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SUMMARY

The presence of genotype-environment interaction (GEI) influences
production making the selection of cultivars in a complex process. The
two most used methods to analyze GEI and evaluate genotypes are AMMI
and GGE Biplot, being used for the analysis of multi environment trials
data (MET). Despite their different approaches, both models complement
each other in order to strengthen decision making. However, both models
are based on biplots, consequently, biplot-based interpretation doesn’t
scale well beyond two-dimensional plots, which happens whenever the
first two components don’t capture enough variation. This paper proposes
an approach to such cases based on cluster analysis combined with
the concept of medoids. It also applies AMMI and GGE Biplot to the
adjusted data in order to compare both models. The data is provided
by the International Maize and Wheat Improvement Center (CIMMYT)
and comes from the 14th Semi-Arid Wheat Yield Trial (SAWYT), an
experiment concerning 50 genotypes of spring bread wheat (Triticum
aestivum) germplasm adapted to low rainfall. It was performed in 36
environments across 14 countries. The analysis provided 25 genotypes
clusters and 6 environments clusters. Both models were equivalent for
the data’s evaluation, permitting increased reliability in the selection of
superior cultivars and test environments.

Key words: genotype X environment interaction, adaptability and sta-
bility, additive main effects and multiplicative interaction model, multi-
environment trials, cluster analysis, medoids
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1. Introduction

Environmental conditions strongly influence agricultural production, lead-
ing to considerable variations in yield. Such influence is discriminated when
yield experiments are performed in various locations and in different years
(Pacheco et al., 2005; Akbarpour el al., 2014). Such influence is termed
genotype-environment interaction (GEI). In the case of multi-environment
trial (MET) data, GEI is frequently present. Due to the nature of this kind
of data, it is often represented in two-way tables containing genotype means
across all of the environments in the study (Rodrigues et. al., 2014; Hongyu
et al., 2014).

MET studies are essential since the presence of GEI causes the relative
performance ranking to change across environments, which complicates the
evaluation of genotypes. Were it not for GEI, one single genotype would pre-
vail in any environment, and it would take a single experiment to correctly
choose the best genotypes (Gauch and Zobel, 1996; Hongyu et al., 2015).
The key to significantly increasing agricultural production is to increase
productivity per hectare and per dollar, which includes understanding and
exploiting GEI as well as possible (Kang, 2002). In plant breeding and crop
improvement, the main objectives of MET are: (i) to study GEIL; (ii) to
evaluate genotypic adaptability and stability; (iii) to establish relations be-
tween genotypes, environments and environment-genotypes simultaneously;
and (iv) to predict the production of certain genotypes, enabling the pre-
cise selection of environments for subsequent cropping cycles (Gauch, 2013).
Inefficient methods in genotype-environment interaction analysis can also
represent a problem for breeders, who aim to select genotypes with superior
performance in different environments (Hongyu et al., 2014).

Among various statistical techniques used for evaluating GEI, the two
most frequently used are AMMI (Additive Main-effects and Multiplicative
Interaction) and GGE Biplot. Several researchers have used the AMMI
model as an effective method for analyses of GEI (Crossa, 1990; Annic-
chiarico, 1997; Gauch, 2006). Proposed by Gauch (1992), the AMMI model
uses analysis of variance and principal component analysis to achieve a bet-
ter understanding of GEI, its causes and consequences. Yan et al. (2000)
proposed the GGE Biplot analysis, which considers both genotype main
effects and GEI effects as important for the analysis (Miranda et al., 2009).
The only difference between these models is in the initial steps of the anal-
ysis, where GGE analyzes G plus GE (or GEI) while AMMI separates G
from GE; and at the final steps where the biplots for the interpretation
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are built. Despite the possibility of their complementing each other due to
their equivalent features, there has been discussion among authors about
the effectiveness of AMMI and GGE in depicting the adaptive responses of
genotypes over environments (Yan and Tinker, 2005; Gauch, 2006; Yan and
Tinker, 2006; Yan et. al., 2007; Gauch et al., 2008). However, such differ-
ences do not imply the superiority of either of the methods. AMMI Biplot’s
graphic analysis provides relatively simple analysis for breeding researchers.
Based on the data, it allows conclusions to be drawn concerning phenotypic
stability, genotype behavior, genetic divergence between genotypes, and en-
vironments with optimal performance. As for GGE Biplot, it complements
AMMI Biplot’s environmental stratification, making it possible to delineate
mega-environments and genotypes with optimal performance in such groups
(Miranda et al., 2009).

Since both the AMMI and GGE approaches depend on principal compo-
nent analysis (PCA), high-dimensional data may eventually become difficult
to interpret visually in biplot analysis. In cases where too many components
are needed to capture considerable proportions of the original variance, the
researcher has to plot multiple biplots in order to be able to interpret enough
of the original GEI variability. One approach that may facilitate interpre-
tation is to apply clustering analysis on GEI in order to group genotypes
and/or environments with similar genotype-environment interactions. With
groups at hand, one option for a cluster representative which is free from
possible outlier influence is the medoid, that is, the genotype that is most
similar to each other genotype in the group on average (Xu and Wun-
sch, 2008).

