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SUMMARY 

Linear regression with temporally delayed covariates (distributed-lag linear regression) is 

a standard approach to lag exposure assessment, but it is limited to a single biomarker of 

interest and cannot provide insights on the relationships holding among the pathogen 

exposures, thus precluding the assessment of causal effects in a general context. In this 

paper, to overcome these limitations, distributed-lag linear regression is applied to 

Markovian structural causal models. Dynamic causal effects are defined as a function of 

regression coefficients at different time lags. The proposed methodology is illustrated 

using a simple lag exposure assessment problem. 

Key words: directed acyclic graph; distributed-lag linear regression; dynamic causal 

inference; structural causal models; polynomial lag shape. 

1. Introduction 

Lag exposure assessment has the aim of investigating the effect of several 

pathogen exposures on a biomarker over time. Linear regression with temporally 

delayed (lagged) pathogen exposures, known as distributed-lag linear 

regression, is a standard approach to address such problems. Distributed-lag 

linear regression was proposed for the first time in the econometric field (Koyck, 

1954; Solow, 1960; Almon, 1965), but recently it has received increasing 

attention for lag exposure assessment problems (Schwartz, 2000; Zanobetti et al., 

2000; Martins et al., 2006; Welty et al., 2009; Gasparrini and Leone, 2014). 

Unfortunately, distributed-lag linear regression is limited to a single 

biomarker of interest and cannot provide insights on the relationships holding 

among the pathogen exposures. These limitations may preclude the assessment 
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of causal effects, as they generally depend on the causal structure relating all the 

variables of interest (biomarkers and exposures), and not simply on the 

relationships between each biomarker and the exposures by which it is directly 

influenced. Structural causal models (SCMs; Pearl, 2000), and in particular linear 

Markovian SCMs, allow a recursive application of linear regression, thus 

appearing to be a natural extension of distributed-lag linear regression to 

a multivariate domain. 

In this paper, distributed-lag linear regression is applied to Markovian 

structural causal models in order to obtain a methodology for lag exposure 

assessment in a multivariate domain. Our proposal, compared with existing 

methods, allows one to consider several different biomarkers and to study the 

relationships holding between each pathogen exposure and biomarker, as well as 

among the pathogen exposures. Thus, it is possible to assess dynamic causal 

effects whatever the causal structure relating the variables of interest. Several 

rules are provided to compute these from regression coefficients at different time 

lags. 

This paper is structured as follows. In section 2, distributed-lag linear 

regression is introduced and discussed in the context of lag exposure assessment. 

In section 3, existing theory on SCMs is summarized, with special emphasis on 

linear Markovian SCMs. In section 4, a methodology is detailed for the use of 

linear Markovian SCMs for lag exposure assessment in a multivariate domain. In 

section 5, the proposed methodology is applied to a biometric problem. Section 

6 contains concluding remarks and considerations on the future development of 

the proposed methodology. 

2. Lag exposure in the linear regression model 

Suppose that we wish to investigate the effect of a single pathogen exposure on 

a biomarker over time. Let 𝑋𝑡  be the measurement of the pathogen exposure at 

time 𝑡 and 𝑌𝑡  be the measurement of the biomarker at time 𝑡. 



 

 

 

 

Linear Markovian models for lag exposure assessment                    181 

 

By assuming that time is a discrete variable, and that the influence of 𝑋 on 𝑌 

does not depend on time but only on the temporal distance (lag) between the 

exposure and the observation, the influence of 𝑋 on 𝑌 may be modeled using 

a  linear regression model including temporally delayed (lagged) instances of 𝑋: 

 
𝑦𝑡 = 𝛽0 + ∑ 𝛽𝑙𝑥𝑡−𝑙

𝐿

𝑙=0

+ 𝜀𝑡 (1) 

where 𝜀𝑡 is the random error at time 𝑡, uncorrelated with 𝑋 and with 𝜀0, … , 𝜀𝑡−1. 

In this model, the observed value of 𝑌 at time 𝑡 depends not only on the value of 

𝑋 at time 𝑡, but also on all values of 𝑋 since 𝐿 time instants before 𝑡. In particular, 

the value of 𝑌 at time 𝑡 is expected to increase by 𝛽𝑙  for a unitary increase in the 

value of 𝑋 at time 𝑡 − 𝑙, for any 𝑡. Equivalently, as 𝑌 is exposed to a unitary 

increase in the value of 𝑋, the value of 𝑌 is expected to increase by 𝛽𝑙  after 𝑙 

instants (time lags). 

