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Summary

The main estimation and hypothesis testing procedures are presented for
experiments conducted in nested block designs of a certain type. It is
shown that, under appropriate randomization, these experiments have the
convenient orthogonal block structure. Due to this property, the analysis
of experimental data can be performed in a comparatively simple way.
Certain simplifying procedures are indicated. The main advantage of
the presented methodology concerns the analysis of variance and related
hypothesis testing procedures. Under the adopted approach one can per-
form these analytical methods directly, not by combining the results from
analyses based on stratum submodels. The application of the presented
theory is illustrated by three examples of real experiments in relevant
nested block designs. The present paper is the second in the planned se-
ries concerning the analysis of experiments with orthogonal block structure.
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1. Introduction

The concept of orthogonal block structure, as a desirable property, was
originally considered for a wide class of designs by Nelder (1965) and then
formalized by Houtman and Speed (1983). After them, the following defi-
nition can be adopted.
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Definition 1.1 (from Section 2.2 in Houtman and Speed, 1983). An exper-
iment is said to have the orthogonal block structure (OBS) if the covariance
(dispersion) matrix of the random variables observed on the experimental
units (plots), y = [y1, y2, ..., yn]′, has a representation of the form

D(y) = σ21φ1 + σ22φ2 + · · ·+ σ2tφt,

where the {φα}, α = 1, 2, ..., t, are known symmetric, idempotent and pair-
wise orthogonal matrices, summing to the identity matrix, the last usually
being of the form φt = n−11n1′n.

It appears that experiments having the OBS property can be analyzed in
a comparatively simple way. In particular, the analysis of variance (ANOVA)
can be performed directly, avoiding the classical procedure of first conduct-
ing the analyses based on stratum submodels and then combining the infor-
mations obtained from them, as originally suggested by Yates (1939, 1940)
and recently discussed by Kala (2017).

Because of this feature, it may be interesting to show the analytical
advantage of various experiments having the OBS property. To indicate the
underlying theory and relevant methodological procedures, it will be helpful
to do this for different classes of designs separately. Thus, a set of research
papers focused on practical applications has been projected. The present
paper, as the second in this series, is devoted to experiments conducted in
nested block designs inducing the OBS property.

Nested block (NB) designs are often used in practice, particularly in
agricultural and industrial experimentation, when several sources of local
variation are present − more than can be controlled by ordinary blocking
of experimental units. The statistical properties of NB designs have been
considered in many papers, as reviewed by Bailey (1999). Of special interest
are those NB designs which induce the OBS property.

The purpose of the present paper is to show how the OBS property of an
experiment in an NB design provides the possibility of performing the analy-
sis of experimental data with a comparatively simple methodology. Similarly
as in the first paper of the present series (Caliński and Siatkowski, 2017),
in Section 2 the randomization-derived mixed model, from which the de-
scribed methodology follows, is indicated. The theoretical background of the
derived analysis is presented in Section 3. In Section 4 some simplifications
of the proposed analytical methods are suggested. In Section 5 attention is
drawn to some consequences resulting from the use of estimated stratum
variances. Examples illustrating the application of the derived analytical
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methods, ANOVA in particular, are presented in Section 6. Some conclud-
ing remarks concerning the advantages of the proposed new approach are
given in Section 7. Finally, several appendices with helpful derivations of
the applied methods are provided.

2. A randomization-derived model

Consider an experiment carried out in an NB design with v treatments (crop
varieties in particular) allocated in b = ab0 blocks, each of k units (plots),
grouped into a superblocks composed of b0 blocks each. Such an NB design
is said to induce the OBS property (in the above sense).

Suppose that independent randomizations of superblocks, of blocks wi-
thin the superblocks and of plots within the blocks have been implemented
in the experiment according to the usual procedure (as described, for exam-
ple, in Caliński and Kageyama, 2000, Section 5.2.1, following Nelder, 1965).
The randomization-derived model can then be written as

y = X1τ +XAα+XBβ + η + e, (1)

where y = [y′1,y
′
2, ...,y

′
a]
′ is an n × 1 vector of data concerning yield (or

an another variable trait) observed on n = ab0k plots of the experiment,
yh = [y1h, y2h, ..., yn0h]′ representing the yields observed on n0 = kb0 units
of the superblock h (= 1, 2, ..., a),

X1 = [X ′11 : X ′12 : · · · : X ′1a]′,

XA = Ia ⊗ 1n0 , XB = diag[XB1 : XB2 : · · · : XBa]

are the known design matrices, and τ = [τ1, τ2, ..., τv]′ represents the un-
observable treatment parameters (their fixed effects), α = [α1, α2, ..., αa]′

stands for the superblock random effects, β = [β′1,β
′
2, ...,β

′
a]
′, with βh =

[β1(h), β2(h), ..., βb0(h)]
′, stands for the block random effects, while the n× 1

vectors η and e stand for the unit error and technical error random vari-
ables, all of these random variables being unobservable.

