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SUMMARY 

In the statistical literature there are proposed many test measures to determine the 

independence of two qualitative variables in contingency tables, in particular in two-way 

contingency tables larger than 2 × 2. For statistical analysis, three of the so-called “chi-

squared tests”—the 𝑇3 test, 𝐵𝑃 test and || test—were selected. These tests were 

compared with a logarithmic minimum test, which is the author’s proposal. Critical values 

for the tests were determined with the Monte Carlo method. To compare the tests, an 

appropriate measure of untruthfulness of 𝐻0 was used and the power of the tests was 

calculated. 

Key words: independence test; contingency table; Monte Carlo method; generating 

contingency tables. 

1. Introduction 

Independence tests are probably one of the most commonly used statistical tools. 

Test data are arranged in the form of contingency tables (CTs), in particular  

𝑤 × 𝑘 CTs. The (Pearson’s) 𝜒2 test and the log likelihood ratio 𝐺2 test are the 

best-known and the most commonly used. Garside and Mack (1976) numerically 

compared the sizes of the 𝜒2 test and some of its corrected versions. The authors 

noted that, although the corrected versions are conservative in nature, the 𝜒2 test 

has the size closest to the nominal level α. For small CTs (not applicable to the 

22 case) with small sample sizes, Lawal and Uptong (1984) suggested  

a modification to the 𝜒2 test to make the size closer to the nominal level α. There 

are numerous publications on CTs and the 𝜒2 test of independence—e.g. Meng 
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and Chapman (1966); Diaconis and Efron (1985); Albert (1990); Andrés et al. 

(1995)—where the 𝜒2 test statistics are interpreted from various angles. 

Information about approximations of 𝜒2 and 𝐺2 can be found in Cochran (1952); 

Cochran (1954); Koehler and Larntz (1980); and Cressie and Read (1989). The 

𝜒2 and 𝐺2 tests provide consistent and asymptotically unbiased tests of 

independence (Haberman, 1981). These test statistics belong to the power 

divergence statistics (PDS) family (Cressie and Read, 1984).  

The Fisher exact test (Fisher, 1922) is also popular. It was independently 

developed by Irwin (1935) and is also known as the Fisher–Irwin (FI) test. The 

FI test is most commonly applied to 22 CTs, because it can be computationally 

time-consuming for tables larger than 22. Campbell (2007) recommended the 

use of the 𝜒2 test for large sample sizes and the FI test for small sample sizes. 

Some authors have argued that the FI test is conservative, i.e. that its actual 

rejection rate is below the nominal significance level (Liddell and Douglas, 1976; 

D’Agostino et al., 1988). Lydersen et al. (2009) recommended that the FI test 

should practically never be used. Berry and Mielke (1988) used Monte Carlo 

methods to assess how two asymptotic 𝜒2  tests, two asymptotic G2 tests and  

a recently developed nonasymptotic 𝜒2 test fit the models specified by the null 

hypotheses of independence and homogeneity. The results of the study indicate 

that the nonasymptotic 𝜒2 test is superior in overall performance to the other 

analyzed tests. Lawal and Uptong (1990) compared the PDS with modified 𝜒2 

test statistics (Lawal and Uptong, 1984) by means of the statistical power. Cohen 

and Nee (1990) used Monte Carlo methods and calculated the statistical power 

using the Rao F-test in CTs. Davis (1993) described a generalized chi-square 

approximation to the distribution of the 𝜒2 test statistics for testing independence 

in CTs. The new method consistently yields an estimated p-value approximate to 

the exact result. Yenigün et al. (2011) carried out a simulation study to observe 

the empirical power performance of the maximal correlation test and compared 

it with 𝜒2and 𝐺2 independence tests. When the underlying continuous variables 

are uncorrelated but dependent, the authors pointed out some cases for which the 

maximal correlation test appears to be more powerful. In the paper by Sulewski 
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(2013) a || test, which is a modification of the 𝜒2 test for kw  CTs, was 

proposed. The || test was compared with the PDS for selected sizes of a CT larger 

than 2 × 2 in terms of their power (Sulewski, 2016). Yu (2014) allows the 

margins to be random and compares the power of the 𝐺2, the Bayes factor and 

the FI tests. Shan and Wilding (2015) extend the unconditional approach based 

on estimation and maximization to designs with a fixed total sum. The procedures 

based on the 𝜒2, Yates’s corrected and 𝐺2 test statistics are evaluated with regard 

to actual type I error rates and powers. Lipsitz et al. (2015) propose Wald and 

score test statistics for independence based on weighted least squares estimating 

equations. In contrast to the Rao–Scott test statistics, the proposed Wald and score 

test statistics exist unconditionally. Comparing the Rao–Scott test statistics, the 

score statistics and Wald statistics with respect to power, it was found that the 

Wald test statistics had the highest power. Vélez et al. (2016) propose and 

illustrate a new graphical method of performing diagnostic analyses in two-way 

CTs. In this method one observation is added or removed from each cell at a time, 

whilst the other cells are held constant, and the change in the test statistic of 

interest is represented graphically. 

The bootstrap method is an indispensable tool for testing statistical 

hypotheses. Using resampling, bootstrapping approximates the sampling 

distribution of a statistic under the null (or the alternative) hypothesis. Amiri and 

von Rosen (2011) show that the nonparametric bootstrap method is more efficient 

than the 𝜒2 statistic, the 𝜒2 statistic with a Yates’ correction and the FI test. Lin 

et al. (2015) explore the accuracy of the 𝜒2and 𝐺2 tests through an extensive 

simulation study and then propose bootstrap versions that appear to work better 

than the asymptotic tests in terms of adhering to the nominal level for small to 

large sample sizes as well as extreme cell frequencies. The proposed bootstrap 

tests are more convenient than the FI test, which is also often criticized for being 

too conservative. Amiri and Modarres (2017) proposed a bootstrap test statistic 

that provides more accurate inference for small sample sizes.  

In this paper we propose the new logarithmic minimum statistic (LMS) for 

𝑤 × 𝑘 CTs and compare it with six other statistics. The first is the well-known 
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and commonly used 𝜒2 test statistic (Pearson, 1904). The second and third are 

the 𝐺2 test statistic (Cressie and Read, 1984) and the Neyman modified 𝜒2 test 

statistic (Cressie and Read, 1984), which together with the 𝜒2 statistic represent 

the PDS. The fourth is the || statistic (Sulewski, 2013). The fifth is the 𝑇3 statistic 

(Amiri and von Rosen, 2011), and the sixth is the 𝐵𝑃 test (Amiri and Modarres, 

2017). Critical values were determined by means of the Monte Carlo simulation 

method. For the above test statistics, the power of the tests (PoT) was determined. 

To calculate the PoT, we generate 𝑤 × 𝑘 CTs. At the same time, an appropriate 

measure of untruthfulness of H0 (MoU) for six probability scenarios was defined. 

At the end of the paper, three examples are presented and discussed. 

This article is organized as follows. Section 2 describes four variants of the 

presentation of CTs. Section 3 presents the new LMS and six other test statistics. 

Section 4 is devoted to CT modelling and presents six probability scenarios with 

a data flow parameter. Section 5 presents the measure of untruthfulness of 𝐻0 

(MoU) for the probability scenarios in question. The power of the considered tests 

is determined in section 6, and three examples are presented in section 7. 

2. Variants of presentation of CTs 

Let 𝑋, 𝑌 be two features of the same object and let them have respectively levels 

𝑋1, … , 𝑋𝑤 , 𝑌1, … , 𝑌𝑘. Testing these two features for independence with an 

appropriately arranged CT is probably one of the most common tasks performed 

by statisticians.  

Nowadays there are four major variants of the presentation of CTs, each of 

which serves a specific purpose. These are detailed below: 

 TP Variant (theoretical probabilities). Cells contain probabilities intrinsic to 

the phenomenon under investigation. The exact values of these probabilities 

are unknown to the investigator. In further sections of this paper CTs will be 

first simulated with the Monte Carlo method, and then we will apply the CT 

variant filled with probabilities arbitrarily set by the Monte Carlo 

experimenter. 



 
 
 
 

The LMS for testing independence in two-way contingency tables                21 

 

 EC Variant (experimental counts). Cells contain counts observed on a sample 

drawn from the general population subject to investigation. 

 TC Variant (theoretical counts). Cells contain expected theoretical counts. 

