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SUMMARY 

It has been suggested that it is possible to monitor the menstrual cycle by measuring the 

concentration of urinary reproductive steroids. This neglects the variation in void volume 

and in urine production rate. In neither case has any systematic analysis been reported 

previously. Overnight urine samples were collected each day for one complete cycle by 

24 women and the void volumes and intervoid times were recorded. The void volume and 

urine production rate were approximately lognormally distributed and the intervoid time 

was approximately normally distributed. Using these distributions we consider the 

implications of the variation in void volume and urine production rate for the comparison 

of the concentrations of a urinary analyte in two samples. 
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1. Introduction 

It has long been standard practice to assay urine analytes in samples collected 

over 24 h (Thudichum, 1858). However, 24 h urines are difficult to obtain 

reliably, especially from non-hospitalised subjects (Miller and Simundic, 2013), 

and their usefulness has been debated frequently (Gaspari et al., 2006; Shidham 

and Herbert, 2006; Côté et al., 2008; Ji et al., 2012). This has led to the use of 

overnight and, sometimes, ‘spot’ urine samples instead. Overnight urine samples, 

in particular, have been shown to be useful in monitoring the menstrual cycle, 

providing that the time between voids is at least 3 h (Brown, 2011), as is 
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recommended in the collection of ‘spot’ samples for other purposes (Shidham 

and Herbert, 2006). 

Irrespective of the sampling regime, the void volume and, often, the time 

between voids vary, so it is necessary to account for the resulting changes in 

quantitative assays of any urinary analyte (Brown et al., 2018). The natural 

approach wherever high quality data are required is simply to measure the urine 

production rate, as has routinely been done by users of the Ovarian Monitor 

(Brown et al., 1989; Blackwell et al., 2003; Blackwell et al., 2012; Blackwell et 

al., 2013; Blackwell et al., 2016). The analyte excretion rate is then calculated by 

multiplying the analyte concentration by the urine production rate (Brown et al., 

2017). Others have used urinary creatinine to approximate this correction, based 

on the rather questionable notion that the rate of creatinine excretion is constant 

(Perrone et al., 1992; Remer et al., 2002; Barr et al., 2005), so that changes in 

concentration are inversely proportional to changes in urine production rate 

(which means that creatinine correction involves dividing the analyte 

concentration by the creatinine concentration to obtain a quantity that is related 

to the analyte excretion rate). Creatinine correction is in widespread use in the 

estimation of urinary analytes and it is not uncommon that creatinine correction 

is also applied to 24 h urines (Lane et al., 2006) or that the ‘accuracy’ or 

‘completeness’ of a 24 h urine sample is assessed using creatinine (Côté et al., 

2008). Other NMR-specific means of correcting for urine volume have been 

proposed that are equivalent to dividing an analyte concentration by a 

combination of analyte concentrations (Craig et al., 2006; Dieterle et al., 2006; 

Rasmussen et al., 2011), and these tend to be used in those contexts in preference 

to the physiologically relevant urine production rate correction. 

More recently, it has been suggested that any direct urine production rate 

correction could be avoided in monitoring the menstrual cycle by using 

deviations from the smoothed, logarithmically transformed concentrations of one 

analyte (pregnanediol 3-glucuronide or PdG in this case) to correct concentration 

estimates of another analyte (oestrone 3-glucuronide or E1G) (Miro et al., 2004; 

Ziomkiewicz et al., 2012). Most recently, it has been suggested that it is not 

necessary to correct for urine production rate at all (MacGregor et al., 2006; 

Ecochard et al., 2013; Johnson et al., 2015). Notably, Johnson et al. (2015) appear 
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to consider that their approach is quantitative despite the complete absence of any 

consideration of the inevitable variation in void volume. In fact they report what 

they describe as ‘normal ranges’ for the concentration of each of several urinary 

analytes, including E1G and PdG. Without any consideration of the implications, 

these authors have confused a quasi-random number (the analyte concentration 

measured in units of mol L-1 or g L-1) for a number that reflects both the analyte 

concentration and the void volume (the excretion rate measured in mol h-1 or g h-

1) that is the physiologically relevant variable (Brown et al., 2018). Where the 

analyte concentration, rather than the analyte excretion rate, is of interest, as may 

be the case in urine metabolomics, it might be satisfactory not to correct for the 

urine production rate; but in circumstances where the analytes are used to monitor 

physiological processes, such as the menstrual cycle, it is unlikely to be sufficient. 