This study’s purpose was to apply AMMI and GGE analyses in order to
depict GEI from 50 wheat genotypes in 36 environments across 13 countries.
The measured variable was grain yield (t/ha). The data used comes from the
14*" Semi-Arid Wheat Trials, a two-replicate experimental study performed
by the International Maize and Wheat Improvement Center (CIMMYT). To
deal with the high dimensionality of the data, cluster analysis was applied
based on GEI in order to obtain representative genotypes and environments.

2. Material and methods

The data used in the analysis has been provided by the International Maize
and Wheat Improvement Center (CIMMYT) since 2015 in their online Re-
search Data Repository. It concerns the 14" Semi-Arid Wheat Yield Trial
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(SAWYT), which is a two-duplicate multi-environmental trial performed
during the 2006 cycle. The trials concerned spring bread wheat (Triticum
aestivum) germplasm adapted to low rainfall. Various traits were measured
from 50 different genotypes in 36 environments across 13 countries. The
environments are drought-prone and typically receive less than 500 mm of
rainfall during the cropping cycle. Figure 1 presents further information on
the number of countries, their geographic distribution, and the number of
locations in each.

Figure 1. World map showing the geographical distribution of environments in
the countries included in the 14** Semi-Arid Wheat Trial

All of the analyses in this study concern only the yield weight, which
was the only measured trait with replicates. Replication is a key charac-
teristic for the AMMI model, making it possible to perform analysis of
variance (ANOVA). The yield weight (t/ha) was primarily analyzed with
simple ANOVA and conjoint analysis to assess the genotypic and environ-
mental main effects as well as the GEI effects. Once GEI was evaluated as
a significant effect present in the data, adaptability and phenotypic stabil-
ity analyses were performed using the AMMI and GGE models. All of the
analyses presented in this study were performed using R statistical software,
version 3.4.1 (R DEVELOPMENT CORE TEAM, 2017).

2.1. Principal component analysis and biplot

Also called singular values decomposition (SVD), principal component anal-
ysis (PCA) was proposed by Pearson (1901) as a method to visualize a data
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matrix. Each row can be geometrically visualized as a point in a space with
as many dimensions (or axes) as there are columns (Gauch, 2006). PCA
reduces the data dimensionality by deriving new axes, the principal com-
ponents, which retain as much as possible from the original variation in a
monotonic decreasing pattern, where the first component retains the most
variation (Neisse and Hongyu, 2016). Any two-way data matrix Z, with ele-
ments z;; where i = 1, ..., g represent the rows (or genotypes) and j =1, ...,e
represent the columns (or environments), can be decomposed by SVD into
p principal components (PC):

p
Zij = Y Mk Vjk + €ij (1)
k=1

with p < min(e,g — 1). Every PC is composed by the genotype scores
matrix o, the environment scores matrix 7;x, the singular value A, and
the residual €;; which is not explained by the model. The model restrictions
are: (i) At = A2 > ... > A\, > 0, and (ii) a;), scores are orthonormal, i.e.
S _jaigagy =1 (if k=k') and Y7_; cigayry = 1 (if k # k') with similar
restrictions for ~;, (Yan, 2011; Hongyu et al., 2015). Successive principal
components are denoted by PC1, PC2, PC3 and so on.

In cases where the first few components capture a considerable propor-
tion of the original variation, PCA provides a useful, low-dimensional data
representation (Johnson and Wicher, ; Gauch, 2006). In such cases, they
may be analyzed in graphical representations using biplots. This graphical
analysis method was introduced by Gabriel (1971), and is useful for PCA
because it represents simultaneously the rows and columns of a data ma-
trix. Biplot graphical analysis allows the detection of groups in the observa-
tions, while also showing the dispersion and correlations between variables
or columns (Hongyu et al., 2014; Gauch, 2006). Any two-way data matrix
with rank r that can be approximated by a rank 2 matrix, i.e. the first
two components are the ones which explain the most variation (p = 2 in
equation, can be graphically interpreted in a two-dimensional biplot with
a proper singular value partitioning:

2z = (Main) A T y50) + Mai) (A3 2) + &5 (2)

where f is the singular value partition factor (SVP). In the biplot, the ab-
scissa and ordinate for the genotypes are )\{ ;1 and /\{ ;o respectively, while
for the environments the abscissa is /\}_f vj1 and the ordinate is )\é_f vj2
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(Yan, 2011). The purpose of f is to re-dimension the scores for better visual
interpretation of the biplot. In the MET data context, f = 1 results in the
allocation of the singular values entirely in the genotype scores (genotype-
centered or SVP = 1), f = 1 allocates them in the environment scores
(environment-centered or SV P = 2), and f = 0.5 will allocate the singular
values’ square roots for both genotype and environment scores (symmetric
or SVP = 3) (Hongyu et al., 2015). In the case of GGE Biplot analysis,
the genotype-centered and the environment-centered SVP are used for the
evaluation of genotypes and environments respectively (Yan, 2011).