Suppose now that there is a vector of 𝑝 pathogens, say 𝑿 = (𝑋1, … , 𝑋𝑝), 

rather than a single one. In this case, the model becomes: 

 

𝑦𝑡 = 𝛽0 + ∑ ∑ 𝛽𝑖,𝑙𝑥𝑖,𝑡−𝑙

𝐿𝑖

𝑙=0

𝑝

𝑖=1

+ 𝜀𝑡 (2) 

where 𝜀𝑡 is the random error at time 𝑡, uncorrelated with the variables in 𝑿 and 

with 𝜀0, … , 𝜀𝑡−1. In this new formulation, the expected value of 𝑌 at time 𝑡 is 

expected to increase by 𝛽𝑖,𝑙  for a unitary increase in the value of 𝑋𝑖  at time 𝑡 − 𝑙, 

given constant values of the variables in 𝑿 besides 𝑋𝑖. 

The set 𝜷𝑖 = (𝛽𝑖,0, 𝛽𝑖,1, … , 𝛽𝑖,𝐿𝑖
) is called the lag shape of the covariate 𝑋𝑖  

and represents its influence on 𝑌 at different time lags. Note that the case where 

a covariate 𝑋𝑖  has only a static influence on the response Y is obtained by setting 

𝐿𝑖 = 0. The case where 𝐿𝑖 = 0 for all 𝑖 coincides with the classical linear 

regression model. 

The autoregressive lag shape may be further considered, and the distributed-

lag linear regression becomes: 
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𝑦𝑡 = 𝛽0 + ∑ 𝜙ℎ𝑦𝑡−ℎ

𝐻

ℎ=1

+ ∑ ∑ 𝛽𝑖,𝑙𝑥𝑖,𝑡−𝑙

𝐿𝑖

𝑙=0

𝑝

𝑖=1

+ 𝜀𝑡 (3) 

In the remainder of this paper, a distributed-lag linear regression model with 

response variable 𝑌 and covariates 𝑋1, … , 𝑋𝑝 will be indicated with the following 

notation: 

 𝑌 ~ ℒ(𝑌; 𝐻) + ℒ(𝑋1; 𝐿1) + ⋯ + ℒ(𝑋𝑝; 𝐿𝑝) (4) 

where ℒ( ∙ ; 𝐿) denotes a lag shape of length 𝐿. 

3. Structural causal models 

Structural causal models (SCMs) were developed by Pearl (2000) in the context 

of causal inference. They are rooted in path analysis (Wright, 1934) and 

simultaneous equation models (Haavelmo, 1943; Koopmans et al., 1950). An 

SCM consists of a tuple {𝑽, 𝑼, Ω𝑽, Ω𝑼, 𝒇, ℘𝑼}, where: 

𝑽 = (𝑉1, … , 𝑉𝐽) is a set of endogenous variables; 

Ω𝑽 = Ω𝑉1
× … × Ω𝑉𝐽

 is the Cartesian product of the domains of variables in V; 

𝑼 = (𝑈1, … , 𝑈𝐾) is a set of unobserved variables; 

Ω𝑼 = Ω𝑈1
× … × Ω𝑈𝐾

 is the Cartesian product of the domains of variables in U; 

𝒇: Ω𝑽 × Ω𝑼 → Ω𝑽 is a measurable function; 

℘𝑼 is a probability measure on Ω𝑼. 

Markovian SCMs (Pearl, 2000, Chapter 3) are a special case where 𝒇 is 

acyclic and the variables in 𝑼 are mutually independent. In a Markovian SCM, 

the following factorization of the joint probability distribution of variables in 𝑽 

holds: 

𝑝(𝑣1, … 𝑣𝐽) = ∏ 𝑝(𝑣𝑗|Π𝑗 = 𝜋𝑗)

𝐽

𝑗=1

 (5) 

where Π𝑗  is the set of variables in 𝑽 such that, for 𝑗 > 1, 𝑉𝑗  is independent of the 

variables in {𝑉1, … 𝑉𝑗−1} ∖ Π𝑗, given the variables in Π𝑗. This means that the joint 

probability distribution of the variables in 𝑽 can be factored according to 

conditional independence relationships holding among them, disregarding the 
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variables in 𝑼. Pearl (2000, page 12 and following) shows that these conditional 

independence relationships are encoded into a directed acyclic graph (DAG) such 

that Π𝑗  is the parent set of 𝑉𝑗, ∀𝑗 = 1, … 𝐽. For example, in the Markovian SCM 

associated with the DAG in Figure 1, it holds that 

𝑝(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6) 

