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	 ABSTRACT

	 The combination of improving technologies 
for molecular interrogation of global molecular 
alterations in human diseases along with increases 
in computational capacity, have enabled unprec-
edented insight into disease etiology, pathogenesis 
and have enabled new possibilities for biomarker 
development. A large body of data has accumulated 
over recent years, with a most prominent increase 
in information originating from genomic, transcrip-
tomic and proteomic profiling levels. However, the 
complexity of the data made discovery of high-
order disease mechanisms involving various bio-
logical layers, difficult, and therefore required new 
approaches toward integration of such data into a 
complete representation of molecular events occur-
ring on cellular level.
	 For this reason, we developed a new mode of 
integration of results coming from heterogeneous 
origins, using rank statistics of results from each 
profiling level. Due to the increased use of next-
generation sequencing technology, experimental in-
formation is becoming increasingly more associated 
to sequence information, for which reason we have 
decided to synthesize the heterogeneous results us-

ing the information of their genomic position. We 
therefore propose a novel positional integratomic 
approach toward studying ‘omic’ information in hu-
man disease.

	 Keywords: Data integration, Genomics, 
Transcriptomics, High-throughput technologies

	 INTRODUCTION

	 The development of microarray technology in 
the last decade and the upsurge of next-generation 
sequencing in the last few years has provided an 
abundance of data originating from various bio-
logical levels, most prominently from genomic and 
transcriptomic levels [1,2]. Such novel approaches 
have contributed greatly towards our understanding 
of physiological cellular processes, as well as mo-
lecular changes that occur in human disease. The 
high-dimensional nature of data originating from 
these studies has also opened an array of new theo-
retical and statistical challenges that had to be faced 
in order to attain acceptable reproducibility and 
consistency of scientific results [3]. In particular, a 
large number of hypotheses tested in a single ex-
periment produced a substantial amount of statisti-
cal noise, causing large numbers of false-positive 
detections and undue omission of many true-posi-
tive results. Although statistical methods have been 
developed to address these issues, difficulties in in-
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creasing specificity and sensitivity of highly parallel 
approaches still exist, with the greatest notoriety in 
the field of human diseases belonging to a group of 
common, complex disorders.
	 In an attempt to alleviate these drawbacks, we 
developed a method that harnesses the biological re-
lations between data originating from studies inves-
tigating human disease on various biological levels. 
An example of such an approach may be illustrated 
by the fact that genomic alterations associated with 
human disease, i.e., multiple sclerosis (MS), are 
usually investigated and interpreted separately from 
transcriptomic alterations occurring in MS. The bio-
logical relation between these two layers may thus 
be utilized to favor prioritization of genes that were 
detected on both layers, therefore reducing noisy 
results and facilitating detection of true biological 
data. We expect that with the inclusion of increasing 
the number of biological layers and increasing the 
number of studies in the database used for integra-
tion, the comprehensiveness and biological validity 
of prioritized genes would increase progressively.

	 MATERIALS AND METHODS

	 The pathway towards constructing the initial 
database used for subsequent integration is highly 
dependent on the disease of interest. While some 
common disorders have been investigated in sever-
al ‘omic’ studies that investigated several biological 
cellular levels, the sourcing data for other diseases 
may be more scarce. The search for data sources 
should be initiated by an overview of literature 
published to date. When the investigator is familiar 
with the studies performed, the published reports 
and their tables in supplemental materials may be 
used to extract the lists of genes or other genomic 
features with detected significant alterations.
	 A crucial step in obtaining data sources of high 
quality is inspection of available databases that are 
stored in public data repositories. These tend to be 
highly specialized for the biological layer of in-
vestigation. For genomic data from genome-wide 
association studies, data may be extracted from 
dbGAP (http://www.ncbi.nlm.nih.gov/gap), for 
epigenomic, transcriptomic and methylomic data, 
Array Express (http://www.ebi.ac.uk/arrayexpress/) 
or Gene Expression Omnibus (GEO; http://www.
ncbi.nlm.nih.gov/ geo/), and for next generation se-

quencing databases European Nucleotide Archive 
(ENA, http://www.ebi.ac.uk/ ena/) and Sequence 
Read Archive (SRA; http://www.ncbi. nlm.nih.gov/
sra) [4-7].
	 After all the sources have been investigated, 
a collected database of features [genes, mRNAs, 
microRNAs (miRNAs), CpG islands, proteins and 
others] with significant alterations in chosen disease 
should be prepared for each included study. We also 
advise collection of information, such as signifi-
cance values and fold change values, on which pri-
oritization of features for each biological layer will 
be performed in the later steps. If the latter informa-
tion is not available, all the significant alterations 
in a given study will have the same importance in 
integration. In the following section, significant re-
sults from various study types will be collectively 
referred to as “signals” for reasons of clarity.
	 Data Integration. Before data can be integrat-
ed, they have to be reduced to a universal common 
denominator. Due to increasing heterogeneity of 
genetic information, tying biological information 
to gene-level annotation is becoming increasingly 
more difficult. Genomic variation and methylation 
patterns are two examples of information that is 
prohibitively difficult to associate with genes in any 
straightforward manner, as such alterations occur in 
genes, between genes or spread across several genes. 
For this reason, we opted for an integration based on 
the genomic position of features originating from 
various data sources. This required the signals from 
all databases to be converted to their genomic posi-
tions and projected on the genome assembly back-
bone. This step then allows for complete omission 
of difficult annotation conversion steps, required 
before final integration can be performed, greatly 
simplifying the synthesis of heterogeneous data.
	 After signals are positioned on the genomic 
backbone, the complete assembly is divided into 
bins of equal size. For each study, a score is given 
to each of the bins, depending on the score of altera-
tions residing in that segment of the genome. After 
this step, the scores of all bins are prioritized and 
their rank scores calculated. The integration step 
is attained when the non parametric rank product 
for each of the bins is calculated, and on the basis 
of rank scores of bins originating from each data 
source, as we have previously described [8]. The 
lower final rank product signifies that higher ranks 