2.2. AMMI model

Introduced by Gauch (1992), the additive main effects (G and E) and mul-
tiplicative interaction (GE) model, or AMMI model, combines ANOVA and
PCA in a single model. In the case of AMMI analysis, principal component
analysis is applied to the GEI effects only after some preliminary verifica-
tions are made based on ANOVA analysis. These verifications are based
on three numbers: the sums of squares (SS) for genotypes (G), GEI effect
signal (GEIg) and GEI noise (GEIy) (Hongyu et al., 2014). The sum of
squares from G and GEI can be easily obtained from the ANOVA analy-
sis, while GEIg and GFEIg are obtained from GEI. The GEIg SS is ob-
tained by simply multiplying the mean square error (MSE) by the degrees
of freedom for GEI, then GEI is obtained by subtracting GEIs from GEI
(Gauch, 1992; Gauch, 2013). Occasionally GEI is buried in noise, then the
SS for GEIN will be approximately equal to that of GEI; in such cases it
is not appropriate to apply AMMI analysis to the data (Gauch, 2013). The
statistical model equation for the i*" genotype in the j** environment in r
blocks or replications is:

n
Yijr = i+ gi + €5+ beleg) + Y Asinyin + pij + €i (3)
k=1

where Yj;, is the phenotypic trait (e.g. yield) of genotype 7 in environment
j for replicate r, p is the grand mean, g; are the genotype main effects as
deviations from p, e; are the environment main effects as deviations from ,
Ak is the eigenvalue for the interaction Principal Component (PC) axis k, a
and ;) are the genotype and environment PC scores (i.e. the left and right
eigenvectors) for axis k, b.(e;) is the effect of the replication r within the
environment j, 7 is the number of replications, p;; is the residual containing
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all multiplicative terms not included in the model (1), n is the number
of axes or principal components (PC) retained by the model, and ¢;;, are
the experimental errors, assumed independent with identical distribution,
eij ~ N(0, ‘772) (Gauch, 1992; Hongyu et al., 2014).

First the means matrix Yy, is generated for the g genotypes and e
environments across all of the replicates, then a traditional ANOVA is fitted
to it. The residual from the fitted ANOVA is the GEI effect, which represents
the multiplicative part of the AMMI model. Based on the GEI, PCA is then
applied to the interaction matrix GEyx. = [(ge)s;], which is obtained by
the equation:

(ge)ij = Y;‘j — ?z — ?.j +?.. (4)

where Yj; is the mean across replications for the genotype i = 1,...,g in
the environment j = 1,...,e; Y. is the mean of genotype i across all en-
vironments and replications; Y.; is the mean of environment j across all
genotypes and replications; and Y. is the global mean. Since Y.. is sub-
tracted twice among Y;. and Y.j, it needs to be added back once (Gauch,
1992; Pacheco et al., 2005; Hongyu et al., 2014).

An efficient technique to assign degrees of freedom to the AMMI model
has similar results to traditional ANOVA and unfolds degrees of freedom
corresponding to the GEI. It determines the degrees of freedom for each
part of the interaction sum of squares SSgpr (or A7). Subsequently, the F
test is applied to each AMMI component to assess its significance relative
to M Speanerror- Therefore, the number of axes to correctly explain the
interaction’s behavior can be determined based on the proportion of SSgrr
accumulated up to the n'* axis (XF_; A2/SScer) (Hongyu et al., 2014).
The number k of components to consider in the analysis is based on the
F significance test for each of the successive interaction terms; Gollob’s F
(Gollob, 1968) is one of the most common methods used in the AMMI
model. This method uses the expression DFpc, = g +e — 1 — 2k, where
k=1,...p, p=min(g — 1,e — 1) and PC}, is the model’s k' axis or PC.
Since AMMI is rather a family than a single model, the model’s name is
denoted by the number of components it contains, for example, AMMIO for
zero components and AMMIF for all components (Gauch, 1992; Akbarpour
el al., 2014).

It is common in the literature analyses for PC1 and PC2 to capture a
significant proportion of the GEI total variation; consequently AMMI1 and
AMMI2 are the most frequently used models to interpret genotypexenvi-
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ronment interaction. The AMMI1 model is the most well-known AMMI
model; its abscissa represents the main effects (G and E), and its ordinate
represents the PC1 scores. Such a biplot allows the researcher to evaluate
genotypes and environments in terms of their mean production, and also
to obtain a first look at their stability in terms of GEI with PC1. As for
AMMI2, its abscissa represents the PC1 scores and its ordinate the PC2
scores. In this way the researcher may evaluate genotypes in terms of their
stability and specific adaptability to environments, and vice versa. AMMI2
is also useful for the delineation of mega-environments, that is, groups of
environments that have the same genotype as most productive (Hongyu
et al., 2014).

2.3. GGE model

The GGE Biplot model (Yan et. al., 2000) was introduced based on biplots,
which are an effective tool for visualizing two-way data, and are frequently
used for the analysis of MET data. A GGE biplot is able to simultaneously
display genotype main effects (G) and genotype x environment effects (GE)
from a two-way data table (Yan et. al., 2000). Its first component, when
highly correlated with genotype main effect (G), represents the proportion
of production solely attributed to the genotype. The second represents the
proportion explained by GEI. For the GGE Biplot to be generated, the mean
matrix must be environment-centered and then decomposed into principal
components by SVD; the first two PCs are then used to generate the graphic
(Yan and Tinker, 2005). The GGE biplot is based on the model:

Yij — Y. = Mi&anji + Aabianja + €4 ©)

where Y;; is the mean across replications for genotype i (i = 1,...,9) in
environment j (j = 1,...,e); Y.; is the mean of environment j across all
genotypes and replications; A\1&;11;1 and A2&an; 2 are PC1 and PC2 respec-
tively; A1 and Ao are the eigenvalues associated with each PC; &7 and &9
are the PC’s scores in the i genotype; n;1 and 7;2 are the scores for each
PC in the j* environment, and €45 is the error associated with the model
(Yan et. al., 2000; Miranda et al., 2009).

