzyme [27]. Another plausible explanations might
include the possible dose-dependent autoinduction of



BALKAN JOURNAL OF MEDICAL GENETICS

Milovanovic DD, Milovanovic JR, Radovanovic M, Radosavljevic I, Obradovic S, Jankovic S, Milovanovic D, Djordjevic N

carbamazepine CYP2C8-mediated metabolism [28],
and/or the linkage disequilibrium between *3 and
other CYP2CS$ alleles [18]. Regardless of the cause,
the presented findings render CYP2C8*3 carriers es-
pecially susceptible to an unpredictable reaction to
carbamazepine, and therefore, good candidates for a
closer follow-up during treatment, especially as the
drug concentration in these patients proved not to be
sufficient to guide the dose adjustment.

To further test whether CYP2C8*3 genotyping
should be considered as a routine analysis in patients
on carbamazepine, population pharmacokinetic
analysis was performed. Numerous pharmacokinetic
models are already available from the literature deal-
ing with carbamazepine clearance [29-32]. Bearing
in mind that carbamazepine is the most frequently
used anticonvulsant in Serbia [10], we considered it
relevant to evaluate the CYP2C8 genetic polymor-
phism in a pharmacokinetic model in Serbian epi-
leptic pediatric patients. Population pharmacokinetic
analysis, which included CYP2C8*3 genotype as a
covariate, failed to demonstrate a significant effect of
genetic polymorphism on carbamazepine clearance.
Unlike some other drug therapies investigated so far
[21,22,24], our study showed that CYP2CS8 might
be of lesser clinical importance to carbamazepine
treatment. Yet, the rather small sample size limited
the generality of our findings, and additional stud-
ies, involving more subjects and also other popula-
tions, would be required for a better understanding of
CYP2CS8 polymorphism effects on epileptic patients’
reaction to carbamazepine.

Other findings of our population pharmacokinetic
analysis included sex and total carbamazepine daily
dose as significant indicators of carbamazepine clear-
ance. The observed effect of sex has been previously
reported, with girls having lower values for clearance,
most probably due to estrogen influence on micro-
somal enzymes activity [28,33,34]. However, most
of the authors did not show such differences, thus the
predictive value of sex for carbamazepine clearance
remains controversial [10,30,35-38]. On the contrary,
most of the studies denoted positive correlation of
carbamazepine daily dose with the drug clearance
[32,39,40], and our results confirm those reports.

In conclusion, our results do not support routine
genotyping of CYP2C8 in Serbian epileptic pediat-
ric patients on carbamazepine treatment. Yet, sig-
nificantly higher serum concentrations in CYP2C8*3

carriers confirm the importance of CYP2C8 genetic
polymorphism for carbamazepine pharmacokinetics,
warranting further investigations.
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