These counts are theoretical in the sense that they result from the TP variant.  

 EP Variant (empirical probabilities). Cells that result from the EC variant and 

contain estimates of the unknown content of TP.  

3. Tests of independence selected for the Monte Carlo study 

Statistical science has been enriched with many statistics proposed as tests for 

independence. However, in practice and in statistical software, the most popular 

and important are the 𝜒2 statistics, especially for CTs larger than 2 × 2. For small 

sample sizes, the critical values for 𝜒2 statistics can be determined by simulation 

methods. In relation to 𝑤 × 𝑘 CTs, the 𝜒2 test statistic is defined as 

𝑄1 = 𝜒2 = ∑ ∑
(𝑛𝑖𝑗−𝑒𝑖𝑗 )

2

𝑒𝑖𝑗

𝑘
𝑗=1

𝑤
𝑖=1              (1) 

where 𝑒𝑖𝑗 = 𝑛𝑖+𝑛+𝑗/𝑛 are expected counts and the plus signs denote summation 

over a row or a column. The statistic (1) asymptotically (i.e. sample size 𝑛 → ∞) 

follows the chi-square distribution with (𝑤 − 1)(𝑘 − 1) degrees of freedom, 

provided that the hypothesis 𝐻0 of the independence of 𝑋 and 𝑌 is true.  

Cressie and Read (1984) proposed the power divergence statistics (PDS).  

A PDS for 𝑤 × 𝑘 CTs is given by  

 𝑃2 =
2

𝜆(𝜆+1)
∑ ∑ 𝑛𝑖𝑗 [(

𝑛𝑖𝑗

𝑒𝑖𝑗

)

𝜆

− 1] (𝜆 ≠ −1,0)𝑘
𝑗=1

𝑤
𝑖=1  

which is always positive, and can be defined by the limit of P2 at 𝜆 =– 1 and  

𝜆 = 0. This is a rich class containing many test statistics, including: 

 the 𝜒2 test statistic (𝜆 = 1), see formula (1), 

 the log likelihood ratio 𝐺2 test statistic (the limit as 𝜆 goes to 0) 

𝑄2 = 𝐺2 = 2 ∑ ∑ 𝑛𝑖𝑗 𝑙𝑛 (
𝑛𝑖𝑗

𝑒𝑖𝑗

)𝑘
𝑗=1

𝑤
𝑖=1 ,            (2) 
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 the Freeman–Tukey test statistic (𝜆 = −0.5)  

𝐹𝑇 = 4 ∑ ∑ (√𝑛𝑖𝑗 − √𝑒𝑖𝑗 )

2

𝑘
𝑗=1

𝑤
𝑖=1 ,     

 the modified 𝐺2 test statistic (the limit as 𝜆 goes to –1) 

𝐾𝐿 = 2 ∑ ∑ 𝑒𝑖𝑗 𝑙𝑛 (
𝑒𝑖𝑗

𝑛𝑖𝑗

)𝑘
𝑗=1

𝑤
𝑖=1 ,     

 the Neyman modified 𝜒2 test statistic (𝜆 = −2) 

𝑄3 = 𝑁 = ∑ ∑
(𝑛𝑖𝑗−𝑒𝑖𝑗 )

2

𝑛𝑖𝑗

𝑘
𝑗=1

𝑤
𝑖=1 ,                         (3) 

 the Cressie–Read test statistic (𝜆 =  2/3) 

𝐶𝑅 =
9

5
∑ ∑ 𝑛𝑖𝑗 [(

𝑛𝑖𝑗

𝑒𝑖𝑗

)

2/3

− 1]𝑘
𝑗=1

𝑤
𝑖=1 .     

Sulewski (2016) showed that among the PDS the Neyman modified 𝜒2 test 

statistic and the 𝜒2 and 𝐶𝑅 tests have similar powers. Amiri and von Rosen 

(2011) considered the 𝜒2 test statistic (1) and the Neyman modified 𝜒2 test 

statistic (3), while Lin et al. (2015) considered the 𝜒2 test statistic (1) and the 𝐺2 

test statistic (2). Therefore, in this paper, statistics (1)–(3) from the PDS family 

were selected for the Monte Carlo study. 

Sulewski (2013) proposed the |𝜒| statistic, which is a modification of the 𝜒2 

statistic and is given by 

𝑄4 = |𝜒| = ∑ ∑
|𝑛𝑖𝑗 −𝑒𝑖𝑗 |

𝑒𝑖𝑗

𝑘
𝑗=1

𝑤
𝑖=1               

The |𝜒| statistic was compared in terms of power with the PDS for CTs larger 

than 2 × 2 (Sulewski, 2016) and for three-way CTs of small sizes (Sulewski, 

2018). It was shown that the |𝜒| test is more powerful than the PDS. 

The author’s proposal is the logarithmic minimum statistic (LMS). The LMS 

for 2 × 2 CTs was introduced in (Sulewski, 2017). This statistic for two-way CTs 

is defined as follows: 
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𝑄5 = 𝐿𝑀𝑆 = − ∑ ∑ 𝑙𝑛 [
𝑚𝑖𝑛(𝑛𝑖𝑗 ,𝑒𝑖𝑗 )

𝑚𝑎𝑥(𝑛𝑖𝑗 ,𝑒𝑖𝑗 )
]𝑘

𝑗=1
𝑤
𝑖=1            (4) 

Formula (4) shows that 𝑛𝑖𝑗 ≠ 0 and 𝑒𝑖𝑗 ≠ 0 for each 𝑖 = 1, … 𝑤;  𝑗 = 1, . . , 𝑘. For 

this reason, the sample size cannot be too small to obtain the power of the test for 

different scenarios. Details appear in the following section.  

It is well-understood that resampling must reflect the null hypothesis. It is 

essential to resample the CT, assuming that 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗 holds. When testing  

the independence of two categorical variables, Amiri and von Rosen (2011)  

and Lin et al. (2015) use the expectation of cells under the null hypothesis: 

𝐻0: 𝑒𝑖𝑗 = 𝑛𝑖+𝑛+𝑗/𝑛. 

Amiri and von Rosen (2011) considered the 𝜒2 test statistic (1), the bootstrap 

version of the 𝜒2 test statistic, the Neyman modified 𝜒2 test statistic (3) and a test 

statistic defined as 

𝑄6 = 𝑇3 = ∑ ∑
(𝑛𝑖𝑗 −𝑒𝑖𝑗 )

2

𝑤𝑘
𝑘
𝑗=1

𝑤
𝑖=1  .             

Lin et al. (2015) considered the 𝜒2 test statistic (1) and the 𝐺2 test statistic 

(2) as well as their bootstrap versions. The main advantage of their methods is 

that the bootstrap methods give sizes of tests very close to the nominal level, 

especially for small sample sizes. Tables 5–10 show that sizes of the 𝜒2 and 𝐺2 

tests for the analyzed sample sizes are identical (to three decimal places) to the 

nominal level. More accurate sizes of the 𝜒2 and 𝐺2 tests are e.g.:  

a) 2 × 3 CT, scenario I, 𝑛 = 50 

 𝛼 = 0.05: 0.0500063 (𝜒2), 0.050008 (𝐺2) 

 𝛼 = 0.1: 0.100054 (𝜒2), 0.1000017 (𝐺2) 

b) 3 × 3 CT, scenario VI, 𝑛 = 40 

 𝛼 = 0.05: 0.050005 (𝜒2), 0.050003 (𝐺2) 

 𝛼 = 0.1: 0.10001 (𝜒2), 0.100008 (𝐺2) 

In this case, there is no need to apply the bootstrap methods in the Monte Carlo 

simulation. 

We can convert the cell counts of the 𝑤 × 𝑘 CT 

(𝑛11, … , 𝑛1𝑘; … ; 𝑛𝑤1, … , 𝑛𝑤𝑘) to (𝑛1, 𝑛2, … , 𝑛𝑁), where 𝑛𝑢 are the 𝑛𝑖𝑗 values 
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indexed row by row. A new variable for each cell is 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑁)𝑡 and the 

associated probabilities are 𝒑 = (𝑝1, … , 𝑝𝑁)𝑡. For a given CT, the variable 𝒁 and 

cell counts follow a multinomial distribution with 𝑛 = ∑ 𝑛𝑘
𝑁
𝑢=1  samples and 

probabilities 𝒑. We can write this as 𝒁~𝑀𝑢𝑙𝑡𝑖(𝑛, 𝒑).  