A method to evaluate the quality of the fit of the GGE biplot to the
data was proposed by Yan and Tinker (2006), called the "information re-
lation" (IR). Imagine a two-way data matrix with g genotypes and e envi-
ronments; the maximum number of PCs required to completely represent
such a table is k& = min(e,g — 1). If environments are uncorrelated, each
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PC should be independent and explain a proportion of exactly 1/k of the
original variation. If environments are correlated, however, the proportion
of the variation explained by the first components should be greater than
1/k, while the proportion explained by the last components should be less
than 1/k. The calculation of IR is simple: it is obtained by multiplying k by
the proportion of the variation explained by each PC. Any PC with IR > 1
expresses correlation between environments. Thus, if the first two compo-
nents from a PCA have IR > 1, then the two-dimensional biplot represents
the data properly.

Given the GGE Biplot definition, its main difference compared with the
AMMI model becomes clear: while the AMMI model applies SVD only to
GE effects, GGE Biplot considers G and GE together, additively. This dif-
ference is the main topic of discussion among authors concerned with the
effectiveness of the two models in depicting adaptive responses of geno-
types over environments (Yan and Tinker, 2005; Gauch, 2006; Yan and
Tinker, 2006; Yan et. al., 2007; Gauch et al., 2008). The differences are not
such as to make either of the methods superior. Nevertheless, GGE Biplot
presents some features based on the presence of G in the analysis, which
naturally the AMMI model does not offer.

2.4. Mega-environment delineation and agricultural recommen-
dations

Whenever different genotypes are adapted to different environment groups
and the variation between groups is greater than the variation within groups,
those environment groups are called mega-environments (Hongyu et al.,
2015). When there are crossovers between winning genotypes, the subdivi-
sion of a region into two or more mega-environments is necessary so that the
researcher can exploit the narrow adaptation, gaining substantial opportu-
nities to increase yield. However, there are three considerations to be made
(Gauch, 2013): (i) In order to select the best model to represent the data, a
proper model diagnosis must be performed, because as the order of the se-
lected model grows the number of mega-environments tends to grow also; (ii)
It is important for mega-environments to have predictive potential for loca-
tions and years, and this role is greatly enhanced if the mega-environments
have an evidential and environmental interpretation, beyond the delineation
of winning genotypes; (iii) With several mega-environments, the process is
costly for breeders, unless a practical portion of GE becomes available for
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exploring narrow adaptations to increase yield, so it is necessary to select
low-order models in order to delineate a small and manageable number of
mega-environments. Fortunately, just two or three mega-environments are
often sufficient to allow GE to capture a sizeable portion of the interaction
signal. (Gauch, 2013; Hongyu et al., 2015).

It is a major purpose of MET data studies on yield to select the best
genotypes for use or recommendation for certain regions. This task is re-
markably difficult though — true winners are often obscured by noise and
generate improper complexity, reducing genetic gains. Pursuing both high
yield and stability is a frequent approach for genotype selection. How-
ever, this method has five considerable problems (Gauch, 1992): (i) any
particular choice is difficult to justify since there are many stability pa-
rameters (Annicchiarico, 2002; Gauch, 2013); (ii) many ways to integrate
high yield and stability fail to optimize known and agriculturally significant
outcomes; (iii) stability is a meaningful objective only within an individ-
ual mega-environment, a requirement frequently ignored by the literature
(Gauch, 2013); (iv) it is a requirement to have at least 8 trials in each mega-
environment for reasonably reliable estimates of stability (Annicchiarico,
2002; Gauch, 2013); and finally (v) it is a defective paradigm to consider sta-
bility solely as a problem to be minimized, since instability in fact presents
breeders with both problems and opportunities.

The purpose of mega-environment analysis is to divide the studied region
into significant subregions in a way that makes it possible to explore GEI.
When a two-dimensional GGE biplot is considered as a significant represen-
tation for the data, it is also a tool for the delineation of mega-environments,
also called the "which won where" plot (Yan, 2011; Hongyu et al., 2015). In
the GGE Biplot analysis, when delineating mega-environments, the mean
presented in the graphic is related to the mega-environment mean, not to
the grand mean, which helps to identify genotypes with broad or specific
adaptations to some environments or groups of environments (Yan and
Kang, 2003). The "which won where" plot point of view is built by an irreg-
ular polygon and as many lines as there are sides in the polygon, with these
lines starting at the biplot’s origin and intercepting the polygon perpen-
dicularly. The polygon’s vertices mark genotypes that are further from the
origin in all directions; thus all genotypes are inside the polygon (Yan, 2011).
A hypothetical environment is represented by a line that perpendicularly
crosses a side of the polygon, if both genotypes that formed that side have
good levels of productivity, the genotype’s relative rank would be inverted
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in environments at the line’s opposite extreme (crossed GE). Thus, the
lines radiating from the origin divide the biplot into sections, and there is a
vertex (genotype) for each section which had the best yield performance in
environments contained in that section, which is called a mega-environment.