The whole block design, denoted by D∗, can be described by the v × b
incidence matrix

N = X ′1XB = [N1 : N2 : · · · : Na],

with Nh = X ′1hXBh as the v × b0 incidence matrix describing the hth
component design, denoted by Dh, where N ′h1v = k1b0 and Nh1b0 = rh,
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the vector of treatment replications in Dh, h = 1, 2, ..., a. Furthermore, note
that the design, denoted by D, by which the v treatments are assigned to
the a superblocks is described by the v × a incidence matrix

M = X ′1XA = [r1 : r2 : · · · : ra].

Because both D∗ and D are proper, an experiment in such an NB design
has the OBS property (see Lemma 5.4.1 in Caliński and Kageyama, 2000).
This allows the model to be resolved into four simple stratum submodels, in
accordance with the stratification of the experimental units. Using Nelder’s
(1965) notation, this stratification (“block-structure”) can be represented by
the relation

Units (plots)→ Blocks→ Superblocks→ Total area.

Thus, the observed vector y can be decomposed as

y = y1 + y2 + y3 + y4,

y1 = φ1y, y2 = φ2y, y3 = φ3y, y4 = φ4y,

which allows the expectation vector and the covariance (dispersion) matrix
of y to be written as

E(y) = φ1X1τ + φ2X1τ + φ3X1τ + φ4X1τ = X1τ , (2)

D(y) ≡ V = σ21φ1 + σ22φ2 + σ23φ3 + σ24φ4, (3)

where the matrices

φ1 = In − k−1XBX
′
B, φ2 = k−1XBX

′
B − n−10 XAX

′
A,

φ3 = n−10 XAX
′
A − n−11n1′n and φ4 = n−11n1′n

are symmetric, idempotent and pairwise orthogonal, summing to the iden-
tity matrix, and the scalars σ21, σ22, σ23 and σ24 represent the relevant unknown
stratum variances (defined as in Caliński and Kageyama, 2000, Section 5.4).
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3. Theoretical background of the analysis

When analyzing data from an experiment modelled by (1), a variety trial
in particular, attention is usually paid to estimates and tests concerning
the parameters τ = [τ1, τ2, ..., τv]′, or rather the treatment (variety) main
effects, defined as

(Iv − n−11vr′)τ = [τ1 − τ·, τ2 − τ·, ..., τv − τ·]′, where τ· = n−1
v∑
i=1

(riτi),

and also their linear functions. In connection with this, first note (referring,
for example, to Caliński and Kageyama, 2000, Section A.2) that, taking the
orthogonal (V −1-orthogonal) projector

PX1(V −1) = X1(X ′1V
−1X1)−1X ′1V

−1, (4)

one can decompose the vector y in (1) into two uncorrelated parts, as

y = PX1(V −1)y + (In − PX1(V −1))y. (5)

The role of the two parts on the right in (5) can easily be seen.
Under the model (1), with properties (2) and (3), the first term of the

partition in (5) provides the best linear unbiased estimator (BLUE) ofX1τ
in (2), which can be expressed as

X̂1τ = PX1(V −1)y, (6)

as follows from Rao (1974, Theorem 3.2). With regard to the second term in
(5), it can be seen as the residual vector, giving the residual sum of squares
in the form

||(In − PX1(V −1))y||
2
V −1 = y′(In − PX1(V −1))

′V −1(In − PX1(V −1))y

= y′[V −1 − V −1X1(X ′1V −1X1)−1X ′1V −1]y
= y′V −1(In − PX1(V −1))y, (7)

with the residual degrees of freedom given by rank(V : X1)− rank(X1) =
n−v. See Rao (1974, Theorem 3.4) and formula (3.17) there. For convenience
note that, when using the projector (4) in the considered applications, the
variance σ24 in the involved matrix V , defined in (3), can be replaced by 1.
This is evident from the formula

PX1(V −1) = X1

v−1∑
i=1

ε−1i sis
′
iX
′
1V
−1
0 + φ4,
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with V −10 = σ−21 φ1 + σ−22 φ2 + σ−23 φ3,

resulting from the spectral decomposition X ′1V
−1
0 X1 = rδ(

∑v−1
i=1 εisis

′
i)r

δ,
where rδ = diag[r1, r2, ..., rv], applied similarly to (2.3.2) in Caliński and
Kageyama (2000, p. 36); see also formula (3.8.15) there. (For the spectral
decomposition forms see Rao and Mitra, 1971, pp. 5−7.)

It will also be interesting to note that, as τ = r−δX ′1X1τ , the BLUE
of τ can be obtained, by (4) and (6), as

τ̂ = (X ′1V
−1X1)−1X ′1V

−1y. (8)

Its covariance (dispersion) matrix then takes the form

D(τ̂ ) = (X ′1V
−1X1)−1X ′1V

−1D(y)V −1X1(X ′1V
−1X1)−1

= (X ′1V
−1X1)−1. (9)

The results (7)−(9) can be checked by referring to Theorem 3.1 in Rao
(1971). For this one has to show that the equality[

V X1
X ′1 O

]−
=

[
V −1(In − PX1(V −1)) V −1X1(X ′1V

−1X1)−1

(X ′1V
−1X1)−1X ′1V

−1 −(X ′1V
−1X1)−1

]

holds. In fact, this can easily be checked.
With these results the concept of testing the hypothesis