Let 𝒛 = (𝑧1 = 𝑛1, 𝑧2 = 𝑛2, … , 𝑧𝑁 = 𝑛𝑁) be a multinomial sample with  

𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1 . Estimates of the sample proportions are 𝒑̂ = (𝑝̂1, … , 𝑝̂𝑁), where 

𝑝̂𝑗 = 𝑛𝑗/𝑛. The bootstrap resample is defined as sampling with replacement from 

the elements of z with size 𝑛. The bootstrap estimates of the proportions are  

𝒑∗ = (𝑝1
∗, … , 𝑝𝑁

∗ ) where 𝑝𝑖
∗ = 𝑛𝑖

∗/𝑛.  

Amiri and Modarres (2017) proposed the BP test using a test statistic for the 

bootstrap sample defined as 

𝑄7 = 𝐵𝑃 = 𝑛(𝒑∗ − 𝒑0)𝑡𝐴(𝒑∗ − 𝒑0)             

where 𝒑0 is calculated under 𝐻0: 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗, ∑ 𝑝 = 𝐷𝑖𝑎𝑔(𝒑) − 𝒑𝑡𝒑,  

𝐴 = ∑ 𝑝
−1

 and p is the vector of observed proportions. Since the inverse of ∑ 𝑝 

does not exist (det (∑ 𝑝) = 0), we use the Moore–Penrose generalized inverse, 

implemented in major programming environments such as R, Mathcad and 

Mathematica.  

The above test statistics 𝑄1 − 𝑄7 were selected for the Monte Carlo study. 

4. Modeling how CTs are generated 

Let us treat CT as a mathematical expression of a certain phenomenon being 

considered. This phenomenon makes features 𝑋 and 𝑌 mutually dependent in a 

statistical sense. Saying this, we have in mind that there is an intrinsic mechanism 

behind this phenomenon. This mechanism not only makes the phenomenon 

occur, but also determines the probabilities of particular 𝑋, 𝑌 combinations. 

Figuratively speaking, the phenomenon fills cells of the relevant CT. Let us 

consider the tables shown below: 
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and take them as the “progenitors” of all possible 𝑤 × 𝑘 CTs. 

Continuing this line of reasoning, we have to develop a scenario for a CT’s 

offspring. A simple scenario that offers a prospect of wide applicability is one in 

which portions of probability equal to 𝑎 flow between cells of 𝑇𝑤×𝑘. We can also 

conceptualize an advanced scenario where a is divided into two sub-portions that 

may flow independently between cells. In this and further sections we focus only 

on six scenarios related to 2 × 3, 3 × 3 CTs. These scenarios are listed in Tables 

1–2 and denoted by numbers from I to VI. One may, of course, anticipate a variety 

of modifications of these, as is common in statistics. The scenarios appear to be 

fundamental, so the corresponding PoT will be determined for further 

comparisons just for these scenarios. 
 

Table 1. Contents of 𝟐 × 𝟑 CTs resulting from given scenarios 

Scenario I 

 𝑌1 𝑌2 𝑌3 

𝑋1 a6/1  6/1  6/1  

𝑋2 6/1  6/1  a6/1  

Scenario II 

 𝑌1 𝑌2 𝑌3 

𝑋1 a6/1  a6/1  6/1  

𝑋2 a6/1  a6/1  6/1  

Scenario III 

 𝑌1 𝑌2 𝑌3 

𝑋1 a6/1  6/1  a6/1  

𝑋2 a6/1  6/1  a6/1  
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Table 2. Contents of 𝟑 × 𝟑 CTs resulting from given scenarios  

Scenario IV 

 𝑌1 𝑌2 𝑌3 

𝑋1 a9/1  2/9/1 a  9/1  

𝑋2 2/9/1 a  9/1  2/9/1 a  

𝑋3 9/1  2/9/1 a  a9/1  

Scenario V 

 𝑌1 𝑌2 𝑌3 

𝑋1 a9/1  2/9/1 a  9/1  

𝑋2 9/1  9/1  9/1  

𝑋3 a9/1  2/9/1 a  9/1  

Scenario VI 

 𝑌1 𝑌2 𝑌3 

𝑋1 a9/1  9/1  a9/1  

𝑋2 9/1  9/1  9/1  

𝑋3 a9/1  9/1  a9/1  

 

In all of the above scenarios the inflow/outflow portion |𝑎| ≤ 1/(𝑤𝑘). Scenarios 

may locally mutate, for example, by transposition of rows or columns. 

The scenarios put forward here are very simple equal-portion scenarios. Of 

course, the real-life scenarios according to which particular CTs are generated 

may be similar to those presented above, as is typical for relations between theory 

and real life. The simple Exponential and Gaussian distributions turned out to be 

indispensable in practice. 

Table 3 presents 3 × 3 CTs under scenario IV with empirical counts (EC) and 

empirical probabilities (EP), where 𝑎 = 1/15. 

If the 𝑛 objects in the sample are independently and identically distributed, 

then the vector of cell counts 𝒁 = (𝑛11, … , 𝑛1𝑘; … ; 𝑛𝑤1, … , 𝑛𝑤𝑘)𝑇 has 

multinomial distribution as 𝒁~𝑀𝑢𝑙𝑡𝑖(𝑛, 𝑎). Each scenario has a multinomial 

distribution of its own. Particular formulae are easy to obtain by substituting 

probabilities embedded in the multinomial distribution with probabilities taken 

from the relevant cells of the CT. One must then laboriously simplify the results 

of the substitutions. The following distributions reflect scenarios I–II:  
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Table 3. EC and EP variants of 𝟑 × 𝟑 CTs under scenario IV and 𝒏 = 𝟗𝟔 

EC Variant 

 𝑌1 𝑌2 𝑌3 Total 

𝑋1 4 7 11 22 

𝑋2 7 11 14 32 

𝑋3 11 14 17 42 

Total 22 32 42 96 

EP Variant 

 𝑌1 𝑌2 𝑌3 Total 

𝑋1 4/90 7/90 10/90 21/90 

𝑋2 7/90 10/90 13/90 30/90 

𝑋3 10/90 13/90 16/90 39/90 

Total 21/90 30/90 39/90 1 
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To enable the wide applicability of the probabilistic model, its flexibility and 

ability to estimate have to be equilibrated. The ability to estimate means the 

effectiveness of estimation of parameters. Flexibility is mainly determined by the 

number of parameters embedded in a model (but also by the places which 

parameters occupy in a model formula). Increasing flexibility results in 

decreasing ability to estimate. Obviously one can add 𝑎1, 𝑎2 to the model (and 

even 𝑎3) for good measure, but in this way an ineffective “sample glutton” will 

be created. Since the statistical inference method put forward in this paper is 

oriented rather towards small samples, the author is confident that a one-

parameter model achieves the equilibrium.  

5. Measure of untruthfulness of H0 

As we have already stated in section 2, certain classes of feature 𝑋 are ascribed 

to rows and certain classes of feature Y are ascribed to columns. The features 𝑋, 𝑌 
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are independent and H0 is true, if 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗, of course. When this equality is 

not fulfilled, H0 does not hold and an appropriate measure of untruthfulness of H0 

(MoUH) is needed. There are many different measures in the literature, inter alia: 

Pearson’s , Tschuprow’s 𝑇, Cramer’s 𝑉, the corrected contingency 𝐶, and 

Goodman and Kruskal’s .  

Sulewski (2017) proposed an MoUH for 2 × 2 CTs denoted by MoU. This 

measure for 𝑤 × 𝑘 CTs is defined as 

𝑀𝑜𝑈 = ∑ ∑ |𝑝𝑖𝑗 − 𝑝𝑖+𝑝+𝑗|𝑘
𝑗=1

𝑤
𝑖=1 . 

Replacing theoretical probabilities by empirical ones (EP Variant), we obtain the 

sample MoU as 

 𝑀𝑜𝑈𝑒 =
1

𝑛
∑ ∑ |𝑛𝑖𝑗

∗ −
𝑛𝑖+

∗ 𝑛+𝑗
∗

𝑛
|𝑘

𝑗=1
𝑤
𝑖=1 =

1

𝑛
∑ ∑ |𝑛𝑖𝑗

∗ − 𝑒𝑖𝑗
∗ |𝑘

𝑗=1
𝑤
𝑖=1 . 