2.5. Hierarchical cluster analysis

When analyzing MET data, when ANOVA analysis shows the existence
of significant GEI to be studied, there may be some complications when
PCA is applied. When the data is high-dimensional not only by genotypes
but also by environments, the researcher might need more than three prin-
cipal components to explain a significant amount of the variation. In the
case of biplot analysis, complications arise due to the visual limitation. For
instance, the data presented in this study has 50 genotypes and 36 environ-
ments, so it would take 12 principal components to explain 82.9% of the
original GEI variability; consequently a proper analysis would require at
least six two-dimensional biplots. This study proposes a method to reduce
the data dimensionality by forming groups of genotypes and environments
that are similar in terms of GEI. Based on the obtained groups, representa-
tive genotypes and environments will be selected based on medoids to take
the place of their groups in the analysis.

Clustering methods are generally classified as partitional clustering or hier-
archical clustering, depending on the properties of the generated clusters.
Partitional clustering starts from a pre-specified number of clusters. Hi-
erarchical clustering starts with every observation as its own cluster and
performs a sequence of nested clusterings (agglomerative hierarchical clus-
tering) or else starts with a unique cluster containing all of the observations
(divisive hierarchical clustering). Hierarchical clustering generates a binary
tree or a dendrogram which depicts all of the nested clustering steps (Xu
and Wunsch, 2008). In this way the number of clusters is defined by cut-
ting the dendrogram at some level or proximity height. There are methods
that may provide a good guess at the right number of groups, for exam-
ple, evaluating the sum of squares within groups (SS,,) at each step and
picking the number of groups where S.5,, stabilizes. However, the researcher
may make a decision based on empirical information or numerical criteria,
or just for the sake of simplicity. The researcher may also have practical
reasons to establish a certain number of clusters based on their intended
use. A frequent approach is to pick the number of clusters based on the
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researcher’s previous knowledge concerning the similarity relation between
the data being studied (Barroso, 2003).

Both partitional and hierarchical clustering methods perform clustering
based on a distance measure matrix. There are many distance measures for
all kinds of clustering problems; examples include the Mahalanobis distance
(Mahalanobis P.C., 1939), the Euclidean distance and the Manhattan dis-
tance. It is also a common approach to use the correlation distance in the
case of pattern recognition in microarray gene expression data (Datta and
Datta, 2003). In this study the correlation distance between two genotypes
(or environments) x and y was obtained by d(x,y) = 1 — corr(z,y) where
corr(x,y) is the statistical correlation between the mean production of the
genotype in each environment, or vice-versa. Thus genotypes (or environ-
ments) that are positively correlated will be considered similar, having lower
distances than uncorrelated or negatively correlated objects. Since the aim
of this study is to analyze GEI, the distance metric based on the correlation
was applied in the interaction matrix [4] which does not consider genotypic
and environmental main effects.

With groups of genotypes and environments at hand, a method for
picking representatives is needed. There are two most common methods:
the centroid method, which is used by the k-means clustering methodol-
ogy (Hartigan and Wong, 1979); and the medoid method used in the PAM
(partitioning around medoids) algorithm (Kaufman and Rousseeuw, 1990).
The method for obtaining a cluster’s centroid consists in taking the mean
production of all genotypes (or environments) in the cluster. However, this
method has two important disadvantages that should be accounted for: (i) it
is susceptible to outliers, which distort the analysis; and (ii) it is a prototype
representation, which means that it is not a real member picked from the
cluster. The medoid method overcomes such disadvantages, as the medoid
is in fact a member of the cluster and consequently cannot be affected by
outliers, nor can it be an outlier itself (Xu and Wunsch, 2008). Considering
D as a distance matrix, ¢ as a specific cluster and D€ as the cluster‘s dis-
tance matrix, then medoid® = min(S°¢) with S§ = sum;__, Df; is the medoid
for the cluster c. Imagining the cluster as a cloud of points in the space,
the medoid would be the point closest to the center with the lowest mean
distance to all of the other points.



AMMI and GGE Biplot for genotype X environment interaction 109

3. Results and discussion

3.1. Cluster analysis

The original data provided by the 14" Semi-Arid Wheat Trials comes from
a MET with 50 genotypes adapted to low rainfall environments tested in
14 different countries, totaling 36 environments. A first analysis with the
AMMI model revealed significant main effects and interaction effects. How-
ever, when PCA was performed, using both AMMI and GGE models, the
outcome consisted of 35 principal components, of which the first 12 were
significant, explaining 82.9% of the original variability. The first two com-
ponents retained only 30% of the original variability, insufficient by far for a
reliable interpretation. Considering only one Biplot model, it would take at
least six graphs conjointly analyzed to explain a significant enough amount
of variability to allow reliable decision-making.

This being the case, a cluster analysis was applied to reduce the geno-
types and environments into groups. The agglomerative hierarchical clus-
tering method was applied, considering the correlation distance matrix ob-
tained from the genotype-environment interaction matrix [4f The cluster
analysis was applied in genotypes and environments independently; that
is, both steps considered the original data. With the groups at hand, one
medoid was chosen for each group to be the cluster’s representative in the
analysis. Figures 2 and 3 present two dendrograms for genotypes and envi-
ronments respectively, showing the clustering steps for different distances.