We have reported previously that the urine production rate of a small number 

of samples is approximately lognormally distributed (Brown et al., 2018), but it 

is not clear what the distribution of the void volume and intervoid time might be. 

Moreover we have not considered the implications of the distribution for the 

estimation of urinary analyte concentrations. Here, we address several questions. 

First, how variable is the overnight urine production rate? What is the range and 

how much day-to-day variation is there? Second, given the likely impact on 

analyte concentration (Brown et al., 2018), how large and how variable (range 

and day-to-day) are the void volumes? Third, are the collection times for these 

samples consistent with larger scale studies of the duration of sleep (on the 

assumption that these might approximate the overnight collection interval)? 

Finally, what is the significance of void volume variation for the estimation of 

urinary analytes? 

2. Materials and methods 

2.1 Collection of overnight urine samples 

Each of 24 normally cycling women from Palmerston North collected daily urine 

samples for one complete cycle as described previously (Cooke, 2000). This 

yielded a total of 653 urine samples, for each of which the void volume and the 

time since the previous void (the intervoid time) were recorded and the urine 
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production rate (often called the ‘urine volume’) was calculated from these. In all 

cases, the intervoid time was at least 3 h. 

2.2 Statistical analysis 

Distributions were fitted by maximum likelihood and the most suitable of those 

considered (normal, lognormal, log-logistic, gamma and inverted beta) was 

selected based on the Akaike information criterion as described previously 

(Brown, 2017). Confidence intervals for the correlation coefficient, median, 

skewness and kurtosis excess were calculated using 1000 bootstrap replicates. All 

analyses were carried out in R (Ihaka and Gentleman, 1996). 

3. Results 

3.1 Overall distributions 

The void volumes ranged from 50 mL to 980 mL around a median of 370 mL 

(Table 1). However, the distribution of the void volumes was positively skewed 

(Table 1), consistent with it being approximately lognormal (Figure 1, A and B), 

such that 25% of the samples were in the range of 500 mL to 980 mL (1.4–2.6 

times the median) and 25% of the samples were in the range of 50 mL to 250 mL 

(0.14–0.67 times the median). The median time between voids was 8.67 h and 

ranged from the prescribed minimum time (3 h) to about 14 h (Table 1). The 

distribution of intervoid times was not significantly skewed (Table 1), consistent 

with an approximately Gaussian distribution in which 50% of times were between 

7.75 h and 9.5 h (Figure 1, C and D). The median of the urine production rate was 

about 43 mL h-1 and ranged from 10 mL h-1 to 187 mL h-1 (Table 1), so that the 

maximum was 18 times the minimum. The distribution was positively skewed 

(Table 1) consistent with it being approximately lognormal (Figure 1, E and F). 

While 50% of the samples were reasonably consistent (31–59 mL h-1 or 0.73–

1.39 times the median), 25% of samples varied much more (59–187 mL h-1 or 

1.45–4.4 times the median) and 25% of samples were small (0.24–0.73 times the 

median). 
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Table 1. Summary of the properties of the distributions of void volume, intervoid time 

and urine production rate (Figure 1), based on n = 653 samples from 24 women. Where 

specified, 95% confidence intervals (95% CI) were estimated from 1000 bootstrap 

replicates 

 Void volume (mL) Intervoid time (h) Urine production 

rate (mL/h) 

mean (± SD) 398 ± 174 8.6 ± 1.6 48 ± 24 

median [95% CI] 370 [350, 375] 8.67 [8.50, 8.75] 43 [40,  44] 

skewness* [95% CI] 0.71 [0.57, 0.86] -0.21 [-0.44, 0.05] 1.45 [1.16, 2.03] 

kurtosis excess* [95% CI] 0.1 [-0.2, 0.6] 0.9 [0.5, 1.5] 3.1 [1.5, 6.9] 

range [50, 980] [3.00, 14.08] [10, 186] 

* The skewness and the kurtosis excess of a normally distributed variable are zero. 