= 𝑝(𝑣1)𝑝(𝑣2)𝑝(𝑣3|𝑣1)𝑝(𝑣4|𝑣2, 𝑣3)𝑝(𝑣5|𝑣3)𝑝(𝑣6|𝑣3, 𝑣4, 𝑣5) 

(6) 

and, for example, 𝑉6 is independent of 𝑉1 and 𝑉2 given 𝑉3, 𝑉4 and 𝑉5. 

Let do(Vi = vi) denote an intervention setting the value of Vi to vi. Then, in a 

Markovian SCM it holds that 

𝑝(𝑣1, … 𝑣𝐽|do(𝑉𝑖 = 𝑣𝑖)) = ∏ 𝑝(𝑣𝑗|Π𝑗 = 𝜋𝑗)|
𝑉𝑖=𝑣𝑖

𝑗≠𝑖

 
(7) 

 

Figure 1. An example of a directed acyclic graph 

where  ∙ |𝑉𝑖=𝑣𝑖
 indicates that 𝑉𝑖 is replaced by the value 𝑣𝑖. This formula, called 

truncated factorization (Pearl, 2000, section 3.2), allows one to compute the 

effect of an intervention from the (pre-intervention) distribution in formula (5), 

that is, to predict the effect of an intervention from non-experimental 

(observational) data. In a Markovian SCM, the effect of do(𝑉𝑖 = 𝑣𝑖) on 𝑉𝑗, called 

the causal effect of 𝑉𝑖  on 𝑉𝑗, is given by the following expression (see Pearl, 2000, 

page 70 and following): 

           𝑝(𝑉𝑗 = 𝑣𝑗|do(𝑉𝑖 = 𝑣𝑖))

= ∏ 𝑝(𝑉𝑗 = 𝑣𝑗|𝑉𝑖 = 𝑣𝑖 , Π𝑖 = 𝜋𝑖)𝑝(Π𝑖 = 𝜋𝑖)

𝜋𝑖

 
(8) 
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where Π𝑖  is the parent set of 𝑉𝑖. 

Linear Markovian structural causal models 

In a linear parametric formulation of SCMs (linear Markovian SCMs), each factor 

𝑝(𝑣𝑗|Π𝑗 = 𝜋𝑗) of the joint probability distribution in formula (5) is the linear 

regression model where 𝑉𝑗  is the response variable and the variables in Π𝑗  are the 

covariates. For example, in the linear Markovian SCM associated with the DAG 

in Figure 1, 𝑝(𝑣4|𝑣2, 𝑣3) is the linear regression model where 𝑉4 is the response 

variable and 𝑉2 and 𝑉3 are the covariates. 

In a linear Markovian SCM, the computation of causal effects involves the 

coefficients of the regression models only, without the need for formula (8), as 

shown in the following paragraphs. The regression coefficient notation used in 

section 2 is modified to include subscripts with both the response variable and 

the covariate, separated by a vertical pipe. For instance, 𝛽𝑗|𝑖 indicates the 

coefficient of 𝑉𝑖  in the regression model of 𝑉𝑗. 

Direct causal effects. The coefficient of 𝑉𝑖  in the regression model of 𝑉𝑗, say 𝛽𝑗|𝑖, 

represents the expected value of 𝑉𝑗  given a unit variation of 𝑉𝑖  and given constant 

values of the parents of 𝑉𝑗  besides 𝑉𝑖: 

𝛽𝑗|𝑖 ≔ E(𝑉𝑗|∆𝑉𝑖 = 1, ∆𝑉𝑘:𝑉𝑘∈{Π𝑗\V𝑖} = 0) (9) 

Expression (9) is a special case of (8), where the intervention is do(∆𝑉𝑖 = 1) 

and the conditioning set is {Π𝑗\𝑉𝑖} instead of Π𝑖 . Since the variables in Π𝑖  but 

not in Π𝑗  are independent of 𝑉𝑗  conditionally on the variables in Π𝑗  (see formula 

(5)), we can conclude that 𝛽𝑗|𝑖 represents the average effect of do(∆𝑉𝑖 = 1) on 

𝑉𝑗: 