Figure 2 shows blue boxes representing the 25 genotype clusters formed,
with blue marks for each cluster’s medoid genotype. The number of clusters
for the genotypes is chosen only for the sake of allowing visual interpreta-
tion. The number of 25 clusters was chosen so that the average number of
genotypes by clusters was 2 — that is, on average, pairs of the most similar
genotypes would be grouped in order to maintain as many genotypes as
possible while gaining advantages in terms of visual analysis.

The red boxes in Figure 3 delineate the six chosen environmental clus-
ters, while the medoid environments are marked with a red label. It can be
seen from the dendrogram that a number of 5, 6 or 7 clusters would be a
reasonable choice given the clustering heights. However, since the maximum
number of principal components is min(e,g — 1) and the AMMI model re-
quires a greater number of genotypes than environments, the criterion was
to choose as many clusters as possible while maintaining more than 70%
variability in the first two principal components. The whole of the AMMI
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and GGE analysis considers the group representatives obtained by cluster
analysis.
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Figure 2. Agglomerative hierarchical clusters and respective medoids for 50
genotypes
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Figure 3. Agglomerative hierarchical clusters and respective medoids for 36
environments

3.2. AMMI model analysis

The results provided by the AMMI conjoint analysis of variance for the
yield (t/ha) in the 14" Semi-Arid Wheat Yield Trials showed the presence
of significant genotypic and environmental main effects as well as inter-
action effects (p<0.001). The coefficient of variation for the data was low
(14.3645%), indicating correct experimental design and performance. It is
also important to note that the levels of significance and experimental pre-
cision match those from the ANOVA fitted to the original data. Such results
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allow further investigation based on the genotype-environment interaction
(GEI) effects for the 14" SAWYT data.

The interaction sum of squares (SSgr = 81.91) obtained by ANOVA
in the AMMI analysis (Table 1) corresponds to the sum of all eigenvalues
(371 A2). However, SSgr may be inflated because of the possible pres-
ence of considerable noise. To remove noise, five principal components (PC)
were fitted to the interaction matrix GE. The first principal component
(PC1) turned out to be significant with p<0.001 according to Gollob’s F
test, as did the second (PC2). While PC1 explained 51.4% of the variabil-
ity, the proportion attributed to PC2 was 22.1%. PC1 and PC2 together
explain 73.4% of the variability, which is sufficient, since 70% is considered
the minimum amount of variability for the model to be relatively reliable.
Despite the fact that PC3 was also significant (p<0.05), explaining 14.0% of
the variability and bringing the cumulative total up to 87.4%, it was omit-
ted from further analysis so that the simplicity of two-dimensional analysis
would be maintained. Figure 4 presents the AMMI1 model, with yield on
the abscissa and PC1 scores for genotypes and environments on the ordi-
nate. In the figures, genotypes are denoted by G1 to G50 and environments
by E1 to E36, bearing in mind that only the medoid representatives for each
cluster are shown.

Table 1. Conjoint analysis of variance of the wheat trial productivity (t/ha) and
GEI sum of squares decomposition

Source DF SS MS F p-value
Environment (E) 5 552.22 110.4440 270.50 <0.001%**
Replicate/Environment 6 2.45 0.4083 1.49  0.1860N%
Genotype (G) 24 16.46  0.6858 2.50  <0.001***
Interaction (GE) 120 81.91  0.6826 249  <0.001%**
PC1 28 42.07 15025 548  <0.001%**
PC2 26 18.07  0.6950 2.53  <0.001%**
PC3 24 11.46  0.4775 1.74 0.0250*
PC4 22 8.24 0.3745 1.36  0.1443N5
PC5 20 2.07 0.1035 0.38  0.9927V5
Residual 144 39.51  0.2744 - -
Total 299  692.55 - - -
General Mean 3.6467
CV (%) 14.3645

It is an objective of SAWYT to study genotypes adapted to low rainfall
in environments receiving typically less than 500 mm of rain during the
cropping cycle; this may explain the agglomeration of genotypes around
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the mean in Figure 4. The genotypes with the highest average yield were
G27 > G8 > G29 > G18 > G21 > G7 > G45 > G31 > G1, in decreasing
order (Figure 4) and from this group, those with the most stability were G8,
G45, G21, and G7, considering both axes’ proportion of explained variability
(Figure 5). The groups of genotypes with yield fairly close to the mean, i.e.,
with a maximum distance relative to the mean of 3%, were G11 > G2 > G9
> G36 > G37 > G38 > G15 > G26 > G19, while the groups of genotypes
with yield below the mean were G49 > G46 > G24 > G16 > G5 > G17 >
G33, both in decreasing order. In the average yield genotype group, those
with the most stability were G19, G15, G26, G2, G36 and G11. In the low
production group, the only genotype with stability was G49.
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Figure 4. Biplot AMMI1 (Mean Yield vs PC1) for the wheat trials data with 25
genotypes (G) and 6 environments (E)

It is important to note that despite being separated into three groups
in terms of their mean yield, all of the genotypes fall relatively close to the
mean. For instance, the two genotypes with the most stability were placed
in two different groups despite being very similar in terms of mean yield
(G49-3.5475 and G19-3.4939) and falling relatively close to the grand
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mean (3.6467). Considering the fact that PC1 explains most of the variabil-
ity (51.4%), the genotypes that exhibited both stability and high production
on average were G8, G45, G21 and G7 (Figure 4).