 

 

 
Figure 1. Distribution of void volume (A and B), intervoid time (C and D) and urine 

production rate (E and F) for n = 653 overnight samples from 24 different women. In 

each panel the curve is the appropriate form of the lognormal distribution fitted by 

maximum likelihood (the details are given in Table 1) 

 

Overall, the correlation between the intervoid time and the void volume was 

weak (r = 0.10) and that between the intervoid time and the urine production rate 

was slightly stronger (r =–0.33). However, the latter is inevitable given that the 

variables are a ratio and its denominator (Pearson, 1897). Taking each subject 

individually did not alter these significantly. The median correlation between the 

intervoid time and the void volume was r = 0.16 (95% CI = [0.07, 0.24]) and that 

between the intervoid time and the urine production rate was r = –0.19 (95% CI 

= [–0.37, –0.13]).  
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3.2 Day-to-day variation 

The day-to-day variation in void volume, intervoid time and the urine production 

rate was approximately normally distributed (Figure 2), as expected (Dudewicz 

and Mishra, 1988 p. 267; Lo, 2012). In each case the skewness was not 

significantly different from zero, but the kurtosis excess was significantly 

different from zero (Table 1), indicating that the weight of the tails of the 

distribution was slightly greater than would be expected for a normally 

distributed variable (for which the kurtosis excess is zero). The range of variation 

in the daily change in the void volume was –645 mL to 605 mL (interquartile 

range (IQR) = [–120, 120] mL), so that for 25% of days successive void volumes 

differed by between 220 mL and 645 mL. The day-to-day range of variation of 

the urine production rate was –136 mL h-1 to 115 mL h-1 (IQR = [–13.6, 13.9] mL 

h-1, Table 2), so that for 25% of days successive urine production rates differed 

by between 28.5 mL h-1 and 135.6 mL h-1. 

 

 
 

Figure 2. Distribution of the day-to-day change in void volume (A and B), intervoid 

time (C and D) and urine production rate (E and F) for n = 653 samples from 24 

different women. The change for the ith cycle in the variable (x) was calculated each 

day (j = 2, 3, ..., mi) of the cycle as xij – xi(j-1). In each panel the solid curve is a normal 

distribution fitted to the data by maximum likelihood (the details are given in Table 2) 
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Table 2. Summary of the properties of the distributions of the day-to-day change in 

void volume, intervoid time and urine production rate (Figure 2), based on n = 653 

samples from 24 women. Where specified, 95% confidence intervals (95% CI) were 

estimated from 1000 bootstrap replicates 

 Day-to-day change in 

 Void volume  

(mL) 

Intervoid  

time (h) 

Urine production  

rate (mL/h) 

mean (± SD) 1 ± 204 0.0 ±1.9 0 ± 27 

median [95% CI] 0.0 [-30, 0] -0.1 [-0.3, 0.0] 0.1 [-1.5, 2.0] 

skewness* [95% CI] 0.0 [-0.1, 0.2] 0.1 [-0.4, 0.5] -0.2 [-0.7, 0.2] 

kurtosis excess* [95% CI] 0.4  [0.1, 0.9] 2.3 [1.5, 3.7] 2.1 [0.9, 4.3] 

range  [-645, 605] [-8.33,  7.67] [-135.6, 115.2] 

               * The skewness and the kurtosis excess of a normally distributed variable are zero. 

 

3.3 Inter-subject variation 

To give some idea of the range of inter-subject variation of void volume, 

intervoid time and urine production rate, the data are summarised in Figure 3 and 

Table 3 for each of the 24 subjects. The minimum void volume ranged from 50 

mL to 350 mL (median = 175 mL, IQR = [118, 212] mL) and the maximum 

ranged from 540 mL to 980 mL (median = 750 mL, IQR = [690, 810] mL). The 

subjects’ ranges of void volumes varied from 300 mL to 885 mL around a median 

of 563 mL (IQR = [498, 625] mL). This means that 25% of subjects had at least 

one pair of void volumes in a cycle that differed by more than 625 mL. However, 

two subjects (3 and 17, Figure 3A) had a range of void volumes of at least 880 

mL and one subject (13, Figure 3A) had a range of void volumes of only 300 mL. 

Overall, 20 of 24 subjects had at least one void volume in excess of 600 mL and 

17 of 24 subjects had at least one void volume of no more than 200 mL (Figure 

3A).  There was no obvious similarity in the distributions of the void volumes 

and the intervoid times of the subjects (Figure 3, A and B), consistent with the 

poor correlation between these variables reported above. 