The MoU measure takes values in [0,1], and will be applied in the Monte Carlo 

simulation. This measure undoubtedly reflects the essence of 𝐻0 and seems to be 

of a very simple form. In the statistical literature there are measures very similar 

to the MoU. These less-known measures are: 

 D test statistic (Sulewski, 2014) 

𝐷 = ∑ ∑ (𝑝𝑖𝑗 − 𝑝𝑖 𝑝𝑗)
2𝑘

𝑗=1
𝑤
𝑖=1 ,      

 Belson test statistic (Marcotorchino, 1984) 

𝐵 = 𝑛2 ∑ ∑ (𝑝𝑖𝑗 − 𝑝𝑖 𝑝𝑗)
2𝑘

𝑗=1
𝑤
𝑖=1 ,     

 Jordan test statistic (Marcotorchino, 1984) 

𝐽 = 𝑛 ∑ ∑ (𝑝𝑖𝑗 − 𝑝𝑖 𝑝𝑗)
2𝑘

𝑗=1
𝑤
𝑖=1 ,      

 Variation of Squares test statistic (Marcotorchino, 1984) 

𝐸 = 𝑛2 ∑ ∑ (𝑝𝑖𝑗 − 𝑝𝑖 𝑝𝑗)(𝑝𝑖𝑗 + 𝑝𝑖 𝑝𝑗)𝑘
𝑗=1

𝑤
𝑖=1 .    

To go further, we need to take notice of the relations between the MoUH and 

test statistics (TS). MoUH and TS are functions of CT cell contents, although 

there is a fundamental difference between them: while MoUH takes appropriate 
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values of cell probabilities, TS takes only relevant estimates of probabilities. As 

a result, when 𝐻0 is true, MoUH is (by definition) equal to zero. Conversely, TS 

may be, and very often is, of non-zero value when 𝐻0 is true. It may occasionally 

be equal to zero when 𝐻0 is false. This is because the MoUH is a non-random 

variable while the test statistic is a random variable. Each test statistic can be 

converted to MoUH by replacing estimates with actual values. Conversely, each 

MoUH can, in a similar way, be converted to test statistics. Table 4 presents  

the MoU formulae for 𝑤 × 𝑘 CTs under scenarios I–VI and maximum values of 

MoU.     

 
Table 4. MoU under scenarios I–III (CT 2×3), IV–VI (CT 3×3),  

where 𝒂 ∈ [𝟎, 𝟏/(𝒘𝒌)] 

Scenario 𝑀𝑜𝑈 𝑀𝑜𝑈𝑚𝑎𝑥 Scenario 𝑀𝑜𝑈 𝑀𝑜𝑈𝑚𝑎𝑥 

I 4a/3 2/9 IV 9a2 1/9 

II 8a/3 4/9 V 2a 2/9 

III 4a 6/9 VI 4a 4/9 

6. Determining the power of the test 

In this paper an algorithm generating two-way CTs using the bar method is 

applied. The bar method is similar to generating random numbers that follow the 

multinomial distribution. Details of the bar method applied to two-way and three-

way CTs may be found in Sulewski and Motyka (2015) and Sulewski (2018) 

respectively.  

Different scenarios determine different intervals of achievable MoU  

values. Statistics (2), (3) and (4) can be calculated when 𝑛𝑖𝑗
∗ ≠ 0 for each  

𝑖 = 1, … 𝑤;  𝑗 = 1, . . , 𝑘. The PoT is not calculated for the maximum MoU value 

under a given scenario (see Table 4) because in this case 𝑛𝑖𝑗
∗ = 0 for any  

𝑖 = 1, … 𝑤;  𝑗 = 1, . . , 𝑘. We need the minimal sample size 𝑛 for each particular 

scenario to guarantee 𝑒𝑖𝑗
∗ ≠ 0 for each 𝑖 = 1, … 𝑤;  𝑗 = 1, . . , 𝑘. Example 3, based 

on real data, shows how to use statistic (4) when the CT has zero cells.  

An algorithm calculating the critical value of test and the PoT is presented in 

Sulewski (2017) and Sulewski (2018). 
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Tables 5–7 show sizes and powers of tests for 2 × 3 CTs, scenarios I–III and 

sample size 𝑛. Tables 8–10 show sizes and powers of tests for 3 × 3 CTs, 

scenarios IV–VI and sample size 𝑛.  
 

Table 5. Sizes and powers of tests for 𝟐 × 𝟑 CTs and scenario I 

Test 
MoU 

0 0.022 0.044 0.067 0.089 0.111 0.133 0.156 0.178 0.200 

𝛼 = 0.05, 𝑛 = 50 

𝜒2 0.050 0.051 0.055 0.062 0.081 0.105 0.135 0.174 0.221 0.267 

𝐺2 0.050 0.052 0.057 0.067 0.081 0.102 0.135 0.175 0.245 0.279 

𝑁 0.050 0.051 0.059 0.070 0.088 0.114 0.160 0.210 0.305 0.376 

|𝜒| 0.050 0.051 0.056 0.067 0.091 0.123 0.170 0.228 0.306 0.391 

𝐿𝑀𝑆 0.050 0.051 0.057 0.069 0.096 0.134 0.190 0.266 0.366 0.488 

𝑇3 0.051 0.054 0.056 0.070 0.073 0.091 0.115 0.135 0.166 0.178 

𝐵𝑃 0.055 0.060 0.080 0.142 0.230 0.437 0.674 0.882 0.986 1.000 

𝛼 = 0.05, 𝑛 = 100 

𝜒2 0.050 0.056 0.069 0.096 0.136 0.200 0.294 0.422 0.586 0.766 

𝐺2 0.050 0.559 0.058 0.093 0.116 0.187 0.286 0.415 0.597 0.793 

𝑁 0.050 0.055 0.058 0.093 0.116 0.195 0.306 0.452 0.649 0.863 

|𝜒| 0.050 0.056 0.070 0.101 0.148 0.228 0.350 0.510 0.705 0.892 

𝐿𝑀𝑆 0.050 0.056 0.071 0.102 0.152 0.237 0.367 0.540 0.742 0.924 

𝑇3 0.050 0.056 0.058 0.087 0.103 0.151 0.210 0.287 0.410 0.513 

𝐵𝑃 0.051 0.067 0.119 0.262 0.437 0.751 0.938 0.995 1.000 1.000 

𝛼 = 0.1, 𝑛 = 50 

𝜒2 0.100 0.100 0.107 0.121 0.144 0.180 0.232 0.287 0.340 0.414 

𝐺2 0.100 0.114 0.122 0.136 0.153 0.209 0.238 0.288 0.371 0.428 

𝑁 0.100 0.115 0.123 0.137 0.154 0.215 0.265 0.323 0.431 0.520 

|𝜒| 0.100 0.101 0.109 0.128 0.158 0.206 0.271 0.352 0.439 0.551 

𝐿𝑀𝑆 0.100 0.101 0.109 0.129 0.162 0.215 0.290 0.385 0.495 0.638 

𝑇3 0.100 0.111 0.121 0.129 0.141 0.187 0.197 0.231 0.275 0.289 

𝐵𝑃 0.101 0.106 0.136 0.216 0.324 0.542 0.760 0.920 0.992 1.000 

𝛼 = 0.1, 𝑛 = 100 

𝜒2 0.100 0.108 0.128 0.162 0.223 0.297 0.406 0.549 0.711 0.860 

𝐺2 0.100 0.108 0.133 0.146 0.228 0.292 0.398 0.541 0.731 0.871 

𝑁 0.100 0.108 0.133 0.150 0.235 0.300 0.413 0.573 0.774 0.909 

|𝜒| 0.100 0.108 0.131 0.170 0.239 0.330 0.462 0.625 0.801 0.935 

𝐿𝑀𝑆 0.100 0.108 0.131 0.171 0.242 0.336 0.473 0.644 0.823 0.952 

𝑇3 0.100 0.106 0.130 0.142 0.215 0.255 0.335 0.435 0.558 0.668 

𝐵𝑃 0.102 0.127 0.168 0.253 0.361 0.583 0.789 0.941 0.995 1.000 

  



 
 
 
 

The LMS for testing independence in two-way contingency tables                31 

 