H0 : (Iv − n−11vr′)τ = 0, (10)

can be considered. First one has to see whether the hypothesis (10) is
consistent. For this, note that the BLUE of τ ∗ = (Iv − n−11vr′)τ is
τ̂ ∗ = (Iv − n−11vr′)τ̂ , with τ̂ as given in (8). Its dispersion matrix, by
(9), is of the form

D(τ̂ ∗) = (Iv − n−11vr′)(X ′1V −1X1)−1(Iv − n−1r1′v), (11)

with rank v − 1. It appears that as a g-inverse of D(τ̂ ∗) one can take
[D(τ̂ ∗)]− = X ′1V

−1X1. Hence,

D(τ̂ ∗)[D(τ̂ ∗)]−τ̂ ∗ = τ̂ ∗, (12)

as can be shown (see Appendix 1). The equality (12) indicates that H0 in
(10) is consistent; see formula (3.2.8) in Rao (1971).
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Assuming now that y ∼ Nn(X1τ ,V ) and, hence, that τ̂ ∗ ∼ Nv[τ ∗,D(τ̂ ∗)],
where τ ∗ is as defined above, and D(τ̂ ∗) is as in (11), one can test the
hypothesis H0 using the statistic

F =
n− v
v − 1

SSV
SSR

=
n− v
v − 1

τ̂ ′∗X
′
1V
−1X1τ̂ ∗

y′V −1(In − PX1(V −1))y
, (13)

as follows from Theorem 3.2 in Rao (1971). Note, however, that the sums
of squares in (13) can equivalently be written (see Appendix 2) as

SSV = y′V −1X1(Iv − 1vr′/n)(X ′1V
−1X1)−1(Iv − r1′v/n)X ′1V

−1y, (14)
SSR = y′[V −1 − V −1X1(X ′1V −1X1)−1X ′1V −1]y. (15)

Referring now to Theorems 9.2.1 and 9.4.1 in Rao and Mitra (1971), one
can show that, independently,

SSV ∼ χ2(v − 1, δ), with δ = τ ′∗X
′
1V
−1X1τ ∗, (16)

SSR ∼ χ2(n− v, 0). (17)

Evidently, the distribution in (16) is central if the hypothesis H0 is true,
whereas that in (17) is central whether H0 is true or not. These results
imply that the statistic (13) has a noncentral F distribution with v− 1 and
n− v degrees of freedom (d.f.), and with the noncentrality parameter δ as
in (16). Thus, the distribution is central if H0 is true.

It should be noted, however, that the above estimation and hypothesis
testing procedures are applicable directly if the stratum variances σ21, σ22,
σ23 and σ24 are known. In practice they are usually unknown and have to be
estimated. To do this, it will be helpful to return to formula (7), writing it
as

||(In − PX1(V −1))y||
2
V −1

= y′(In − PX1(V −1))
′V −1(In − PX1(V −1))y

= σ−21 y
′(In − PX1(V −1))

′φ1(In − PX1(V −1))y

+ σ−22 y
′(In − PX1(V −1))

′φ2(In − PX1(V −1))y

+ σ−23 y
′(In − PX1(V −1))

′φ3(In − PX1(V −1))y, (18)

which follows from the form of D(y) ≡ V , given in (3). This form also
implies, on account of the relation φ4 = n−11n1′n = n−11n1′vX

′
1, that

φ4(In − PX1(V −1)) = σ24φ4V
−1(In − PX1(V −1)) = O.
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Now, from (18), one can write

E{||(In − PX1(V −1))y||
2
V −1} = σ−21 E{||φ1(In − PX1(V −1))y||

2}

+ σ−22 E{||φ2(In − PX1(V −1))y||
2}

+ σ−23 E{||φ3(In − PX1(V −1))y||
2}

= d′1 + d′2 + d′3 = n− v, (19)

because, as can be shown,

E{||φ1(In − PX1(V −1))y||
2} = σ21d

′
1, (20)

where d′1 = tr[φ1(In − PX1(V −1))],

E{||φ2(In − PX1(V −1))y||
2} = σ22d

′
2, (21)

where d′2 = tr[φ2(In − PX1(V −1))],

E{||φ3(In − PX1(V −1))y||
2} = σ23d

′
3, (22)

where d′3 = tr[φ3(In − PX1(V −1))].
With these results it is natural to use as estimators of σ21, σ22 and σ23 the

solutions of the equations

||φ1(In − PX1(V −1))y||
2 = σ21d

′
1, (23)

||φ2(In − PX1(V −1))y||
2 = σ22d

′
2, (24)

||φ3(In − PX1(V −1))y||
2 = σ23d

′
3, (25)

respectively (as suggested by Nelder, 1968, Section 3). This approach was
also advocated by Houtman and Speed (1983, Section 4.5) and applied, for
example, by Caliński and Łacka (2014, p. 959).