𝛽𝑗|𝑖 ≔ E (𝑉𝑗|∆𝑉𝑖 = 1, ∆𝑉𝑘:𝑉𝑘∈{Π𝑗\V𝑖} = 0)

= E(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑖, 𝑉𝑗 >) 

(10) 

which is called the direct causal effect of 𝑉𝑖  on 𝑉𝑗. The notation 

E(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑖, 𝑉𝑗 >) emphasizes that the causal effect in formula 

(10) is associated with the edge < 𝑉𝑖, 𝑉𝑗 >. For example, in the linear Markovian 
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SCM associated with the DAG in Figure 1, 𝛽4|3 represents the expected value of 

𝑉4 given a unit variation of 𝑉3 and given a constant value of 𝑉2, equating to the 

direct causal effect of 𝑉3 on 𝑉4. 

Indirect causal effects and the overall causal effect. Suppose that there exists 

more than one directed path connecting variable 𝑉𝑖  to variable 𝑉𝑗. In this case, it 

is straightforward to show that the intervention do(∆𝑉𝑖 = 1) influences the 

expected value of 𝑉𝑗  independently along each directed path connecting 𝑉𝑖  to 𝑉𝑗, 

for an overall causal effect equal to the sum of the causal effects associated with 

each of these paths: 

E (𝑉𝑗|do(∆𝑉𝑖 = 1)) 

= ∏ E(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑑0
, … , 𝑉𝑑𝑚

>)

<𝑉𝑑0 ,…,𝑉𝑑𝑚>: 𝑑0=𝑖∧𝑑𝑚=𝑗

 
(11) 

where E(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑑0
, … , 𝑉𝑑𝑚

>) is the causal effect of do(∆𝑉𝑖 = 1) 

on 𝑉𝑗  associated with the directed path < 𝑉𝑑0
, … , 𝑉𝑑𝑚

> ( 𝑑0 = 𝑖 ∧ 𝑑𝑚 = 𝑗) 

connecting 𝑉𝑖  to 𝑉𝑗, denoted as the pathwise causal effect of 𝑉𝑖  on 𝑉𝑗  along 

< 𝑉𝑑0
, … , 𝑉𝑑𝑚

>. 

A pathwise causal effect associated with an edge (direct causal effect) can be 

computed using formula (10). A pathwise causal effect associated with a multi-

edged directed path, also referred to as an indirect causal effect, can be computed 

from the product of the regression coefficients associated with each edge in the 

path (see, for example, Wright, 1934): 

E(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑖, … , 𝑉𝑗 >) :  

= ∏ E(𝑉𝑘|do(∆𝑉𝑘−1 = 1); < 𝑉𝑘−1, 𝑉𝑘 >)

𝑘:𝑉𝑘∈<𝑉𝑖,…,𝑉𝑗>∧𝑘≠𝑖

= ∏ 𝛽𝑘|𝑘−1

𝑘:𝑉𝑘∈<𝑉𝑖,…,𝑉𝑗>∧𝑘≠𝑖

 

(12) 

Note that formula (12) is a generalization of (10). In this view, it is clear that 

both direct and indirect causal effects belong to the class of pathwise causal 

effects. For example, in the linear Markovian SCM associated with the DAG in 
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Figure 1, there are three directed paths connecting 𝑉3 to 𝑉6: < 𝑉3, 𝑉6 > with 

pathwise (direct) causal effect 𝛽6|3, < 𝑉3, 𝑉4, 𝑉6 > with pathwise (indirect) causal 

effect 𝛽4|3 ∙ 𝛽6|4, and < 𝑉3, 𝑉5, 𝑉6 > with pathwise (indirect) causal effect 

𝛽5|3 ∙ 𝛽6|5. Thus, the overall causal effect of 𝑉3 on 𝑉6, namely  

E(𝑉6|do(∆𝑉3 = 1)), is equal to 𝛽6|3 + 𝛽4|3 ∙ 𝛽6|4 + 𝛽5|3 ∙ 𝛽6|5. 

4. Lag exposure in linear Markovian structural causal models 

Lag exposure may be taken into account in Markovian SCMs by specifying each 

factor of the joint probability distribution in formula (5), equal to the distributed-

lag linear regression in formula (3). We refer to this family of Markovian SCMs 

as distributed-lag linear structural causal models (DLSCMs). The DAG of a 

DLSCM includes all of the possible temporal instances of each variable in 𝑽. 

