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SUMMARY 

Data arranged in a two-way contingency table can be obtained as a result of many 

experiments in the life sciences. In some cases the categorized trait is in fact conditioned 

by an unobservable continuous variable, called liability. It may be interesting to know the 

relationship between the Pearson correlation coefficient of these two continuous variables 

and the entropy function measuring the corresponding relation for categorized data. After 

many simulation trials, a linear regression was estimated between the Pearson correlation 

coefficient and the normalized mutual information (both on a logarithmic scale). It was 

observed that the regression coefficients obtained do not depend either on the number of 

observations classified on a categorical scale or on the continuous random distribution 

used for the latent variable, but they are influenced by the number of columns in the 

contingency table. In this paper a known measure of dependency for such data, based on 

the entropy concept, is applied. 
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1. Introduction 

The problem of analysis of dependencies arises for both continuous and discrete 

variables. The case of continuous variables is widely treated in the literature, and 

hence the estimation and testing procedures are very well recognized. By 

contrast, the case of discrete variables seems to be more complicated, mainly 

because for discrete data the assumptions of linear models are difficult or even 

impossible to fulfill. Generally there are several strategies used in such cases. The 

first is based on nonparametric statistics. In the second, categorical data are 

transformed to continuous variables to enable the application of well-known 

statistical analyses (Snell, 1964). Other options, based on the general linear model 
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and the threshold model, are also noted and widely used in the literature (Gianola 

and Foulley, 1983; McCullagh and Nelder, 1989; Bilow et al., 2017). Using these 

approaches we do not need to transform the discontinuous observations, but there 

are provided some link functions which can be modeled by a linear model. In this 

paper we will focus on the threshold model, which is appropriate for the analysis 

of data organized in a contingency table and has been used by many authors to 

analyze issues in the life sciences (Harville and Mee, 1984; Sorensen et al., 1995; 

Moliński et al., 2003). The main concept of the threshold model is based on the 

assumption that the discrete observations of a trait are determined by an 

unobservable continuous (often normally distributed) variable called liability 

(Falconer, 1989). This approach is justified for many threshold traits related to 

reproduction, health and fitness. For instance, it is well known that fertility is 

determined by many factors both genetic and environmental, which is typical for 

a continuous trait. However, observations of fertility made for individuals have a 

binary nature: fertile or not. There are many other threshold traits where the 

observable values are classified into several mutually exclusive and independent 

categories, but this classification is determined by an underlying continuous 

variable, for example hatchability (Dobek et al., 2003), ease of calving (Harville 

and Mee, 1984) or lodging of grain (Bakinowska and Kala, 2007). The 

relationship between the liability and visible categorical observations may be 

briefly presented as follows. When we observe only two categories (success or 

failure, e.g. fertile or not fertile) we expect success when the value of the liability 

reaches a sufficient value (threshold) on the unobservable scale, and failure 

otherwise. Similarly, for more categories, we observe one of several states of the 

categorical trait as a consequence of the fact that the underlying liability exceeds 

the corresponding unobservable threshold. 

Let as assume that we are interested in the analysis of two threshold traits, 

both observed on each experimental unit. In medical treatments it is usual that 

patients are classified into two categories for one trait—for example, as diabetic 

or not—and into several categories for the other trait, which may be, for example, 

blood pressure (low, normal, high). The problem of estimation of the correlation 
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between the two observed traits can be very important for the proper diagnostic 

process. Such data can be arranged into a two-row contingency table, and the 

question is whether it is possible to estimate the correlation between the 

underlying liabilities for observed threshold traits on the basis of the categorical 

data. In this paper, beginning with the assumption that the discrete variable is in 

fact conditioned by a continuous variable, we attempt to find a relationship 

between the Pearson correlation coefficient of two continuous variables and the 

entropy function measuring the corresponding relation when the attributes are 

observed on a discrete scale. The choice of an entropy-based approach is 

appropriate for a growing number of applications in various fields, especially in 

genetics (Kang et al, 2008; Ruiz-Marin et al, 2010). The relation between 

correlation and relative entropy measures of multivariate dependence was 

analyzed by Joe (1989). The aim of our work is to develop the approach proposed 

by Joe (1989) and to verify the possibility of estimating the Pearson correlation 

coefficient for the threshold traits with observations organized into a two-row 

contingency table. This was done by means of simulation studies. 

To begin with, we shall present an existing measure of dependencies between 

categorical variables, being a function of entropy. Then, based on simulation 

studies, we shall present a dependency observed for the Pearson correlation 

coefficient and the measure of entropy used for data arranged in a two-row 

contingency table. 

2. Definition of entropy 

For a categorical random variable A taking values {𝑎1, 𝑎2,…,𝑎𝑘} with 

probabilities p(𝑎𝑖) (i = 1,2,…,k), the well-known entropy introduced by Shannon 

(1948) is defined as 
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where ln() denotes natural logarithm. The value H(A) is often called the Shannon 

diversity index, and it takes smaller values when there are significant differences 

between the p(ai) (Shannon, 1948).  

The notion of entropy can be generalized to two or more categorical variables. 