For completeness, it will be helpful to note that the equations (23), (24)
and (25), with the formulae (20), (21) and (22), imply − on account of (19)
− the equality

σ̂−21 ||φ1(In − PX1(V −1))y||
2 + σ̂−22 ||φ2(In − PX1(V −1))y||

2

+ σ̂−23 ||φ3(In − PX1(V −1))y||
2

= d′1 + d′2 + d′3 = n− v. (26)
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Now, returning to (15), note that, after some algebraic transformations,
it can be written equivalently as

SSR = y′[In − V −1X1(X ′1V −1X1)−1X ′1](σ−21 φ1 + σ−22 φ2 + σ−23 φ3)[In
− X1(X ′1V −1X1)−1X ′1V −1]y

= σ−21 ||φ1(In − PX1(V −1))y||
2 + σ−22 ||φ2(In − PX1(V −1))y||

2

+ σ−23 ||φ3(In − PX1(V −1))y||
2. (27)

A comparison of formulae (26) and (27) shows that, if the stratum variances
are estimated by solutions of the equations (23), (24) and (25), the result

ŜSR = σ̂−21 ||φ1(In − PX1(V −1))y||
2 + σ̂−22 ||φ2(In − PX1(V −1))y||

2

+σ̂−23 ||φ3(In − PX1(V −1))y||
2 = n− v (28)

then follows. By (28), the statistic F in (13) is reduced to the form

F̂ =
n− v
v − 1

ŜSV
n− v

=
ŜSV
v − 1

, (29)

where ŜSV is as in (14), but with σ21, σ
2
2 and σ23 there replaced by their

estimates.
However, the χ2 distribution of SSV , indicated in (16), is valid exactly

only if the true stratum variances are used in the applied matrix V −1 =
σ−21 φ1+σ−22 φ2+σ−23 φ3+σ−24 φ4, resulting from (3). As for the component
σ−24 φ4, it does not in fact play any role in the application of formula (14)
given for SSV (as will be shown in the next section). Thus, when using
in V −1 the estimates of σ21, σ22 and σ23 obtained from (23), (24) and (25)
respectively, the distribution (16) can be regarded as approximate only.

4. Some simplifying reformulations

According to certain remarks made in the previous section, the component
σ−24 φ4 in V

−1 = σ−21 φ1+σ−22 φ2+σ−23 φ3+σ−24 φ4 seems to play no role in
the formulae applicable in the considered analysis of experimental data. This
suggests that some reformulation in the methodology presented in Section
3 would simplify the analysis without causing any changes in its results.

A desirable simplification can be obtained when the dispersion matrix
V of the form given in (3) is replaced by the matrix

V ∗ = σ21φ1 + σ22φ2 + σ23(In − φ1 − φ2),
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i.e., when the inverted matrix V −1 is replaced by

V −1∗ = σ−21 φ1 + σ−22 φ2 + σ−23 (In − φ1 − φ2).

The relations between V and V ∗, and their inverses, are given by the equal-
ities

V = V ∗ + (σ24 − σ23)n−11n1′n and

V −1 = V −1∗ + (σ−24 − σ
−2
3 )n−11n1′n. (30)

From (30) it follows (see Appendix 3) that

(X ′1V
−1X1)−1 = (X ′1V

−1
∗ X1)

−1 + (σ24 − σ23)n−11v1′v. (31)

Applying the equality (31), it can be shown (see again Appendix 3) that
the BLUE of τ ∗ = (Iv − n−11vr′)τ following from (8), i.e.,

τ̂ ∗ = (Iv − n−11vr′)τ̂ = (Iv − n−11vr′)(X ′1V −1X1)−1X ′1V −1y,

can equivalently be written as

τ̂ ∗ = (Iv − n−11vr′)(X ′1V −1∗ X1)−1X ′1V −1∗ y∗, (32)

where y∗ = (In − n−11n1′n)y, for which

E(y∗) = (In − n−11n1′n)X1τ = X1(Iv − n−11vr′)τ = X1τ ∗

and

D(y∗) = (In − n−11n1′n)V ∗(In − n−11n1′n).

The dispersion matrix of τ̂ ∗, given in(11), can on account of (31) be pre-
sented as

D(τ̂ ∗) = (Iv − n−11vr′)(X ′1V −1∗ X1)−1(Iv − n−1r1′v). (33)

Furthermore, the formulae of SSV and SSR, given in (14) for treatments
(varieties) and in (15) for residuals, can equivalently be written (see Ap-
pendices 3 and 4) as

SSV = τ̂ ′∗X
′
1V
−1
∗ X1τ̂ ∗ = y′∗V

−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ y∗, (34)

SSR = y′∗[V
−1
∗ − V −1∗ X1(X ′1V −1∗ X1)−1X ′1V −1∗ ]y∗, (35)
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with y∗ = (In − n−11n1′n)y, as defined in relation to (32). The formulae
(34) and (35) provide the sum

SSV + SSR = y′∗V
−1
∗ y∗ = SST (say), (36)

which can be called the total sum of squares. Referring again to Rao and
Mitra (1971, Theorem 9.2.1), it can be shown that

SST ∼ χ2(n− 1, δ), with δ = τ ′∗X
′
1V
−1
∗ X1τ ∗

equivalent to δ as given in (16). These results can be summarized in the
form of an ANOVA table, as presented in Table 1.