Figure 2 shows the DAG of several DLSCMs on two variables 𝑋 and 𝑌. The 

definition of causal effects at different time lags in a DLSCM is provided in the 

following paragraphs. 

Direct causal effects. Let 𝛽𝑗|𝑖,𝑙 be the coefficient of 𝑉𝑖  at lag 𝑙 in the regression 

model of 𝑉𝑗. This coefficient equates to the direct causal effect of 𝑉𝑖  on 𝑉𝑗 at lag 

𝑙: 

E𝑙(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑖, 𝑉𝑗 >) = 𝛽
𝑗|𝑖,𝑙

 (13) 

Indirect causal effects. Let < 𝑉𝑑0
, … , 𝑉𝑑𝑚

>, with 𝑑0 = 𝑖 ∧ 𝑑𝑚 = 𝑗, be a directed 

path composed of 𝑚 edges connecting 𝑉𝑖  to 𝑉𝑗, and 𝑄𝑚
(𝑙)

 be the set of all possible 

ordered 𝑚-tuples of time lags such that their sum is equal to 𝑙. If we compute the 

𝑚 direct causal effects associated with each edge in < 𝑉𝑑0
, … , 𝑉𝑑𝑚

> at one of 

the 𝑚-tuples in 𝑄𝑚
(𝑙)

, say (𝑞1, … , 𝑞𝑚), and multiply them: 

𝑒(𝑞1,…,𝑞𝑚)(< 𝑉𝑑0
, … , 𝑉𝑑𝑚

>; 𝑑0 = 𝑖, 𝑑𝑚 = 𝑗) = ∏ 𝛽𝑑𝑘|𝑑𝑘−1,𝑞𝑘

𝑚

𝑘=1

 (14) 
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Figure 2. The DAG of several DLSCMs on two variables 𝑽𝟏 and 𝑽𝟐 

we obtain one of the possible causal effects of 𝑉𝑖  on 𝑉𝑗 along < 𝑉𝑑0
, … , 𝑉𝑑𝑚

> at 

lag 𝑙. Thus, the indirect causal effect of 𝑉𝑖  on 𝑉𝑗  along < 𝑉𝑑0
, … , 𝑉𝑑𝑚

> (𝑑0 = 𝑖 ∧

𝑑𝑚 = 𝑗) at lag 𝑙 is equal to the sum of all of the causal effects that can be obtained 

from formula (14): 

E𝑙(𝑉𝑗|do(∆𝑉𝑖 = 1); < 𝑉𝑑0
, … , 𝑉𝑑𝑚

>, 𝑑0 = 𝑖, 𝑑𝑚 = 𝑗)

= ∑ ∏ 𝛽
𝑑𝑘|𝑑𝑘−1,𝑞𝑘

𝑚

𝑘=1(𝑞1,…,𝑞𝑚) ∈ 𝑄𝑚
(𝑙)

 

(15) 

Table 1 shows the addenda of the indirect causal effect of 𝑉1 on 𝑉6 along 

< 𝑉1, 𝑉3, 𝑉4, 𝑉6 > at lag 3, that is E3(𝑉6|do(∆𝑉1 = 1); < 𝑉1, 𝑉3, 𝑉4, 𝑉6 >), in 

the linear Markovian SCM associated with the DAG in Figure 1. 
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Table 1. Addenda of the indirect causal effect of 𝑽𝟏 on 𝑽𝟔 along  

< 𝑽𝟏, 𝑽𝟑, 𝑽𝟒, 𝑽𝟔 > (𝒎=3) at lag 3 in the linear Markovian SCM associated  

with the DAG in Figure 1. Their sum equates  

to 𝐄𝟑(𝑽𝟔|𝐝𝐨(∆𝑽𝟏 = 𝟏); < 𝑽𝟏, 𝑽𝟑, 𝑽𝟒, 𝑽𝟔 > 

(𝑞1, 𝑞2, 𝑞3) ∈ 𝑄3
(3)

 𝑒(𝑞1,𝑞2,𝑞3)(< 𝑉1, 𝑉3, 𝑉4, 𝑉6 >) 