Table 6. Sizes and powers of tests for 𝟐 × 𝟑 CTs and scenario II 

Test 
MoU 

0.000 0.044 0.089 0.133 0.178 0.222 0.267 0.311 0.356 0.400 

𝛼 = 0.05, 𝑛 =50 

𝜒2 0.050 0.063 0.082 0.131 0.204 0.312 0.444 0.591 0.725 0.841 

𝐺2 0.050 0.055 0.090 0.135 0.216 0.305 0.426 0.566 0.701 0.804 

𝑁 0.050 0.054 0.090 0.134 0.216 0.300 0.424 0.556 0.702 0.812 

|𝜒| 0.050 0.064 0.085 0.142 0.228 0.360 0.524 0.699 0.845 0.946 

𝐿𝑀𝑆 0.050 0.064 0.085 0.141 0.227 0.357 0.520 0.692 0.839 0.942 

𝑇3 0.050 0.057 0.082 0.120 0.194 0.253 0.344 0.456 0.542 0.630 

𝐵𝑃 0.055 0.070 0.128 0.269 0.452 0.713 0.904 0.983 0.999 1.000 

𝛼 = 0.05, 𝑛 = 75 

𝜒2 0.050 0.062 0.101 0.178 0.301 0.463 0.647 0.811 0.924 0.979 

𝐺2 0.050 0.066 0.098 0.177 0.296 0.464 0.648 0.809 0.921 0.974 

𝑁 0.050 0.069 0.101 0.175 0.299 0.460 0.643 0.809 0.917 0.977 

|𝜒| 0.050 0.063 0.104 0.190 0.332 0.517 0.721 0.882 0.969 0.997 

𝐿𝑀𝑆 0.050 0.063 0.104 0.188 0.327 0.509 0.712 0.877 0.967 0.997 

𝑇3 0.050 0.065 0.097 0.171 0.272 0.409 0.561 0.699 0.813 0.889 

𝐵𝑃 0.053 0.079 0.169 0.366 0.626 0.885 0.985 0.999 1.000 1.000 

𝛼 = 0.1, 𝑛 = 50 

𝜒2 0.100 0.110 0.147 0.218 0.313 0.436 0.571 0.702 0.820 0.912 

𝐺2 0.100 0.107 0.138 0.216 0.306 0.433 0.559 0.682 0.789 0.896 

𝑁 0.100 0.110 0.130 0.216 0.310 0.431 0.558 0.691 0.795 0.895 

|𝜒| 0.100 0.110 0.151 0.232 0.339 0.483 0.639 0.785 0.900 0.972 

𝐿𝑀𝑆 0.100 0.110 0.150 0.231 0.338 0.482 0.634 0.780 0.899 0.972 

𝑇3 0.100 0.105 0.128 0.204 0.288 0.378 0.484 0.584 0.666 0.753 

𝐵𝑃 0.101 0.123 0.199 0.361 0.551 0.788 0.940 0.991 1.000 1.000 

𝛼 = 0.1, 𝑛 = 75 

𝜒2 0.100 0.121 0.179 0.281 0.423 0.592 0.756 0.885 0.959 0.991 

𝐺2 0.100 0.117 0.183 0.279 0.420 0.584 0.750 0.883 0.958 0.988 

𝑁 0.100 0.118 0.181 0.281 0.418 0.580 0.748 0.878 0.955 0.989 

|𝜒| 0.100 0.122 0.182 0.292 0.450 0.637 0.809 0.927 0.983 0.999 

𝐿𝑀𝑆 0.100 0.121 0.181 0.292 0.447 0.632 0.804 0.925 0.982 0.998 

𝑇3 0.100 0.118 0.178 0.263 0.392 0.528 0.679 0.805 0.891 0.939 

𝐵𝑃 0.101 0.138 0.253 0.478 0.724 0.927 0.993 1.000 1.000 1.000 
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Table 7. Sizes and powers of tests for 𝟐 × 𝟑 CTs and scenario III 

Test 
MoU 

0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600 

𝛼 = 0.05, 𝑛 = 30 

𝜒2 0.050 0.066 0.116 0.202 0.311 0.467 0.647 0.802 0.930 0.984 

𝐺2 0.050 0.066 0.116 0.198 0.306 0.466 0.642 0.799 0.924 0.983 

𝑁 0.050 0.065 0.111 0.191 0.291 0.447 0.624 0.792 0.921 0.984 

|𝜒| 0.050 0.066 0.113 0.194 0.303 0.445 0.633 0.793 0.922 0.985 

𝐿𝑀𝑆 0.050 0.067 0.114 0.189 0.298 0.441 0.632 0.790 0.916 0.984 

𝑇3 0.050 0.067 0.115 0.199 0.304 0.454 0.627 0.781 0.888 0.962 

𝐵𝑃 0.055 0.059 0.092 0.146 0.234 0.411 0.616 0.828 0.955 0.998 

𝛼 = 0.05, 𝑛 = 50 

𝜒2 0.050 0.074 0.168 0.316 0.522 0.749 0.902 0.980 0.998 1.000 

𝐺2 0.050 0.074 0.167 0.313 0.522 0.745 0.899 0.979 0.999 1.000 

𝑁 0.050 0.070 0.161 0.306 0.509 0.733 0.891 0.978 0.999 1.000 

|𝜒| 0.050 0.073 0.164 0.299 0.515 0.737 0.891 0.976 0.999 1.000 

𝐿𝑀𝑆 0.050 0.070 0.158 0.298 0.504 0.726 0.888 0.976 0.999 1.000 

𝑇3 0.050 0.073 0.168 0.316 0.517 0.740 0.892 0.973 0.996 1.000 

𝐵𝑃 0.055 0.068 0.133 0.247 0.423 0.679 0.879 0.980 0.998 1.000 

𝛼 = 0.1, 𝑛 = 30 

𝜒2 0.100 0.125 0.189 0.298 0.443 0.612 0.777 0.890 0.963 0.996 

𝐺2 0.100 0.123 0.188 0.295 0.438 0.608 0.774 0.889 0.961 0.995 

𝑁 0.100 0.122 0.186 0.286 0.423 0.587 0.759 0.885 0.959 0.996 

|𝜒| 0.100 0.123 0.188 0.287 0.431 0.599 0.768 0.883 0.959 0.993 

𝐿𝑀𝑆 0.100 0.118 0.187 0.279 0.424 0.586 0.757 0.881 0.957 0.993 

𝑇3 0.100 0.126 0.190 0.295 0.438 0.597 0.758 0.871 0.943 0.985 

𝐵𝑃 0.108 0.115 0.157 0.238 0.347 0.538 0.720 0.889 0.971 0.999 

𝛼 = 0.1, 𝑛 = 50 

𝜒2 0.100 0.133 0.253 0.436 0.662 0.841 0.949 0.991 0.999 1.000 

𝐺2 0.100 0.132 0.253 0.433 0.660 0.839 0.949 0.991 0.999 1.000 

𝑁 0.100 0.131 0.249 0.429 0.654 0.836 0.947 0.992 0.999 1.000 

|𝜒| 0.100 0.131 0.245 0.430 0.651 0.833 0.945 0.991 0.999 1.000 

𝐿𝑀𝑆 0.100 0.130 0.245 0.424 0.649 0.830 0.943 0.990 0.999 1.000 

𝑇3 0.100 0.133 0.258 0.440 0.657 0.833 0.942 0.989 0.998 1.000 

𝐵𝑃 0.101 0.111 0.200 0.341 0.533 0.767 0.922 0.988 0.999 1.000 
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Table 8. Sizes and powers of tests for 𝟑 × 𝟑 CTs and scenario IV 