Table 1. Analysis of variance for an experiment in a nested block design with
orthogonal block structure

Source Degrees Sum Expected
of variation of freedom of squares mean square
Treatments v − 1 SSV 1 + δ/(v − 1)

Residuals n− v SSR 1

Total n− 1 SST —

The presentation of ANOVA results in Table 1 corresponds well with
the formula (13) of the relevant F statistic.

Suppose now that after rejecting the hypothesis (10) one is interested
in testing the hypothesis H0,L : U ′Lτ = 0, where U ′L1v = 0. Note that this
hypothesis, concerning a set of contrasts among treatment parameters, can
also be written as

H0,L : U ′Lτ ∗ = 0, where τ ∗ = (Iv − n−11vr′)τ . (37)

This shows that H0,L is implied by H0, given in (10). To find the relevant
sum of squares, first note that the BLUE of U ′Lτ ∗ is, on account of (32), of
the form

U ′Lτ̂ ∗ = U ′Lτ̂ = U ′L(X
′
1V
−1
∗ X1)

−1X ′1V
−1
∗ y∗. (38)

Its dispersion matrix is, on account of (33), of the form

D(U ′Lτ̂ ∗) = U ′L(X
′
1V
−1
∗ X1)

−1UL. (39)
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Note that, applying Lemma 2.2.6(c) from Rao and Mitra (1971), one can
write

U ′L(X
′
1V
−1
∗ X1)

−1UL[U ′L(X
′
1V
−1
∗ X1)

−1UL]−U ′L = U ′L,

which, with (39), gives the equality D(U ′Lτ̂ ∗)[D(U ′Lτ̂ ∗)]
−U ′Lτ̂ ∗ = U ′Lτ̂ ∗.

This shows that the hypothesis in (37) is consistent. The relevant sum of
squares can then be obtained (following Theorem 3.2 of Rao, 1971) in the
form

SS(UL) = τ̂ ′∗UL[D(U ′Lτ̂ ∗)]
−U ′Lτ̂ ∗

= τ̂ ′∗UL[U
′
L(X

′
1V
−1
∗ X1)

−1UL]−U ′Lτ̂ ∗, (40)

with the d.f. equal to rank(UL), i.e., equal to rank[D(U ′Lτ̂ ∗)]. Note that
U ′Lτ̂ ∗ is given in (38), and [U ′L(X

′
1V
−1
∗ X1)

−1UL]− follows from (39).
Also note, referring to Lemma 2.2.6(d) in Rao and Mitra (1971), that
UL[U ′L(X

′
1V
−1
∗ X1)

−1UL]−U ′L is invariant for any choice of the appear-
ing g-inverse, and is of rank equal to the rank of UL. Of course, if the
columns of UL are linearly independent, then

[U ′L(X
′
1V
−1
∗ X1)

−1UL]− becomes [U ′L(X
′
1V
−1
∗ X1)

−1UL]−1.

Now, following the assumption y ∼ Nn(X1τ ,V ), adopted in Section 3,
one may also assume that U ′Lτ̂ ∗ ∼ N [U ′Lτ ∗,D(U ′Lτ̂ ∗)].With this, applying
Theorem 9.2.3 from Rao and Mitra (1971), it can be shown that

SS(UL) ∼ χ2[rank(UL), δL], with δL = τ ′∗UL[D(U ′Lτ̂ ∗)]
−U ′Lτ ∗,

this distribution being central, i.e., with δL = 0, if H0,L is true.
If there are several sets of contrasts for which individual hypothesis

testing is of interest, then for each of them the sum of squares presented in
(40) can be used accordingly. In some situations a relevant partition of the
treatment sum of squares, given in (34), may be of interest in the application
of ANOVA. The question then arises of what kind of conditions the chosen
sets of contrasts have to satisfy. It can be shown (see Appendix 5) that for
two such sets of contrasts, e.g. U ′Aτ ∗ and U

′
Bτ ∗, the equality

SS(UA) + SS(UB) = SSV (41)

holds, for any vector τ̂ ∗ = (Iv − n−11vr′)τ̂ , if and only if

(X ′1V
−1
∗ X1)

−1UA[U ′A(X ′1V
−1
∗ X1)

−1UA]−U ′A
+ (X ′1V

−1
∗ X1)

−1UB[U ′B(X ′1V
−1
∗ X1)

−1UB]−U ′B = Iv − n−11vr′. (42)
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This, in turn, implies (on account of Lemma 2.2.6 in Rao and Mitra, 1971)
that

U ′B(X ′1V
−1
∗ X1)

−1UA = O. (43)

These results can be extended for any number of considered sets of
contrasts used in a partition of the type (41). The condition (43) can then
be written as

U ′L(X
′
1V
−1
∗ X1)

−1UL∗ = O for L 6= L∗. (44)

It may be interesting to note that for some classes of designs the condition
(44) is reduced to U ′LUL∗ = O.