1.0

0.5

PC2 (22.1)
0.0

-1.0 -0.5 0.0 0.5 1.0 1.5

PC1 (51.4)
Figure 5. AMMI2 biplot (PC1 vs PC2) for the wheat trials yield data (t/ha)
with 25 genotypes (G) and 6 environments (E)

The environments with the highest productivity on average were E31
(Shesham Bagh, Afghanistan) followed by E3 (Wheat Research Institute,
Pakistan) and E12 (Dwr-Karnal, India). An environment with mean yield
was E34 (Dinajpur, Bangladesh) followed closely by E7 (Londrina, Brazil),
while an environment positioned way below average was E21 (Quetta Ari
Sariab, Pakistan). Environment E7 was also shown to be the most stable.
There were no groups formed according to Figures 4 and Figure 5, which is a
result of the clustering analysis applied to delineate groups of environments.

As for specific adaptations, Figure 5 showed G33 with high yield per-
formance in environments E34, E21 and E7 while performing poorly in K12
and E3. Environment 21 had genotypes G5, G38 and G37 with high per-
formance due to specific adaptation; G5 also adapted well in E31, as did
G16. The environment E3 had G24 as the genotype with the highest per-
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formance due to specific adaptation, followed by G9, but these genotypes
had low performance in E34. The genotypes with the highest yield perfor-
mance for E34 were G31 and G27. Genotype G46 had better performance in
environments K3 and E12 while performing poorly in other environments.
Genotype G29 had the best performance in E12 and E34 in comparison
with other environments, followed by G1 and G45; these three genotypes
had a low yield in environments E7, E21 and E31.

In terms of model fitting, the work of Hongyu et al. (2014) led to similar
results: two principal components were able to retain 71.2% of the original
variability from 9 genotypes in 20 different environments with the AMMI2
model. According to Gauch et al. (2008), the fundamental reason AMMI is
appropriate for agriculture is that the ANOVA step of the analysis can ef-
fectively separate G and E main effects from GE interaction, which presents
researchers with many problems and opportunities.

3.3. GGE Biplot analysis

From the six principal components fitted by the GGE Biplot analysis, ac-
cording to the information relation (IR), only PC1 (IR=2.6394) and PC2
(IR=1.6926) retained patterns in the data. This shows that the first two
principal components were adequate for visually representing the data. The
biplot graph is shown in Figure 6, where the abscissa represents PC1 and
the ordinate represents values of PC2. Similarly to the AMMI plots, geno-
types are denoted by G1 to G50 and environments by E1 to E36, bearing
in mind that only the medoid representatives for each group are shown.

Table 2. Explained proportion and information relation (IR) for six GGE
principal components

PC Explained Variability (%) IR

1 43.99 2.6394
2 28.21 1.6926
3 12.43 0.7458
4 8.85 0.5310
) 4.62 0.2772
6 1.9 0.1140

The GGE biplot in Figure 6 was built with environment-centered data
(centering = 2), not scaled (scale = 0), and with column singular value
partitioning (SVP = 2). The "which won where" GGE biplot in Figure 6
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allowed the visual grouping of environments based on crossed GEI between
the highest yield genotypes. The polygon’s vertices comprised genotypes
G33, G16, G9, G45, G29, G27. The seven environments were grouped into
5 mega-environments formed by: (i) E21, (ii) E31 and E3, (iii) E12, (iv) E9,
(v) E34 and E7. The genotype G33 was the vertex in the mega-environment
formed by E21, which means that this genotype had the highest yield in
E21. Similarly, G27 was the best genotype in terms of yield in the mega-
environment formed by E34 and E7 (Figure 6).

AXIS2 28.21 %

AXIS1 43.99 %
Figure 6. "Which won where" GGE biplot for the wheat trials yield data (t/ha)
for the delineation of mega-environments

There were two cases of mega-environments with two vertices; how-
ever, there was still a better genotype in each environment. In the mega-
environment formed by E9 the two genotypes with the best performance
were G29 and G45, in decreasing order. In the E31 and E3 mega-environment
the best genotypes were G24 and G9. There were also genotypes in regions
with no environment at all, which means that such genotypes had a poor
performance in all environments, as was the case with G16, and even G21
to a certain degree (Figure 6).
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The GGE biplots in Figures 7 and 8 were built with environment-
centered data (centering = 2), not scaled (scale = 0), with column singular
value partitioning (SVP = 1). An ideotype is the ideal genotype for a cer-
tain environment or cropping objective; the ideotype thus combines high
mean yield and stability in a mega-environment. The "Mean vs Stability"
GGE biplot (Figure 7) allows the efficient evaluation of genotypes by both
characteristics. The small green circle in Figure 7 represents the "mean-
environment", which is an environment built on the coordinate means for
all environments in the analysis. The green line in Figure 7 with the arrow
passing through the origin represents the "mean-environment axis" and the
direction in which the arrows point represents higher mean yield for the
genotypes. The second axis represents stability; genotypes that are closer
to the origin are more stable (Yan, 2011; Hongyu et al., 2015).