Test 
MoU 

0.000 0.001 0.004 0.010 0.018 0.028 0.040 0.054 0.071 0.090 

𝛼 = 0.05, 𝑛 = 75 

𝜒2 0.050 0.052 0.048 0.053 0.051 0.052 0.055 0.058 0.062 0.069 

𝐺2 0.050 0.045 0.044 0.048 0.047 0.049 0.054 0.053 0.061 0.068 

𝑁 0.050 0.045 0.045 0.054 0.054 0.060 0.068 0.072 0.080 0.090 

|𝜒| 0.050 0.052 0.053 0.059 0.064 0.072 0.086 0.099 0.130 0.159 

𝐿𝑀𝑆 0.050 0.051 0.054 0.059 0.067 0.080 0.098 0.123 0.157 0.202 

𝑇3 0.050 0.051 0.049 0.047 0.046 0.046 0.048 0.051 0.059 0.068 

𝐵𝑃 0.052 0.060 0.088 0.157 0.278 0.479 0.736 0.926 0.995 1.000 

𝛼 = 0.05, 𝑛 = 100 

𝜒2 0.050 0.050 0.050 0.051 0.058 0.057 0.062 0.073 0.100 0.107 

𝐺2 0.050 0.048 0.051 0.055 0.052 0.060 0.058 0.079 0.088 0.120 

𝑁 0.050 0.049 0.055 0.058 0.064 0.074 0.085 0.128 0.152 0.223 

|𝜒| 0.050 0.051 0.054 0.056 0.068 0.079 0.100 0.135 0.186 0.258 

𝐿𝑀𝑆 0.050 0.051 0.054 0.060 0.076 0.087 0.124 0.179 0.271 0.391 

𝑇3 0.050 0.047 0.049 0.053 0.049 0.053 0.051 0.064 0.075 0.085 

𝐵𝑃 0.052 0.060 0.103 0.200 0.365 0.620 0.861 0.980 0.999 1.000 

𝛼 = 0.1, 𝑛 = 75 

𝜒2 0.100 0.095 0.095 0.096 0.098 0.105 0.102 0.115 0.122 0.137 

𝐺2 0.100 0.100 0.102 0.108 0.095 0.106 0.111 0.115 0.136 0.140 

𝑁 0.100 0.104 0.106 0.109 0.109 0.119 0.136 0.147 0.172 0.187 

|𝜒| 0.100 0.095 0.099 0.109 0.116 0.132 0.149 0.182 0.216 0.264 

𝐿𝑀𝑆 0.100 0.096 0.100 0.111 0.124 0.146 0.170 0.211 0.261 0.324 

𝑇3 0.100 0.105 0.103 0.101 0.093 0.090 0.104 0.104 0.119 0.123 

𝐵𝑃 0.106 0.118 0.166 0.259 0.408 0.611 0.826 0.960 0.997 1.000 

𝛼 = 0.1, 𝑛 = 100 

𝜒2 0.100 0.098 0.098 0.104 0.106 0.112 0.120 0.137 0.172 0.202 

𝐺2 0.100 0.100 0.097 0.108 0.106 0.116 0.117 0.154 0.186 0.236 

𝑁 0.100 0.099 0.095 0.114 0.119 0.128 0.147 0.192 0.264 0.355 

|𝜒| 0.100 0.102 0.102 0.110 0.127 0.149 0.169 0.228 0.290 0.396 

𝐿𝑀𝑆 0.100 0.104 0.104 0.114 0.137 0.163 0.194 0.282 0.380 0.533 

𝑇3 0.100 0.099 0.096 0.098 0.092 0.107 0.098 0.122 0.143 0.169 

𝐵𝑃 0.103 0.118 0.186 0.321 0.498 0.742 0.919 0.990 1.000 1.000 
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Table 9. Sizes and powers of tests for 𝟑 × 𝟑 CTs and scenario V 

Test 
MoU 

0.000 0.022 0.044 0.067 0.089 0.111 0.133 0.156 0.178 0.200 

𝛼 = 0.05, 𝑛 = 75 

𝜒2 0.050 0.052 0.068 0.091 0.124 0.173 0.241 0.327 0.427 0.533 

𝐺2 0.050 0.055 0.070 0.089 0.119 0.171 0.245 0.330 0.413 0.539 

𝑁 0.050 0.057 0.073 0.084 0.125 0.175 0.260 0.363 0.477 0.639 

|𝜒| 0.050 0.051 0.068 0.092 0.129 0.183 0.264 0.366 0.485 0.613 

𝐿𝑀𝑆 0.050 0.051 0.068 0.093 0.132 0.191 0.279 0.398 0.539 0.694 

𝑇3 0.050 0.052 0.070 0.088 0.115 0.156 0.224 0.279 0.334 0.429 

𝐵𝑃 0.052 0.056 0.082 0.137 0.237 0.418 0.663 0.888 0.989 1.000 

𝛼 = 0.05, 𝑛 = 100 

𝜒2 0.050 0.056 0.075 0.103 0.160 0.234 0.346 0.477 0.615 0.751 

𝐺2 0.050 0.048 0.073 0.109 0.163 0.253 0.332 0.488 0.653 0.783 

𝑁 0.050 0.051 0.074 0.109 0.160 0.253 0.353 0.527 0.703 0.844 

|𝜒| 0.050 0.056 0.077 0.106 0.169 0.250 0.376 0.521 0.680 0.825 

𝐿𝑀𝑆 0.050 0.056 0.075 0.107 0.171 0.258 0.394 0.555 0.731 0.886 

𝑇3 0.050 0.050 0.079 0.102 0.154 0.226 0.299 0.414 0.525 0.611 

𝐵𝑃 0.052 0.063 0.095 0.165 0.317 0.554 0.799 0.961 0.999 1.000 

𝛼 = 0.1, 𝑛 = 75 

𝜒2 0.100 0.108 0.124 0.161 0.208 0.276 0.364 0.461 0.566 0.675 

𝐺2 0.100 0.111 0.122 0.148 0.209 0.268 0.358 0.472 0.570 0.697 

𝑁 0.100 0.111 0.122 0.149 0.206 0.272 0.368 0.505 0.614 0.772 

|𝜒| 0.100 0.107 0.125 0.164 0.216 0.294 0.393 0.506 0.630 0.755 

𝐿𝑀𝑆 0.100 0.108 0.125 0.165 0.219 0.301 0.408 0.534 0.674 0.815 

𝑇3 0.100 0.112 0.121 0.145 0.198 0.254 0.319 0.414 0.474 0.567 

𝐵𝑃 0.103 0.112 0.146 0.231 0.358 0.549 0.769 0.931 0.994 1.000 

𝛼 = 0.1, 𝑛 = 100 

𝜒2 0.100 0.109 0.141 0.186 0.250 0.349 0.471 0.605 0.740 0.853 

𝐺2 0.100 0.111 0.141 0.191 0.245 0.368 0.460 0.625 0.737 0.846 

𝑁 0.100 0.107 0.133 0.195 0.256 0.378 0.478 0.646 0.774 0.899 

|𝜒| 0.100 0.108 0.143 0.191 0.259 0.366 0.501 0.651 0.792 0.906 

𝐿𝑀𝑆 0.100 0.108 0.144 0.193 0.264 0.376 0.517 0.675 0.825 0.939 

𝑇3 0.100 0.103 0.138 0.176 0.237 0.333 0.421 0.529 0.637 0.706 

𝐵𝑃 0.103 0.119 0.173 0.274 0.446 0.677 0.870 0.980 1.000 1.000 
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Table 10.  Sizes and powers of tests for 𝟑 × 𝟑 CTs and scenario VI 