5. Application with estimated stratum variances

The hypothesis testing procedures presented in Section 4 are fully applica-
ble if the stratum variances σ21, σ22 and σ23 are known. As already mentioned
at the end of Section 3, in practical applications these variances are usu-
ally unknown and have to be estimated. This can be done by solving the
equations (23), (24) and (25). However, with these estimates the residual
sum of squares SSR, presented in (15) and equivalently in (35), is reduced
to n − v, the corresponding d.f., as shown in formula (28). This leads to a
corresponding reduction of the F statistic (13) to that presented in (29).
The estimated treatment (variety) sum of squares appearing there, ŜSV ,
can, on account of formulae (34), (35) and (36), be written as

ŜSV = y′∗V̂
−1
∗ y∗ − (n− v) ≡ ŜST − n+ v. (45)

In the case of known (true) values of σ21, σ22 and σ23 the quadratic form SST =
y′∗V

−1
∗ y∗ is distributed as χ2(n − 1, δ). If the hypothesis H0 given in (10)

is true, then δ = 0 and the distribution is central. However, the indicated
distribution of SST is fully applicable only if the true stratum variances σ21,
σ22 and σ23 appearing in V −1∗ = σ−21 φ1 + σ−22 φ2 + σ−23 (In − φ1 − φ2) are
used. Because now the matrix V −1∗ is replaced by

V̂
−1
∗ = σ̂−21 φ1 + σ̂−22 φ2 + σ̂−23 (In − φ1 − φ2),

the estimated total sum of squares ŜST , appearing in (45), does not have
an exact χ2 distribution with n − 1 d.f. That distribution can, however,
be considered as an approximation of the real distribution of ŜST . This
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approximation will be the closer the larger is the number n, i.e., the size of
the experiment.
With this approximation, the estimated mean square M̂SV = ŜSV /(v − 1),

denoted by F̂ in (29), may be treated in a practical application as having
(under H0) approximately the distribution of χ2(v−1, 0)/(v−1), as follows
from the relation in (45).

Thus, referring the test statistic (29) to the χ2(v−1, 0)/(v−1) distribu-
tion, one will obtain an approximate test of the hypothesis H0 formulated
in (10). This means that when calculating the relevant P values (i.e., the
critical levels of significance) for testing H0, or hypotheses implied by H0,
one has to consider them as approximate. The results obtained by Volaufova
(2009) seem to suggest that the above ANOVA type F test approximation
will in most cases provide reasonably accurate P values.

Finally, it may be interesting to recall the comments in Johnson, Kotz
and Balakrishnan (1995, p. 338) according to which, if in the F statistic as
in (13) the d.f. n− v is large, then the natural approximation to be used is
that this F statistic is distributed as χ2(v− 1, 0)/(v− 1). In fact, according
to these comments the distribution of the statistic (29) corresponds to the
F distribution with the second d.f. tending to infinity; see formula (27.27)
there.

6. Examples

The methods considered in the previous sections will now be illustrated us-
ing data from three experiments conducted in different NB designs which
induce the OBS property. The analysis concerning the first two of these
experiments (Examples 1 and 2) illustrates the methods of obtaining the
general ANOVA, as presented in Table 1, and also the partitioned ANOVA,
usually of interest for factorial experiments. The analysis applied to the
third experiment (Example 3) is confined to the general ANOVA. All re-
quired computations were performed using R (R Core Team, 2017).

Example 1. Brzeskwiniewicz (1994) analyzed data from a vA×vB factorial
experiment with vA = 3 doses of nitrogen fertilizer (factor A) and vB = 4
varieties of potato (factor B). The experiment was conducted in an NB
design with D∗ based on the incidence matrix

N = [N1 : N2 : N3 : N4 : N5 : N6 : N7 : N8 : N9 : N10 : N11 : N12]

of the following form, the rows of the matrix corresponding to the indicated
treatment combinations (of the levels of factors A and B):
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A B
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4



1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1


.

The above partition of the matrix N into the matrices Nh, h = 1, 2, ..., 12,
each composed of two columns, provides the design D described by the
incidence matrix

M =



1 1 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 1 0 1


.

It is interesting to note that M = N f(A) ⊗N f(B), where

N f(A) =

[
1 1 0
0 1 1
1 0 1

]
and N f(B) =

 1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 ,
the first defining the layout of the levels of factor A, the second defining
that of the levels of factor B.

It is worth noting that here the matrix N f(A) is an incidence matrix
of a balanced incomplete block (BIB) design and the matrix N f(B) is that
of a partially balanced incomplete block (PBIB) design. The former, with
parameters vA = 3, rA = 2, kA = 2, bA = 3 and λA = 1, is exactly the design
recorded at No. 1 in Table 8.2 of Caliński and Kageyama (2003), whereas
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the latter, with parameters vB = 4, rB = 2, kB = 2, bB = 4, λ1,B = 0 and
λ2,B = 1, is a so-called semi-regular group divisible design (see, for example,
Caliński and Kageyama, 2003, Section 6.0.2; Raghavarao and Padgett, 2005,
Section 8.2).

It is assumed that the design used in the considered example was applied
to available experimental units (field plots) grouped into blocks and those
further into superblocks, all of them constructed in such a way as to allow
the appropriate threefold randomization to be performed, as indicated in
Section 2.