(0,0,3) 𝛽3|1,0 ∙ 𝛽4|3,0 ∙ 𝛽6|4,3 

(0,1,2) 𝛽3|1,0 ∙ 𝛽4|3,1 ∙ 𝛽6|4,2 

(0,2,1) 𝛽3|1,0 ∙ 𝛽4|3,2 ∙ 𝛽6|4,1 

(0,3,0) 𝛽3|1,0 ∙ 𝛽4|3,3 ∙ 𝛽6|4,0 

(1,0,2) 𝛽3|1,1 ∙ 𝛽4|3,0 ∙ 𝛽6|4,2 

(1,1,1) 𝛽3|1,1 ∙ 𝛽4|3,1 ∙ 𝛽6|4,1 

(1,2,0) 𝛽3|1,1 ∙ 𝛽4|3,2 ∙ 𝛽6|4,0 

(2,0,1) 𝛽3|1,2 ∙ 𝛽4|3,0 ∙ 𝛽6|4,1 

(2,1,0) 𝛽3|1,2 ∙ 𝛽4|3,1 ∙ 𝛽6|4,0 

(3,0,0) 𝛽3|1,3 ∙ 𝛽4|3,0 ∙ 𝛽6|4,0 

  

Overall causal effects. The overall causal effect of 𝑉𝑖  on 𝑉𝑗 at lag 𝑙, say 

E𝑙(𝑉𝑗|do(∆𝑉𝑖 = 1)), is represented by the sum of the pathwise causal effects at 

lag 𝑙 associated with each directed path connecting 𝑉𝑖  to 𝑉𝑗. 

The causal effects just defined are evaluated at a single time lag. The 

cumulative causal effect at a pre-specified time lag, say 𝑙, is obtained by summing 

all causal effects at each time lag up to 𝑙. A pathwise causal lag shape is the set 

of causal effects associated with a path at different time lags. An overall causal 

lag shape is the set of the overall causal effects of a variable on another at 

different time lags. 

In the following subsections, several constraints on the lag shapes that may 

fit with prior knowledge on the phenomenon of interest are introduced, and a 

static representation of the DAG of a DLSCM is proposed. 

4.1. Constraining the lag shapes 

The practical application of the model in formula (3) critically depends on the 

relationship among the coefficients composing each lag shape. From a theoretical 

point of view, the lag shape of a covariate should have a regular form. For 
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example, the effect of an exposure may be small at first, then it may reach a peak 

before diminishing to zero after some time lags. In this view, a model with no 

constraints on the lag shapes may not fit with prior knowledge on the 

phenomenon of interest and thus may be difficult to interpret. For simplicity, the 

index of the response variable is omitted from the regression coefficient notation; 

thus the same notation as in section 2 is used. 

Almon’s polynomial lag shape (Almon, 1965) constrains coefficients to be 

polynomials of order Q: 

𝛽𝑖,𝑙 = {

𝜑𝑖,0 𝑙 = 0

∑ 𝜑𝑖,𝑞𝑙𝑞
𝑄

𝑞=0
otherwise

 (16) 

For instance, for 𝑄 = 2 we have 𝛽𝑖,𝑙 = 𝜑𝑖,0 + 𝜑𝑖,1𝑙 + 𝜑𝑖,2𝑙2. Almon’s 

polynomial lag shape reduces the number of parameters required to represent the 

lag shape of a covariate, but multiple modes and coefficients with different signs 

may occur, thus problems of interpretation may still arise. 

The endpoint-constrained quadratic (ECQ) lag shape (Andrews and Fair, 

1992): 

𝛽𝑖,𝑙

= {
𝜃𝑖 [−

4

(𝑏𝑖 − 𝑎𝑖 + 2)2
𝑙2 +

4(𝑎𝑖 + 𝑏𝑖)

(𝑏𝑖 − 𝑎𝑖 + 2)2
𝑙 −

4(𝑎𝑖 − 1)(𝑏𝑖 + 1)

(𝑏𝑖 − 𝑎𝑖 + 2)2
] , 𝑎𝑖 ≤ 𝑙 ≤ 𝑏𝑖

0, otherwise

 
(17) 

denoted ECQ( ∙ ; 𝜃𝑖, 𝑎𝑖, 𝑏𝑖), overcomes the limitation of Almon’s lag shape, as it 

is zero for a time lag 𝑙 < 𝑎𝑖 or 𝑙 > 𝑏𝑖, and symmetric with mode equal to 𝜃𝑖  at lag 

(𝑎𝑖 + 𝑏𝑖)/2. 