The minimum urine production rate ranged from 10 mL h-1 to 44 mL h-1 

(median = 20 mL h-1, IQR = [16, 24] mL h-1) and the maximum ranged from 64 

mL h-1 to 187 mL h-1 (median = 95 mL h-1, IQR = [77, 105] mL h-1). The subjects’ 

ranges of urine production rate varied from 40 mL h-1 to 142 mL h-1 around a 

median of 71 mL h-1 (IQR = [57, 87] mL h-1). This means that 25% of subjects 
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Figure 3. The variability of void volume (A), intervoid time (B) and urine production 

rate (C) for 24 different women arbitrarily sorted by median void volume. In (B) the 

vertical dashed line indicates 3 h, the minimum acceptable intervoid time (Brown, 

2011). Details of the minima, maxima and ranges are given in Table 3 

 

Table 3. Summary of the properties of the distributions data for individual subjects 

(Figure 3), based on n = 653 samples from 24 women 

Median Range of   

 Void volume  

(mL) 

Intervoid  

time (h) 

Urine production 

 rate (mL/h) 

minimum [range]  175 [50, 350]  5.8 [3.0, 8.1]  20 [10, 44] 

maximum [range]  750 [540, 980]  11.0 [9.0, 14.1]  95 [64, 187] 

range [range]  563 [300, 885]  5.3 [1.5, 9.8]  71 [40, 142] 

 

had at least one pair of void volumes in a cycle that differed by more than 87 mL 

h-1. Overall, 12 subjects had at least one day with a urine production rate of no 

more than 20 mL h-1 and 9 subjects had at least one day with a urine production 

rate of at least 100 mL h-1 (Figure 3C). 

4. Discussion and conclusions 

We have shown that the distributions of void volume and urine production rate 

are approximately lognormal (Figure 1, A, B, E and F) and the values vary over 

substantial ranges (0.14–2.6 and 0.24–4.4 times the median for void volume and 

urine production rate respectively; Table 1). The day-to-day changes in void 

volume and urine production rate are approximately normally distributed (Figure 

2, A, B, E and F) as is expected (Dudewicz and Mishra, 1988 p. 267; Lo, 2012). 

However, the kurtosis excess is significantly greater than zero in each case (Table 

2) from which we infer that the probability of extreme values is greater than 

would ordinarily be expected for a normally distributed variable. The intervoid 
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times are approximately normally distributed (Figure 1, C and D, Table 1), 

consistent with reports of sleep duration with much larger sample sizes (Hublin 

et al., 2001; Groeger et al., 2004; Ursin et al., 2005). We have also shown that 

there is no significant correlation between the void volume and the intervoid time 

or between the urine production rate and the intervoid time (Figure 3). Finally, 

we have shown that there can be considerable variation in void volume, intervoid 

time and urine production rate within just one menstrual cycle and that this varies 

significantly between women (Figure 3). 

The approximately lognormal distributions of the void volume and urine 

production rate (Figure 1, A, B, E and F) are significant in at least three respects. 

First, they imply that extreme values of these variables, both large and small, are 

more likely than one would expect for a normally distributed variable. This is 

also reflected in the distribution of the day-to-day changes in void volume (Figure 

2, A, B, E and F, Table 2). Second, they imply that the inclusion of more samples 

is relatively likely to yield values of these variables that are outside the ranges 

reported in Table 1. Third, as the quantity of a urinary analyte in a void (q) 

depends on the excretion rate and the intervoid time and the void volume (V) 

depends on the urine production rate and the intervoid time, the analyte 

concentration (= q/V) is a potentially complex variable (Brown et al., 2018). 

However, considering only the variation in the void volume, for a given q, the 

analyte concentration could vary about 20-fold (Appendix). A similar argument 

applies to the urine production rate (Appendix). 