The individual plot observations (plot yields) obtained for the combina-
tions of the levels of factors A and B in the experiment considered in this
example are presented in Table 2. The order of blocks in this table corre-
sponds to the order of the columns of the incidence matrix given above.

Table 2. Experimental observations of the field plot yield of the
combinations of levels of the two factors analyzed in Example 1

Block A B Observ. Block A B Observ. Block A B Observ.
1 1 1 35.8 9 1 1 38.4 17 2 1 35.3
1 1 3 30.8 9 1 3 30.7 17 2 3 43.8
2 3 1 40.2 10 2 1 28.5 18 3 1 38.0
2 3 3 47.6 10 2 3 37.0 18 3 3 45.4
3 1 1 33.0 11 1 1 36.6 19 2 1 33.6
3 1 4 46.1 11 1 4 44.9 19 2 4 46.0
4 3 1 41.5 12 2 1 30.2 20 3 1 45.0
4 3 4 46.6 12 2 4 50.5 20 3 4 52.0
5 1 2 49.1 13 1 2 48.3 21 2 2 36.0
5 1 3 36.3 13 1 3 35.2 21 2 3 45.5
6 3 2 57.1 14 2 2 41.2 22 3 2 50.6
6 3 3 43.4 14 2 3 47.5 22 3 3 49.0
7 1 2 46.6 15 1 2 49.5 23 2 2 38.5
7 1 4 43.5 15 1 4 44.5 23 2 4 42.3
8 3 2 57.5 16 2 2 46.3 24 3 2 53.3
8 3 4 51.4 16 2 4 42.6 24 3 4 47.0

When analyzing these data, the researcher (an agronomist) might be inter-
ested in estimating and testing certain sets of treatment parametric func-
tions that can be defined as follows (assuming that the components of the
vector τ ∗ are ordered according to the order of the rows of the incidence
matrix N given above):



Experiments in nested block designs 163

[(
I3 −

1
3
131′3

)
⊗1

4
1′4

]
τ = U ′Aτ ≡ U ′Aτ ∗, (46)[

1
3
1′3 ⊗

(
I4 −

1
4
141′4

)]
τ = U ′Bτ ≡ U ′Bτ ∗, (47)[(

I3 −
1
3
131′3

)
⊗
(
I4 −

1
4
141′4

)]
τ = U ′ABτ ≡ U ′ABτ ∗, (48)

where (46) stands for the main effects of the levels of factor A, (47) stands for
the main effects of the levels of factor B, and (48) represents the interaction
effects of these two factors. All these linear functions can be seen as contrasts
of treatment parameters. For each of these three sets of contrasts, say UL,
the BLUE is obtainable according to formula (38), and the relevant sum of
squares, SS(UL), follows from (40).

To simplify the computations it may be useful to calculate first the
matrices

U ′L(X
′
1V
−1
∗ X1)

−1 for L = A, B and AB.

For this, note that

X ′1V
−1
∗ X1 = σ−21 X

′
1φ1X1 + σ−22 X

′
1φ2X1 + σ−23 X

′
1(In − φ1 − φ2)X1

= σ−21 rIv − (σ−21 − σ
−2
2 )k−1NN ′ − (σ−22 − σ

−2
3 )n−10 MM ′,

where r = 4, v = 12, k = 2, n0 = 4,

NN ′ = 2I3 ⊗

 2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2


and

MM ′ =

[
2 1 1
1 2 1
1 1 2

]
⊗

 2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

 .
With these results it can be checked that the condition (44) holds for

any pair of the considered sets of contrasts, UA, UB and UAB, and then
that the condition (42), extended to the three sets, also holds. With these
conditions satisfied, one can proceed to the general ANOVA and to its
partition into three components related to the three sets of contrasts. Note
that the relevant extension of (42) here is of the form
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(X ′1V
−1
∗ X1)

−1UA[U ′A(X ′1V
−1
∗ X1)

−1UA]−U ′A
+ (X ′1V

−1
∗ X1)

−1UB[U ′B(X ′1V
−1
∗ X1)

−1UB]−U ′B
+ (X ′1V

−1
∗ X1)

−1UAB[U ′AB(X ′1V
−1
∗ X1)

−1UAB]−U ′AB
= Iv − v−11v1′v. (49)

If (49) holds, then

SS(UA) + SS(UB) + SS(UAB) = SSV , (50)

with each component on the left in (50) obtainable using formula (40). Of
course, τ̂ ∗ is obtainable by the use of formula (32).