In the case of two variables it is defined as  
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where ai and bj are the values of A and B, and again p is the corresponding 

probability (Jakulin, 2005). The value H(A, B) is a basis for several measures of 

dependency between two categorical variables (Moore et al., 2006). 

3. Measure of dependency 

The measure of dependency of categorical variables described below is a function 

of the value I(A, B), which represents the so-called mutual information, namely 

(Yan et al., 2008) 
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where H(A / B) is the conditional entropy, i.e.  
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which describes the uncertainty about variable A in the presence of B (Jakulin, 

2005). The uncertainty about variable B in the presence of A, H(B / A), is defined 

in a symmetric way to H(A / B). 

It should be noted that there are different measures of dependency (Jakulin, 

2005; Moliński, et al., 2012), but in this paper we focus on a measure proposed 

by Joe (1989). According to Joe (1989), the quotient 
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has some desired properties that allow it to be interpreted as the square of a 

correlation coefficient. Namely, since the entropy of a discrete probability 

distribution is positive, and mutual information I(A, B) is non-negative, J(A, B) 

is also non-negative. Furthermore, as was shown by Joe (1989), J(A, B) is 

bounded between 0 and 1 and the value 1 is reached iff there exists a functional 

dependency between A and B. The significance of I(A,B) can be tested based on 

a χ2 test (Kang et al., 2008). 

4. Relation between correlation of continuous variables and mutual 

information 

As has already been mentioned, in the life sciences there are many traits which 

can be observed on a categorical scale but are determined by many factors 

including genetic and environmental determinants, for example fertility (fertile 

or not), resistance to diseases (healthy or not), and resistance of pathogenic 

bacteria to various antibiotics. Due to the multifactorial determination of traits of 

this type, it is natural to suppose that their categorical phenotype is really 

expressed on a continuous, unobservable variable called liability. 

In the present study we looked for a relation between the information obtained 

from the phenotypic data arranged in a contingency table, and the correlation 

between continuous, unobservable variables determining the classification of the 

data. To find these relations, simulation studies were performed. The data were 

simulated according to the following scenario. Two vectors X and Y, both of 

length n, were generated from a two-dimensional normal distribution with a given 

correlation coefficient between X and Y (denoted r). Several variants of 

expectations and variances for X and Y were tested. Three cases for n (100, 200 

and 300) and, for every n, nine values of r (from 0.1 to 0.9 with step 0.1) were 

taken. The components of the generated X and Y were next distributed into 

categorical classes, so that a contingency table could be created. Because we 
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focused on two-row tables, one of the vectors, say X, was divided into two 

classes, and the second vector into two, three, four or five categories. The 

thresholds between classes were determined taking into account the range of 

values of X and Y. For example, for a division of X into two categories, the 

threshold was taken as the minimum value of X increased by 1 2⁄  of the range of 

X; for a division of Y into three categories, the threshold between the first and 

the second class was equal to the minimum value of Y increased by 1 3⁄   of the 

range of Y, and the threshold between the second and the third category was the 

minimum Y increased by 2 3⁄   of the range of Y; etc. Then, for every contingency 

table the value of J was calculated. This process was repeated 100 times for each 

examined r and n, i.e. for every considered n, 900 2x2 contingency tables, 900 

2x3 contingency tables, etc. were built. Finally, on the basis of 900 points, the 

linear regression between –ln(r) and –ln(J) was estimated. 

The calculations were performed using the R package (R Core Team, 2013). 

Figure 1 shows a visualization of the regression obtained for one data variant; 

however, a similar tendency was observed for the other cases. Each point on the 

figure denotes one contingency table for which the value of J was calculated. As 

mentioned earlier, for nine assumed values of correlation 100 contingency tables 

were simulated, hence at every level of assumed r 100 points are plotted. Several 

regression scenarios were checked, and finally the best fitting properties were 

obtained for linear regression between –ln(r) and –ln(J). It is clear from Figure 1 

that the range of –ln(J) increases as the value of r becomes smaller. Values of  

–ln(J) greater than seven may suggest low correlation between the continuous 

variables determining the classification of the data, while values of –ln(J) less 

than two were obtained when the assumed correlation between X and Y was the 

highest. 

Table 1 gives the regression coefficients (b1) and intercepts (b0) obtained for 

two sets of simulated data: one is the case in which the same expectations (equal 

to 10) and the same variances (equal to 1) were used to generate the variables X 
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and Y, and other is the case in which the random distributions of X and Y had 

different parameters. It is clear that the results for both datasets are quite similar.  

 

 

Figure 1. Linear regression for data generated with the same expectations 

(equal to 10) and the same variances (equal to 1) for X and Y.  