The lognormal distribution of the urine volume also largely justifies the 

assumption that the post-void residual volume (PVR), the volume of urine 

retained in the bladder after a void, can usually be assumed to be negligible in the 

assay of urine analytes (Brown et al., 2018). Specifically, if the upper limit of the 

PVR of a healthy woman is 50 mL (Al Afraa et al., 2012), then the upper 75% of 

void volumes reported here were 5–19.6 times this volume and only 2.5% of 

samples had a PVR ≤ 2.6 times this volume (Figure 1, A and B), although we did 

observe one void volume of 50 mL (Table 1). Moreover, the PVR is also 

asymmetrically distributed, so smaller volumes are more likely than larger 

volumes, and the reported maxima tend to be much less than 50 mL (Kolman et 

al., 1999; Pfisterer et al., 2007; Barapatre et al., 2009).  
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We have identified the developing tendency to consider unnecessary any 

correction for urine production rate in the case of measurements of E1G and PdG 

in monitoring the menstrual cycle (Miro et al., 2004; MacGregor et al., 2006; 

Ziomkiewicz et al., 2012; Ecochard et al., 2013; Johnson et al., 2015). There are 

other examples of such an approach (Murakami and Kawakami, 1992; Charlton 

et al., 2014), but these relate to situations where very large-scale spot sampling is 

contemplated. The requirements of users of such assays are rather different from 

those of a woman monitoring her own fertility every day. In other cases, such as 

the monitoring of heavy metal exposure by urinalysis, not only is correction 

advocated, but it is demonstrated that the best means of achieving this is to correct 

using the urine production rate (Araki et al., 1986a; Araki et al., 1986b; Weaver 

et al., 2014). We have shown previously that urine production rate correction of 

E1G concentrations is necessary if the intention is to obtain an estimate of the 

corresponding serum analyte concentration (Brown et al., 2018).  

Based on the data shown in Figure 1B it is possible to estimate the probability 

of observing a particular relative concentration as a result of failing to account 

for variations in void volume (Figure 4A). Any comparison of urinary analyte 

concentrations implies an assumption about the void volume that may or may not 

be reasonable. For example, each of two urine samples that happen to contain the 

same quantity of an analyte has a concentration that depends on the void volume. 

If one void volume is V0 = 370 mL, the median void volume we observed (Table 

1), and the corresponding analyte concentration is c0, the probability that the 

analyte concentration of the other sample (c) is less than or equal to 0.5c0 is 0.059 

and that of c ≥ 2c0 is 0.072 just because of the variability of the void volume (we 

use 0.5 and 2 for convenience; much larger and smaller multipliers are possible, 

as is apparent from Figure 4). However, if V0 = 750 mL, which is the median 

maximum void volume observed in a cycle (Table 3), these probabilities are quite 

different: P(c ≤ 0.5c0) < 0.001 and P(c ≥ 2c0) = 0.533 (Figure 4A). On the other 

hand, if V0 = 175 mL, the median minimum void volume observed in a cycle 

(Table 3), these probabilities are essentially reversed: P(c ≤ 0.5c0) = 0.527 and 

P(c ≥ 2c0) < 0.001 (Figure 4A). In summary, (a) the more V0 differs from the 

median void volume, the more likely it is that c and c0 will differ just because of 

differences in the void volume; and (b) if V0 is larger or smaller than the median 
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void volume it is more likely that c > c0 or c < c0, respectively. An analogous 

argument can be made using the urine production rate and analyte excretion rate 

instead of void volume and analyte quantity, respectively (Figure 4B).  

Three factors should be noted in connection with these calculations. First, we 

have been conservative in using the median minima and maxima because the 

actual ranges of variation in void volume (the grey region in Figure 4A) and urine 

production rate (the grey region in Figure 4B) are rather greater (Table 1). 

Second, the likelihood of extreme values is much greater if the urine production 

rate (Figure 4B) rather than just the void volume (Figure 4A) is considered, as 

would be expected given that the former includes both the latter and the variation 

in the intervoid time. We infer from this that the extreme values of the urine 

production rate could lead to greater c/c0 than those of the void volume extrema. 

Third, given the approximately lognormal distribution of the void volume and the 

urine production rate, it is likely that as more samples are considered the range 

will also increase. This is consistent with the data of Hays et al. (2015), who 

reported urine production rates of less than 1 mL h-1 and greater than 1000 mL h-

1 among a sample of 14,631 participants, compared with a range of 10–187 mL 

h-1 for the 24 women in our data. Of course, their subjects were much more 

heterogeneous (both male and female, children to elderly, providing mostly 

daytime urine samples) and they were not excluded on the basis of ill-health, but 

this is an indication of the sort of values that might be encountered in daily 

measurements of E1G and PdG in thousands of women (Brown et al., 2017). 