The quadratic decreasing (QD) lag shape: 

𝛽𝑖,𝑙 = {
𝜃𝑖

𝑙2 − 2(𝑏𝑖 + 1)𝑙 + (𝑏𝑖 + 1)2

(𝑏𝑖 − 𝑎𝑖 + 1)2
, 𝑎𝑖 ≤ 𝑙 ≤ 𝑏𝑖

0, otherwise

 (18) 

denoted QD( ∙ ; 𝜃𝑖 , 𝑎𝑖 , 𝑏𝑖), is a truncated version of the ECQ, which decreases 

from value 𝜃𝑖  at lag 𝑎𝑖  to value 0 at lag 𝑏𝑖 + 1. 

The gamma lag shape (Schmidt, 1974): 
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𝛽𝑖,𝑙 = 𝜃𝑖(𝑙 + 1)
𝛿𝑖

1−𝛿𝑖𝜆𝑖
𝑙 [(

𝛿𝑖

(𝛿𝑖 − 1) log𝜆𝑖
)

𝛿𝑖
1−𝛿𝑖

𝜆𝑖

𝛿𝑖
(𝛿𝑖−1) log𝜆𝑖

 −1
]

−1

0 < 𝛿𝑖 < 1          0 < 𝜆𝑖 < 1

 (19) 

denoted G( ∙ ; 𝜃𝑖, 𝛿𝑖 , 𝜆𝑖), is positively skewed with mode equal to 𝜃𝑖  at lag 

𝛿𝑖[(𝛿𝑖 − 1) log𝜆𝑖]−1. 

The value 𝑎𝑖  is called the gestation lag, the value 𝑏𝑖  the lead lag, and the value  

𝑏𝑖 − 𝑎𝑖   the lag width. Note that the ECQ and the QD lag shapes degenerate to  

a static coefficient if 𝑎𝑖 = 𝑏𝑖 = 0. The gamma lag shape cannot reduce to a static 

coefficient, but the corresponding values of 𝑎𝑖  and 𝑏𝑖  may be computed from the 

values of 𝛿𝑖 and 𝜆𝑖 by numerical approximation. The ECQ, QD and gamma lag 

shapes have the following property: 

𝛽𝑖,𝑙 > 0 ⇔ 𝜃𝑖 > 0

𝛽𝑖,𝑙 < 0 ⇔ 𝜃𝑖 < 0
∀𝑙: 𝑎𝑖 ≤ 𝑙 ≤ 𝑏𝑖 

(20) 

which is referred to as monotonicity. 

4.2. Static representation 

The DAG of a DLSCM may be represented in a static version for more clarity. 

For example, only a single temporal instance for each variable is represented, and 

an edge < 𝑉𝑖, 𝑉𝑗 > exists if and only if there exists at least one time lag where the 

coefficient of variable 𝑉𝑖  in the regression model of variable 𝑉𝑗  is non-zero. 

Figure 3 shows the DAG of the following DLSCM represented in static form: 

{

𝐴 ~  ∙ 
𝐵 ~ ECQ(𝐴; 0.0918, 0, 4)

𝐶 ~ ECQ(𝐴; 0.1161, 2, 6) + ECQ(𝐵; 0.1922, 1, 5)
 (21) 

Whenever the EQC, QD or gamma lag shape is applied, the sign of the 

parameter 𝜃𝑖 can be associated with the corresponding direct causal effect, and 

thus with the corresponding edge in the DAG, due to the monotonicity property. 

For instance, a positive sign can be associated with each direct causal effect in 

the DLSCM in formula (21) and with each edge in its DAG as shown in Figure 3. 
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Figure 3. The DAG of the DLSCM in formula (21) represented in static form 

5. Application to a simple lag exposure assessment problem 

Consider the DLSCM in formula (21), where A and B are the irradiation (log 

becquerel) from two distinct radioactive pathogens, and C is the equivalent dose 

(log gray) absorbed by a subject exposed to them. Time is expressed in hours. 

This model postulates that: 

 the irradiation from the first pathogen enforces the irradiation from the 

second according to an ECQ lag shape persisting from 0 to 4 hours; 

 the equivalent dose depends on the irradiation from the first and the second 

pathogen according to, respectively, an ECQ lag shape persisting from 2 to 6 

hours and an ECQ lag shape persisting from 1 to 5 hours. 

Thus, the influence of the first pathogen (𝐴) on the equivalent dose (𝐶) is both 

direct (along < 𝐴, 𝐶 >) and indirect (along < 𝐴, 𝐵, 𝐶 >). 