AXIS2 28.21 %
0

@33

AXIS1 43.99 %

Figure 7."Mean vs Stability" GGE biplot for the wheat trials yield data (t/ha)
with 25 genotypes (G) and 6 environments (E)

In terms of mean yield, the genotypes classification is G29 > G45 >
G27 > Gl > G8 > G18 > ... > G11 > G15 > G46 > grand mean > G49
> G9 > G19 > ... > G16 > G5 > G33 (Figure 7). Among the unstable
genotypes, G33 had the highest instability, due to its high performance in
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E21 and low yield in other environments; other unstable genotypes exhibited
similar behavior. Although not the most stable, G29 and G27 were among
the most productive genotypes. There were genotypes with high stability
and yield close to the grand mean, which was the case for G15, G49 and
G19. It is important to note that the biplot represents only a fraction of
the total variation; it is possible to wrongly evaluate a genotype as stable
if its variability is not significantly retained by both principal components.
According to Figure 7 the genotypes that are closest to the definition of
ideotype for the analyzed data were G45, G8 and G1, being among the
most productive (second, fifth and fourth places respectively) and highly
stable.

The plot in Figure 8 enables evaluation of the test environments, to iden-
tify environments that may serve to select superior genotypes in an efficient
way for a mega-environment. The selected test environment should have
high genotype discrimitiveness and representativeness. Environments with
shorter vectors have less discrimitiveness in relation to genotypes, i.e., all
genotypes tend to perform equally and almost no information about geno-
typic differences can be revealed by such environments. A short vector could
also mean that PC1 and PC2 do not represent that environment very well
in cases where G + GE has not been retained properly. The environments
E34, E12, and E3 presented long vectors, which means they have high dis-
crimitiveness for the genotypes. It is also possible, by Figure 8, to identify
environments with high representativeness: the smaller is the angle between
an environment and the mean-environment axis (blue axis), the higher is
its representativeness. An environment that has both characteristics more
than the others is E12. Environments E3 and E34 have long vectors but
greater angles, implying that they should not be recommended (Figure 8).

The GGE Biplot analysis used in this study included mega-environment
analysis, genotype evaluation and test-environment evaluation, all of the
three aspects that should be addressed according to Yan et al. (2007). As
stated by Yan et al. (2000), the first principal component in the graphi-
cal analysis represents genotypic productivity, while the second represents
genotypic stability. However, such properties tend to appear only in cases
where the first principal component is highly correlated to the genotype ef-
fects. Also it has to be considered that, as mentioned by Yan et al. (2007), G
and GE are first of all mathematical definitions. There is little evidence that
G and GE are controlled by different genes and can thereby be separately
selected.
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G24

AXIS2 28.21 %
0
|

G33

AXIST 43.99 %
Figure 8."Discrimitiveness vs Representativeness" GGE biplot for the
environments in the study

3.4. Comparison of AMMI and GGE Biplot analyses

The proportion of explained variability proved to be highly correlated when
compared between AMMI and GGE Biplot analyses (r = 0.9706). Accord-
ing to Camargo-Buitrago et al. (2011), such high correlation indicates that
both models performed equivalently in the MET data analysis. AMMI re-
tained 51.40% of the total variation in PC1 while GGE retained 41.32%; the
sum of the total variation retained in PC1 and PC2 was 73.50% for AMMI
and 68.06% for GGE. Considering this, both models explained very similar
amounts of variation; however, AMMI still retained a greater proportion.
Nevertheless, GGE Biplot made it possible to analyze the MET data by a
different approach and to confirm some interpretations, thus enhancing the
reliability of AMMI.

Similar amounts of total variability explained by AMMI and GGE, de-
spite AMMI explaining a slightly greater amount, were also reported by
Hongyu et al. (2015). As was shown by Gauch et al. (2008), GGE Biplot
alone would not be of interest to crop and soil scientists since it ignores envi-
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ronmental main effects, which are considered in the AMMI model. However,
Yan et al. (2007) stated that GGE Biplot serves an additional purpose not
provided by AMMI analysis: the evaluation of test environments. The work
of Hongyu et al. (2015) also compared AMMI and GGE analysis in a similar
way to that presented in this study, showing the advantages of including
both models in the analysis to exploit their strengths.

4. Conclusion

Cluster analysis has been shown to be efficient in delineating groups with
similar genotypes and environments, as is implied by the fact that most
environments formed a mega-environment on their own. Its effectiveness
is also reflected in the fact that the levels of significance presented in the
ANOVA of the reduced data remained the same as in the ANOVA of the
original data. The interpretations for the genotypes and environments could
thus be extended to their respective groups, always considering the degree
of similarity based on their distance matrix.

According to the results, both AMMI and GGE were able to efficiently
explore the variability present in MET data due to genotype-environment
interaction. Also, by complementing each other, it was possible to gain re-
liability in the analysis, where there is a danger that some genotype may
be wrongly identified as stable due to the lower than 100% proportion of
variability explained by both models. With the 14** Semi-Arid Wheat Yield
Trials data, AMMI (73.5%) explained more variability than GGE (68.06%)
in the first two components. However both models proved to be approxi-
mately equivalent, leading to substantially the same conclusions about the
genotypes with the highest yield and stability. Further, the researcheraAZs
attention is drawn to cases where certain genotypes and environments lead
to different conclusions in each model. Both AMMI and GGE agreed that
G8 and G45 were the genotypes closest to the definition of ideotype.
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