It has been reported that the 24 h urine production rate differs between the 

follicular and luteal phases of the cycle (Fong and Kretsch, 1993) and fluid 

retention also differs between the phases (White et al., 2011). Given the number 

of samples available to us, we have not investigated this possibility. However, 

such a systematic variation in urine production rate might lead one to expect that 

the smoothing approach described by Miro et al. (2004) is likely to be biased by 

the phase of the cycle, although the extent of this is not clear. 
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Figure 4. Conditional probability of observing a relative analyte concentration (c/c0) 

less than or equal to x due to changes in void volume alone (A) or urine production rate 

(B). As outlined in the Appendix, the curves are based on the fits to the data shown in 

Figures 1B (A) and 1F (B). The assumed values of V0 and U0 were the median (——), 

lower and upper quartiles (– – –), and the medians of the subject minima and maxima (–

––) . The grey zones represent the ranges of void volume (50–980 mL) and urine 

production rate (10–187 mL h-1) in the data (Table 1) 

 

The main weakness of our analysis is that data from overnight samples from 

a single cycle of each of only 24 women have been considered. This precludes 

any consideration of intra-subject variation and constrains analysis of the 

likelihood of extreme values. We will address some of these issues in due course.  

 

APPENDIX 

Consider a urine sample of volume V and intervoid time Δt that contains an 

analyte at concentration c. The quantity of analyte (q) accumulated in the urine 

during Δt is cV and the excretion rate (Eq) is cV/Δt, where V/Δt is the urine 

production rate (U). Based on Figure 1A, V can vary from 50 mL to 980 mL 

(Table 1), with a probability that can be estimated from Figure 1B, so it might be 

argued that c = q/V could range from q/980 to q/50, which is 19.6 times the 

minimum concentration, without any change in Δt, Eq or q. A similar result is 

obtained if it is assumed that Eq (rather than q) is constant, in which case U could 

vary from about 10 mL h-1 to about 187 mL h-1 (Table 1), with a probability that 

can be estimated from Figure 1F, so c = Eq/U could range from Eq/187 to Eq/10, 
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which is 18.7 times the minimum concentration. As we have suggested in the 

text, a larger sample size is likely to yield a considerable increase in this range 

(Hays et al., 2015). 

As both U and V are approximately lognormally distributed (Figure 1, B and 

F), the probability density function is 
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where x is either U or V as required and μ and σ are the mean and standard 

deviation, respectively, of ln(x). The corresponding cumulative density function 

(CDF) is 
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where erf(·) is the error function, which is the smooth curve shown in each of 

Figures 1B and 1F.  

To estimate the probability of observing a particular analyte concentration 

due to a change in only the void volume, as is shown in Figure 4A, we assume 

that two urine samples contain the same quantity of analyte (q = q0). However, 

one sample has specified void volume (V0) and analyte concentration (c0) and the 

other has void volume (V) and the corresponding analyte concentration (c), so q 

= cV = c0V0 and c/c0 = V0/V. It follows from this that, if both samples contain the 

same quantity of analyte (q = q0), the probability of observing c/c0 ≤ x because of 

the natural variation in V is  

 

0

0 0

1
Vc q

P x P x
c q V

   
           . 

As V is approximately lognormally distributed (Figure 1B) and the CDF is 

F(x; μ, σ), 1/V is also lognormally distributed, but the CDF is F(x; –μ, σ), so the 

CDF of V0/V is F(x; –μ + ln(V0), σ).  

Very similar reasoning leads to an expression based on U (Figure 4B). In this 

case, we assume that the two urine samples have the same excretion rate (Eq = 
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Eq0). However, one sample has specified urine production rate (U0) and analyte 

concentration (c0) and the other has urine production rate (U) and the 

corresponding analyte concentration (c), so Eq = Eq0 = cU = c0U0 and c/c0 = U0/U. 

If both samples have the same excretion rate (Eq = Eq0), the probability of 

observing c/c0 ≤ x because of the natural variation in U is  

 

0

0 0

1
q

q

E Uc
P x P x

c E U

   
           . 

As for V, U is approximately lognormally distributed (Figure 1F) and it 

follows that the CDF of U0/U is F(x; –μ + ln(U0), σ). 
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