The overall causal effect of A on C (Figure 4 c) is the sum of all of the possible 

pathwise causal effects from A to C (formula (11)): 

 the direct causal effect of A on C, persisting from 1 to 7 hours (Figure 4 a); 

 the (indirect) causal effect along < A,B,C > (Figure 4 b), composed of the 

direct causal effect of A on B and the direct causal effect of B on C. Since the 

former persists from 0 to 4 hours and the latter from 1 to 5 hours, the causal 

effect of A on C along <A,B,C > is found to persist from 0 to 9 hours (formula 

(15)). 
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Figure 4. Decomposition of the causal effect of 𝑨 on 𝑪. a) The direct causal 

effect of 𝑨 on 𝑪. b) The causal effect of 𝑨 on 𝑪 along < 𝑨, 𝑩, 𝑪 > (indirect 

causal effect). c) The overall causal effect of 𝑨 on 𝑪 

 

Note that the lag shapes of the indirect pathwise causal effects and of the overall 

effect constitute a mixture of ECQ lag shapes, thus they may have an irregular 

character. 

Being composed of two pathwise causal effects persisting from 1 to 7 hours 

and from 0 to 9 hours, the overall causal effect of A on C persists from 0 to 9 

hours (Figure 4 c). By summing the overall causal effects up to 9 time lags, a 

cumulative overall causal effect equal to 0.72 is obtained. Since the logarithmic 

scale is used, we can conclude that, for a 1% increase in irradiation from pathogen 

A, the equivalent dose absorbed by the subject is expected to increase by 

approximately 0.72% after 9 hours. [The true expected growth rate for the 
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response variable due to a 1% increase in the value of a covariate with coefficient 

κ is equal to 1.01𝜅, which corresponds to a percentage increase of  

(1.01𝜅 − 1) ∙ 100. The approximation (1.01𝜅 − 1) ∙ 100 ≈ 𝜅 proposed here is 

reasonable for |𝜅| < 10.] 

In the traditional approach, a distributed-lag linear regression model applied 

to this problem would have considered the influence of both A and B on C, but 

the influence of A on B would have been disregarded. Thus, the relationship 

between the two exposures and the biomarker would have been assessed, but it 

would not have been possible to compute the causal effect of A on C, as this also 

depends on the disregarded relationship between A and B. Note that similar 

considerations would hold if A was an exposure and B and C were biomarkers, 

or if more exposures and/or biomarkers were considered. 

6. Concluding remarks 

We have shown that distributed-lag linear regression combined with Markovian 

structural causal models allows one to perform lag exposure assessment in  

a multivariate domain. Existing methods focus on one regression model at a time, 

but the proposed methodology allows one to consider several different 

biomarkers and to study the relationships holding between each pathogen 

exposure and biomarker, as well as among the pathogen exposures. This makes 

it possible, for the first time, to assess dynamic causal effects whatever the causal 

structure relating the variables of interest. 

In principle, the proposed methodology supports unconstrained and 

constrained lag shapes of any type. We have presented three of the possible 

constrained lag shapes that may represent the most common real-world lag 

structures: unimodal symmetric, unimodal asymmetric and skewed. 

Future work will be directed towards the development of a procedure for 

estimating model parameters. At first glance, ordinary least squares estimation 

could be recursively applied provided that the time series are stationary. 

However, the estimation of distributed-lag linear regression with the constrained 
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lag shapes presented in this paper cannot be performed in a single step unless all 

gestation and lead lags are known. Since the number of possible models grows 

exponentially as the number of covariates and time lags increases, the 

development of a heuristic search within the parameter estimation procedure 

appears necessary. 

The presence of unit roots in data is a challenging issue for time series models 

(Granger and Newbold, 1974), and so it is for the proposed methodology. 

Currently available solutions for unit roots, such as differentiation and 

autocorrelated errors, may be implemented in the parameter estimation 

procedure. 

The present contribution could be extended to grouped data through the 

introduction of random effects in the distributed-lag linear regression models. In 

general, any extension that could be applied to linear regression may be applied 

to the proposed methodology. 

Particular attention has been paid to defining dynamic causal effects as a 

function of regression coefficients at different time lags. Thus, only linear 

relationships have been considered for the moment. Nevertheless, future work 

may include the extension of the theory developed in this paper to specific classes 

of non-linear distributed-lag regression models (Gasparrini et al., 2017). 
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