Test 
MoU 

0.000 0.044 0.089 0.133 0.178 0.222 0.267 0.311 0.356 0.400 

𝛼 = 0.05, 𝑛 = 40 

𝜒2 0.050 0.061 0.089 0.140 0.193 0.310 0.429 0.582 0.740 0.836 

𝐺2 0.050 0.068 0.084 0.137 0.200 0.308 0.447 0.604 0.753 0.867 

𝑁 0.050 0.075 0.079 0.128 0.199 0.307 0.433 0.608 0.774 0.892 

|𝜒| 0.050 0.065 0.082 0.132 0.183 0.295 0.382 0.525 0.664 0.750 

𝐿𝑀𝑆 0.050 0.071 0.083 0.136 0.195 0.302 0.420 0.573 0.726 0.851 

𝑇3 0.050 0.062 0.087 0.144 0.200 0.313 0.421 0.562 0.711 0.798 

𝐵𝑃 0.053 0.071 0.099 0.147 0.251 0.425 0.675 0.899 0.991 1.000 

𝛼 = 0.05, 𝑛 = 75 

𝜒2 0.050 0.070 0.062 0.237 0.411 0.632 0.821 0.941 0.989 1.000 

𝐺2 0.050 0.072 0.063 0.240 0.414 0.634 0.826 0.943 0.991 1.000 

𝑁 0.050 0.069 0.062 0.226 0.393 0.618 0.813 0.941 0.991 1.000 

|𝜒| 0.050 0.069 0.060 0.227 0.383 0.592 0.781 0.917 0.983 0.999 

𝐿𝑀𝑆 0.050 0.070 0.063 0.227 0.388 0.602 0.795 0.931 0.987 0.999 

𝑇3 0.050 0.069 0.064 0.239 0.411 0.622 0.805 0.926 0.981 0.996 

𝐵𝑃 0.052 0.073 0.100 0.195 0.391 0.661 0.904 0.991 1.000 1.000 

𝛼 = 0.1, 𝑛 = 40 

𝜒2 0.100 0.113 0.113 0.218 0.294 0.435 0.588 0.735 0.851 0.937 

𝐺2 0.100 0.114 0.111 0.216 0.299 0.441 0.592 0.746 0.858 0.944 

𝑁 0.100 0.116 0.109 0.210 0.294 0.436 0.580 0.745 0.858 0.953 

|𝜒| 0.100 0.113 0.119 0.208 0.278 0.409 0.540 0.692 0.809 0.906 

𝐿𝑀𝑆 0.100 0.116 0.115 0.211 0.287 0.425 0.567 0.728 0.841 0.940 

𝑇3 0.100 0.113 0.110 0.231 0.306 0.430 0.569 0.715 0.828 0.890 

𝐵𝑃 0.100 0.125 0.168 0.233 0.363 0.544 0.772 0.938 0.995 1.000 

𝛼 = 0.1, 𝑛 = 75 

𝜒2 0.100 0.119 0.202 0.349 0.548 0.744 0.895 0.972 0.997 1.000 

𝐺2 0.100 0.121 0.203 0.349 0.552 0.746 0.899 0.974 0.997 1.000 

𝑁 0.100 0.118 0.200 0.340 0.541 0.736 0.897 0.974 0.998 1.000 

|𝜒| 0.100 0.117 0.196 0.333 0.522 0.711 0.869 0.962 0.995 1.000 

𝐿𝑀𝑆 0.100 0.118 0.197 0.332 0.526 0.717 0.881 0.968 0.996 1.000 

𝑇3 0.100 0.121 0.200 0.350 0.544 0.730 0.884 0.964 0.994 1.000 

𝐵𝑃 0.103 0.126 0.180 0.311 0.526 0.775 0.947 0.996 1.000 1.000 

 

Tables 5–10 show that the sizes of tests, except 𝐵𝑃, are identical to the 

nominal level (to three decimal places). The 𝐵𝑃 test is also distinguished in terms 

of the power. 𝐵𝑃 is surprisingly the most powerful test under scenarios I, II, IV 

and V, characterized by a low maximum MoU value and strong dependence 
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within a given scenario. For example, under scenario I, 𝛼 = 0.05, 𝑛 = 50 and 

𝑀𝑜𝑈 = 0.2, the power of the 𝐵𝑃 test equals 1, the power of the 𝜒2 test is only 

0.267, and the power of the 𝐿𝑀𝑆 test equals 0.488. Not including the BP test, 

the LMS is the most powerful test under scenarios I, II, IV and V, characterized 

by a low maximum MoU value. The situation changes under scenarios III and VI, 

characterized by a high maximum MoU value. The 𝜒2 test is the most powerful 

test under scenario III and 𝑀𝑜𝑈 ≤ 0.467. The BP is the most powerful test under 

scenario VI and 𝑛 = 40 as well as under scenario VI, 𝑛 = 75 and 𝑀𝑜𝑈 ≥ 0.222.  

7. Examples 

Example 1. We carried out a test of independence with regard to features 𝑋 and 

𝑌. The null hypothesis 𝐻0 states that 𝑋, 𝑌 are independent. An alternative 

hypothesis, denoted 𝐻1, negates H0. The empirical probabilities 𝑝𝑖𝑗
∗  are presented 

in Tables 11 and 13. In these cases 𝐻0 does not hold and the sample MoU, i.e. the 

measure of untruthfulness of H0, is equal to 0.248 (2 × 3) and 0.091 (3 × 3). 

Critical values for 𝑄𝑗(𝑗 = 1, … ,7) tests were determined with the Monte Carlo 

method for 𝛼 = 0.05, 0.1, 𝑛 = 100 (2 × 3), 𝑛 = 300 (3 × 3). These critical 

values and values of test statistics are presented in Tables 12 and 14. 

 
Table 11. CT 𝟐 × 𝟑 with empirical probabilities 𝒑𝒊𝒋

∗ (𝒊 = 𝟏, 𝟐, 𝒋 = 𝟏, 𝟐, 𝟑) 

𝑋/𝑌 𝑌1 𝑌2 𝑌3 Total 

𝑋1 0.240 0.120 0.160 0.520 

𝑋2 0.110 0.230 0.140 0.480 

Total 0.350 0.350 0.300 1.000 

 

 Table 12. Critical values and values of test statistics for =0.05, 0.1, 𝑴𝒐𝑼𝒆 = 𝟎. 𝟐𝟒𝟖 

Test Related critical value Related value 

of test statistic Name Symbol 0.05 0.1 

𝜒2 𝑄1 6.028 4.644 8.272 

𝐺2 𝑄2 6.195 4.752 8.436 

𝑁 𝑄3 6.790 5.080 9.356 

|𝜒| 𝑄4 1.351 1.183 1.427 

𝐿𝑀𝑆 𝑄5 1.393 1.212 1.484 

𝑇3 𝑄6 16.627 12.747 24.080 

𝐵𝑃 𝑄7 11 9.2 9.254 



 
 
 
 

The LMS for testing independence in two-way contingency tables                37 

 

All tests in question reject 𝐻0 for 𝑀𝑜𝑈𝑒 = 0.248 and at the significance 

level𝑠 𝛼 = 0.05, 0.1 except 𝐵𝑃 at 𝛼 = 0.05. 

 
Table 13. CT 𝟑 × 𝟑 with empirical probabilities 𝒑𝒊𝒋

∗ (𝒊, 𝒋 = 𝟏, 𝟐, 𝟑) 

𝑋/𝑌 𝑌1 𝑌2 𝑌3 Total 

𝑋1 0.120 0.127 0.190 0.437 

𝑋2 0.057 0.020 0.083 0.160 

𝑋3 0.117 0.120 0.166 0.403 

Total 0.294 0.267 0.439 1.000 

 

Table 14. Critical values and values of test statistics  

for 𝜶 = 𝟎. 𝟎𝟓, 𝟎. 𝟏, 𝑴𝒐𝑼𝒆 = 𝟎. 𝟎𝟗𝟏 

Test Related critical value Related value 

of test statistic Name Symbol 0.05 0.1 

𝜒2 𝑄1 9.507 7.803 5.996 

𝐺2 𝑄2 9.634 7.907 6.798 

𝑁 𝑄3 10.187 8.256 9.833 

|𝜒| 𝑄4 1.376 1.245 1.275 

𝐿𝑀𝑆 𝑄5 1.399 1.262 1.462 

𝑇3 𝑄6 35.166 28.897 12.245 

𝐵𝑃 𝑄7 15.48 13.38 159.137 

 

𝐿𝑀𝑆 and 𝐵𝑃 are the preferred tests at 𝛼 = 0.05 because they reject 𝐻0 , 

whereas the other tests uphold 𝐻0. LMS, 𝐵𝑃 and |χ| are the preferred tests at  

𝛼 = 0.1. 

 

Example 2. This example is described by means of the following algorithm: 

Step 1. Set a sample size 𝑛, number of rows 𝑤, number of columns 𝑘, significance 

level 𝛼. 

Step 2. Set theoretical probabilities 𝑝𝑖𝑗(𝑖 = 1, … , 𝑤;  𝑗 = 1, … , 𝑘). 

Step 3. Calculate the 𝑀𝑜𝑈 for the 𝑝𝑖𝑗(𝑖 = 1, … , 𝑤;  𝑗 = 1, … , 𝑘) set in Step 2. 

Step 4. Set critical values 𝑐𝑣𝑗(𝑗 = 1, … ,7) for 𝑄𝑗(𝑗 = 1, … ,7) tests equal to those 

given in Tables 12, 14 and 18. 

Step 5. Set initial values of a counter of rejected hypotheses 𝐶𝐹𝑗 =

0 (𝑗 = 1, … ,7). 