46



BALKAN JOURNAL OF MEDICAL GENETICS
Peterlin B, Maver A

were attained by bins on several separate biological 
layers [9]. Therefore, these bins represent genomic 
regions where accumulation of signals is detected on 
various biological levels, and thus represent regions 
of interest for further investigation. Ultimately, a 
permutational test may be employed to determine 
the significance of signal accumulation in each bin 
[8]. The detailed overview of the process may be 
observed in Figure 1.

	 RESULTS AND DISCUSSION

	 Results originating from the positional inte-
gratomic approach represent a prioritized list of 
genomic regions, where regions containing the 
greatest accumulation of heterogeneous biological 
alterations in an investigated disease rank highest 
and are characterized by lowest permutation test p 
values. As the integrative approach is performed for 
regions (bins) across the whole genome, the result-
ing genome-wide distribution of results from inte-
gration of data in human disease may be inspected. 
Genome-wide distribution of integration results for 

MS as an example of a complex autoimmune hu-
man disorder is represented in Figure 2. Here, the 
greatest accumulation of signals is observed on 
chromosome 6, specifically in the well-known hu-
man leukocyte antigen (HLA) region, suggesting 
that data from heterogeneous biological sources of 
‘omic’ data indicate the role of this region in MS. 
Moreover, other regions have also attained high in-
tegration scores, suggesting importance of non-HLA 
regions in MS. Specifically, a region containing an 
interleukin-7 receptor gene (IL7R) attained very 
high integrative scores, not only on the basis of de-
tections from genome-wide association studies, but 
also on the basis of evidence from expression profil-
ing studies in blood and brain tissues. Additionally, 
the same region has been ranked high due to infor-
mation obtained from various bioinformatic sources 
of data, such as KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathways and co-expression 
information [10,11]. Such a heterogeneous body of 
evidence offers information of great relevance to 
true biological disease alterations and thus provides 
plausible candidate selection for further studies.

Figure 1. Process of integration of numerous heterogeneous data sources. First, data on significant alterations on a certain biologi-
cal layer is obtained from selected studies (data from various layers is coded by letters a-n and differing colors). These alterations 
or signals are then positioned into genomic bins of fixed size and bin-scores for each of the bins is estimated. For each of the layers 
in a-n, bins are then prioritized on the basis of this score and the rank of each bin is separated. The final integration step is then 
performed by calculating rank products for each of the genomic bins, based on their rank in each of data sources.
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	 The positional approach offers great flexibil-
ity and control over parameters on which the final 
prioritization of genomic regions is based. Based 
on scientific questions, a researcher may be more 
interested in a contribution of only selected bio-
logical layers to the final integration score. For this 
reason, we have implemented means to allow cus-
tom weighting of different sources of data. For ex-
ample, if one is interested in the relation between 
genomic variation and differential methylation, one 
may attribute those two sources greater weights and 
regions where signals from GWAS (genome-wide 
association studies), and global methylation studies 
aggregate will be obtained. Additional levels of con-
trol may also be obtained by customizing the size of 
genomic bins, allowing for detection of interactions 
that spread across larger genomic regions.
	 There has been great interest in deciphering the 
genetic factors with medium-to-low effect sizes as 
the explanation for the phenomenon of missing her-
itability in MS and other complex disorders [12,13]. 
Here, an integrative approach may assist in promot-
ing detection of the genomic variant with its actual 

role in such complex disorder, and distinguishing 
them from spurious noise originating from statistical 
noise generated in genome-wide association stud-
ies. As large-scale studies, which attempt to detect 
low-effect susceptibility factors in human disease, 
have to be performed on large sample sizes, requir-
ing great resources and effort [14], this approach 
may be a mode of comprehensive evidence-based 
selection of molecular determinants to investigate 
in such downstream validation studies.
	 With continuing development of high-through-
put technologies, it is expected that the amount of 
the resulting data in large databases will continue to 
rise. For this reason, novel approaches for interpre-
tation and understanding will also have to be pre-
pared to face these challenges. As it is difficult for a 
single researcher or research group to have a com-
prehensive overview over such a vast information 
landscape, new means of presentation and access to 
these results will have to be envisaged. A position-
based, integrative approach not only represents the 
means to quick insight into heterogeneous evidence 
from several large-scale studies, but is also a basis 

Figure 2. The genome-wide distribution of significance values, based on the permutation test of integration scores. Each region or 
genomic bin is represented by a dot whose height represent significances in the –log10P form, with regions characterized by high 
accumulation of heterogeneous data attaining higher –log10P values. The HLA region on chromosome 6 attained the highest score 
in these analyses with p values below 1·10–9. Notably, non-HLA regions score high as well, offering a landscape of new genomic 
regions for further down-stream investigations
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toward the preparation of an interactive genome 
browser-like solutions for fast and easy access to 
this body of information.
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