 

Table 1. Linear regression coefficients 

  Data set with EX=10, EY=50,  

VX=4, VY=9 

Data set with EX=EY=10,  

VX=VY=1 

Table n b1 b0 SDb1 SDb0 b1 b0 SDb1 SDb0 

2x2 

100 0.3336 -0.0915 0.007 0.023 0.3113 -0.0104 0.007 0.023 

200 0.3390 -0.1077 0.006 0.019 0.3439 -0.1142 0.006 0.020 

300 0.3354 -0.0920 0.005 0.018 0.3455 -0.1134 0.006 0.019 

2x3 

100 0.4342 -0.2023 0.008 0.023 0.4307 -0.1929 0.008 0.023 

200 0.4466 -0.2831 0.006 0.018 0.4625 -0.3300 0.006 0.017 

300 0.4334 -0.2878 0.006 0.017 0.4470 -0.3094 0.006 0.018 

2x4 

100 0.5149 -0.2703 0.009 0.022 0.5200 -0.2722 0.009 0.023 

200 0.5173 -0.3552 0.006 0.017 0.5054 -0.3218 0.006 0.017 

300 0.4903 -0.3229 0.005 0.014 0.5019 -0.3487 0.005 0.015 

2x5 

100 0.5783 -0.3169 0.010 0.024 0.5642 -0.2932 0.010 0.022 

200 0.5396 -0.3387 0.007 0.017 0.5565 -0.3658 0.007 0.017 

300 0.5379 -0.3745 0.005 0.013 0.5270 -0.3515 0.005 0.014 

EX – expectation of X, EY – expectation of Y, VX – variance of X,VY – variance of Y,  

SD – standard deviation  
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Analyzing the results, it was possible to observe certain relations between the 

estimated regression coefficients and the sizes of the data tables. While the values 

of b1 and b0 seem not to be influenced by the value of the parameter n, they are 

sensitive to changes in the size of the contingency table. An increase in the 

number of classes in the tables causes an increase in the absolute values of the 

regression coefficients. To show this tendency better, the means of b0 and b1 were 

calculated for different sizes of contingency tables. These are given in Table 2. 
 

Table 2. Averaged regression coefficients for different sizes  

of contingency table 

Size of table Mean b1 Mean b0 

2x2 0.3348 -0.0882 

2x3 0.4424 -0.2676 

2x4 0.5083 -0.3152 

2x5 0.5506 -0.3401 
 

The largest increase in the regression coefficients can be observed for 2x3 

tables compared with 2x2 tables (Table 2). Further increases in the number of 

columns did not cause very significant increases in the coefficients. It is known 

that the discretization of data into n categories with very large n may lead to 

infinite values of the logarithms calculated in J(A, B). However, from a practical 

perspective, the classification of the data into more than five categories would 

appear not to be reasonable. 

The obtained regression coefficients were applied to the estimation of the 

correlation for several simulated contingency tables for which the value of J was 

calculated. Then, the correlation coefficient r was estimated in two ways: 

following Joe (1989) as √𝐽, and from the regression equation as 𝑟 = 𝑒−𝑏0𝐽𝑏1, 

where b1 and b0 were taken from Table 2. Some results of this procedure are 

presented in Table 3. 

As is clear from Table 3, the use of regression made it possible to obtain more 

accurate correlation coefficients than Joe’s approach. The best results were 

obtained for a true correlation equal to 0.5, and this seems to be a natural 



 

 

 

 

Entropy as a measure of dependency for categorized data               241 

 

 consequence of regression properties. For n = 100 and 200 this conclusion 

remained true, hence these results are not presented. 

 

Table 3. True and estimated correlation coefficients for four sizes  

of contingency tables with n=300 

 Correlation coefficient 

Table assumed estimated as √𝐽 estimated via regression 

2x2 

0.1 0.0540 0.1547 

0.5 0.2916 0.4785 

0.9 0.6375 0.8080 

2x3 

0.1 0.0767 0.1348 

0.5 0.3099 0.4634 

0.9 0.5658 0.7896 

2x4 

0.1 0.0391 0.0508 

0.5 0.4076 0.5503 

0.9 0.6161 0.8377 

2x5 

0.1 0.1612 0.1883 

0.5 0.3792 0.4830 

0.9 0.7404 1.0092 

 

The proposed analysis was also performed for data generated with a Poisson 

distribution. The estimated regression coefficients were very similar to those 

presented above; therefore the results appear not to be influenced by the 

distribution of liability.  

5. Conclusions 

Data arranged in a two-way contingency table may arise as the result of many 

experiments in which two threshold traits are observed and at least one of them 

is collected on a binary scale. Knowledge about a potential correlation between 

underlying continuous random variables can improve the statistical analysis. The 

theory proposed by Joe (1989) suggested that it is possible to use measures of 

information and find their relations with the quantitative structure of the data. In 

this paper we proposed to estimate the Pearson correlation coefficient of 

unobservable continuous distributed liabilities of threshold variables on the basis 

of their categorical observations. Using simulation studies it was shown that the 
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regression approach yields more accurate results than Joe’s approach. The 

obtained regression coefficients did not change significantly with modification of 

the underlying random distribution or with an increase in the number of 

observations classified in the given categories. However, they increased when the 

number of columns in the contingency table was greater. Moreover, the range of 

calculated values of normalized mutual information (on a logarithmic scale) is 

smaller for higher correlations. Based on the results, it was possible to propose 

values of linear regression coefficients which can be used, depending on the size 

of the contingency table, to estimate correlation. Notwithstanding, the results 

presented here are based on simulated data, and they can be treated only as a 

starting point for further analytical and practical research. 
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