Step 6. Repeat the following steps 𝑚 times: 

Step 6.1. Generate a 𝑤 × 𝑘 CT according to the bar method. 
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Step 6.2. Calculate values of test statistics 𝑄𝑗(𝑗 = 1, … ,7). 

Step 6.3. If 𝑄𝑗 > 𝑐𝑣𝑗(𝑗 = 1, … ,7) then 𝐶𝐹𝑗 = 𝐶𝐹𝑗 + 1. 

Step 7. Calculate rejection probabilities 𝐹𝑅𝑗
∗ = 𝐶𝐹𝑗/𝑚 (𝑗 = 1, … ,7) (Tables 15, 

19) 

Specific values were set in this example: for a 2 × 3 CT (𝑛 = 100, 𝑀𝑜𝑈 =

0.248), for a 3 × 3 CT (𝑛 = 300, 𝑀𝑜𝑈 = 0.091). 

 
 Table 15. Rejection probabilities estimated from 𝒎 = 𝟏𝟎𝟔 repetitions 

Test Rejection probabilities 𝐹𝑅∗ 

Name Symbol 

2 × 3 CT 3 × 3 CT 

𝑀𝑜𝑈 = 0.248 𝑀𝑜𝑈 = 0.091 

𝛼 = 0.05 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.1 

𝜒2 𝑄1 0.741 0.833 0.484 0.631 

𝐺2 𝑄2 0.736 0.830 0.537 0.667 

𝑁 𝑄3 0.730 0.827 0.647 0.742 

|𝜒| 𝑄4 0.723 0.822 0.683 0.789 

𝐿𝑀𝑆 𝑄5 0.722 0.821 0.753 0.832 

𝑇3 𝑄6 0.748 0.837 0.207 0.342 

𝐵𝑃 𝑄7 0.648 0.760 0.996 0.998 

 

Since the number of repetitions was equal to one million, there is no need to 

carry out a formal test for equality of two proportions. The 𝑇3, 𝜒2 and 𝐺2 tests 

take the highest values of 𝐹𝑅𝑗
∗ under 2 × 3 CT, when 𝑀𝑜𝑈 = 0.248. The BP and 

LMS tests win against other tests under 3 × 3 CT, when 𝑀𝑜𝑈 = 0.091.  

 

Example 3 (real data). We consider the dataset given by Koch and Edwards 

(1988) to study the performance of the proposed method with real data (Table 

16). This table compares a treatment for rheumatoid arthritis with a placebo. The 

outcome reflects whether individuals show no improvement, some improvement, 

or marked improvement. We cannot select the 𝐺2, 𝑁 and 𝐿𝑀𝑆 statistics here 

because of the zero cell in Table 17. For the analyzed real data we can use  

a modified version of LMS, which is very similar to the original version (4). It is 

defined as 

𝐿𝑀𝑆𝑚 = − ∑ ∑ 𝑙𝑛 [
𝑚𝑖𝑛(𝑛𝑖𝑗 ,𝑒𝑖𝑗 )

𝑚𝑎𝑥(𝑛𝑖𝑗 ,𝑒𝑖𝑗 )
+ 0.00001]𝑘

𝑗=1
𝑤
𝑖=1            



 
 
 
 

The LMS for testing independence in two-way contingency tables                39 

 

Table 16 shows that adding 0.00001 to the logarithmic value does not affect the 

size and power of the 𝐿𝑀𝑆𝑚 tests. 

 
Table 16.  The power of the 𝑳𝑴𝑺 and 𝑳𝑴𝑺 𝒎tests, 𝜶 = 0.05, scenario I 

 𝑀𝑜𝑈 0.000 0.022 0.044 0.067 0.089 0.111 0.133 0.156 0.178 0.200 

𝑛
= 50 

𝐿𝑀𝑆 0.050 0.054 0.063 0.074 0.096 0.130 0.188 0.274 0.375 0.487 

𝐿𝑀𝑆𝑚 0.050 0.054 0.063 0.074 0.096 0.130 0.188 0.274 0.375 0.487 

𝑛
= 75 

𝐿𝑀𝑆 0.050 0.064 0.073 0.102 0.137 0.208 0.305 0.447 0.635 0.814 

𝐿𝑀𝑆𝑚 0.050 0.064 0.073 0.102 0.137 0.208 0.305 0.447 0.635 0.814 

 

Values of test statistics and critical values are presented in Table 18. Table 19 

presents values of rejection probabilities 𝐹𝑅𝑗
∗ (𝑗 = 1, … , 106) as defined in 

Example 2.  

 
Table 17. The effect of a treatment for rheumatoid arthritis vs. a placebo 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡/𝑂𝑢𝑡𝑐𝑜𝑚𝑒 None Some Marked Total 

Active 7 2 5 14 

Placebo 10 0 1 11 

Total 17 2 6 25 

 
 

Table 18. Values of test statistics and critical values for 𝜶 = 𝟎. 𝟎𝟓, 𝟎. 𝟏  

and 𝑴𝒐𝑼 = 𝟎. 𝟒𝟎𝟑𝟐 

Test Related critical value Related value 

of test statistics Name 𝛼 = 0.05 𝛼 = 0.1 

𝜒2 5.252 4.233 4.907 

|𝜒| 2.633 2.338 3.497 

𝐿𝑀𝑆𝑚 2.949 2.580 14.059 

𝑇3 3.665 2.826 3.271 

𝐵𝑃 11.24 9.320 23.571 

 

𝐿𝑀𝑆𝑚, 𝐵𝑃 and |𝜒| are the preferred tests at 𝛼 = 0.05 because they reject 𝐻0, 

whereas the 𝜒2 and 𝑇3 tests uphold 𝐻0. All of the tests reject 𝐻0 at 𝛼 = 0.1. 

The 𝐿𝑀𝑆𝑚 test wins against other tests under 2 × 3 CT with real data for  

𝛼 = 0.05, 0.1 and 𝑀𝑜𝑈 = 0.4032. 
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Table 19. Rejection probabilities for real data estimated from 𝟏𝟎𝟔 repetitions 

Test Rejection probabilities 𝐹𝑅∗ 

Name 𝛼 = 0.05 𝛼 = 0.1 

𝜒2 0.516 0.642 

|𝜒| 0.866 0.930 

𝐿𝑀𝑆𝑚 1.000 1.000 

𝑇3 0.430 0.565 

𝐵𝑃 0.96 0.98 

8. Conclusion 

The Monte Carlo simulations show that the LMS test is (excluding the BP test) 

the most powerful in the sense of the proposed measure MoU under scenarios 

characterized by a smaller variability range of MoU and for strong dependence 

within a given scenario (see scenarios I, II, IV and V). The advantage of the BP 

test over the other analyzed tests is surprising for the scenarios in question. For 

example, under scenario V, 𝛼 = 0.05, 𝑛 = 75 and 𝑀𝑜𝑈 = 0.178, the power of 

the BP test equals 0.989 and the power of the LMS test equals 0.539. The 

dominance of the BP test is not so clear for scenarios III and VI, characterized by 

a wider range of variability of MoU. Similar results were obtained for 2 × 4, 3 ×

4 and 4 × 4 CTs; however, they are not presented in this paper due to its limited 

size. 

Example 1 is characterized by stronger dependency between features than 

Example 2. Example 1 shows that all of the tests reject 𝐻0, except the 𝐵𝑃 test. 

The rejection probability estimated from 𝑚 = 1 000 000 repetitions takes the 

highest values for the 𝑇3, 𝜒2 and 𝐺2 tests. Example 2 shows that 𝐿𝑀𝑆 and 𝐵𝑃 are 

the preferred tests. They reject 𝐻0, whereas the other tests uphold this hypothesis. 

The rejection probability takes the highest values for the 𝐵P and 𝐿𝑀𝑆 tests.  

Example 3 presents a strong dependency between features. The 𝐿𝑀𝑆𝑚, 𝐵𝑃 

and |𝜒| tests reject 𝐻0, whereas the 𝜒2 and 𝑇3 tests uphold this hypothesis. The 

rejection probability takes the highest values for the LMS and BP tests.  
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The paper shows that 𝐿𝑀𝑆 and 𝐵𝑃 are more effective than the other tests 

considered, as they detect dependency even for low MoU values. However, it 

should be emphasized that the 𝐿𝑀𝑆 test is simpler than the 𝐵𝑃 test.  
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