Table 3. Analysis of variance for an experiment in a nested block design
analyzed in Example 1

Source Degrees Sum Mean
of variation of freedom of squares square
Treatments 11 210.8489 19.1681

Residuals 36 36 1

Total 47 246.8489 —

Table 4. Analysis of variance for the sets of contrasts considered
in Example 1

Source Degrees Sum Meane F̂ P value
of freedom of squares square

Treatments 11 210.8489 19.1681 19.1681 < 0.0001
A 2 71.3556 35.6778 35.6778 < 0.0001
B 3 97.1209 32.3736 32.3736 < 0.0001
AB 6 42.3724 7.0621 7.0621 < 0.0001

Residuals 36 36 1
Total 47 246.8489

The critical values, at the 1 percent level of significance, for the approximate
distribution of the above test statistic F̂ , following from (29), are: 2.25 for
11 d.f., 4.61 for 2 d.f., 3.78 for 3 d.f. and 2.80 for 6 d.f.
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The results presented in Tables 3 and 4 were obtained with the use of
the empirical estimates (i.e., based on σ̂21 = 9.77119, σ̂22 = 7.78197 and
σ̂23 = 10.79420)

τ̃ = [36.093, 48.159, 33.391, 44.536, 31.836, 40.546,
43.494, 45.288, 41.139, 54.752, 46.247, 49.444]′

and

τ̃ ∗ = [−6.818, 5.249, −9.520, 1.626, −11.074, −2.364,
0.584, 2.378, −1.772, 11.842, 3.336, 6.534]′,

the former obtainable by the use of formula (8), the latter either from the
relation τ̃ ∗ = (Iv − n−11vr′)τ̃ , or directly by formula (32). Using τ̃ ∗ in
the formula (34), i.e., replacing V −1∗ by V̂

−1
∗ there, the estimated sum of

squares ŜSV is obtained. Similarly, using formula (40) in the same way, the
relevant components of ŜSV are obtained. Evidently, as follows from (28),
the estimated residual sum of squares ŜSR is reduced to n− v, its d.f. The
term “empirical estimates" used above is taken from Rao and Kleffe (1988,
p. 274).

Example 2. Caliński and Łacka (2014) analyzed data from a plant protec-
tion experiment. The experiment was carried out in laboratory conditions,
in a growth chamber. Its aim was to evaluate the efficiency of 4 chemical
substances (levels of factor B) applied in 3 concentrations − low, mid and
high (levels of factor A) − to reduce plant damage caused by slugs Arion
lusitanicus. Two of the chosen active substances, metaldehyde and methio-
carb, are currently recommended for the slug control. Methiocarb in mid
concentration is often considered as a standard. In the experiment, discs
of Chinese cabbage leaves were treated with relevant solutions of the stud-
ied chemical compounds (henceforth called “chemicals"), and the amount of
damage caused to them by slugs, given as percentages of their surface areas,
was observed. Each box, as an experimental unit, contained three such discs
and one A. lusitanicus slug placed inside. One camera covering k = 2 boxes
was considered as forming a block of the design. During the experiment,
b0 = 3 cameras were working simultaneously. Each series of observations
with the use of these 3 cameras was considered as one superblock of the
design. In total, the experiment was composed of a = 8 such series, giving
b = 24. Thus, in the experiment there were n = 48 experimental units,
allowing each of the v = 12 treatments to be replicated r = 4 times.
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The NB design so formulated has a v × b incidence matrix, defined as

N = X ′1XB = [N1 : N2 : N3 : N4 : N5 : N6 : N7 : N8],

of the form
i A B
1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4
9 3 1
10 3 2
11 3 3
12 3 4



1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1


,

where the rows correspond to the indicated treatment combinations (of the
levels of factors A and B).

The above partition of the matrixN into the matricesNh, h = 1, 2, ..., 8,
each of three columns, provides the design D described by the incidence
matrix

M =



1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1


.

The individual plot observations of the investigated characteristic, or-
dered according to the order of blocks of the design, are given in Table 5.

When analyzing these data, the researcher was particularly interested
in estimating and testing a certain set of contrasts. These can be presented
as certain basic contrasts (see Definition 3.4.1 in Caliński and Kageyama,
2000)

{c′iτ ≡ c′iτ ∗, i = 1, 2, ..., 11}
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Table 5. Observed damage to Chinese cabbage leaf discs (percentages
of surface areas) at 3 concentrations (A) of 4 studied chemicals (B)

Block A B Observ. Block A B Observ. Block A B Observ.
1 1 1 62.75 9 3 2 14.20 17 2 1 2.12
1 1 3 7.90 9 3 3 13.50 17 2 4 1.25
2 2 1 1.90 10 1 2 74.00 18 3 1 13.00
2 2 3 1.70 10 1 4 4.90 18 3 4 12.80
3 3 1 12.70 11 2 2 36.25 19 1 2 77.00
3 3 3 13.00 11 2 4 0.80 19 1 3 9.00
4 1 1 64.55 12 3 2 13.90 20 2 2 38.20
4 1 4 5.50 12 3 4 12.02 20 2 3 2.90
5 2 1 2.78 13 1 1 63.45 21 3 2 15.20
5 2 4 1.35 13 1 3 7.90 21 3 3 13.10
6 3 1 13.70 14 2 1 3.20 22 1 2 75.25
6 3 4 13.00 14 2 3 1.80 22 1 4 5.10
7 1 2 74.95 15 3 1 14.20 23 2 2 38.00
7 1 3 8.40 15 3 3 14.00 23 2 4 1.40
8 2 2 37.55 16 1 1 65.25 24 3 2 14.30
8 2 3 2.40 16 1 4 5.70 24 3 4 13.60

determined by the following vectors, with the corresponding stratum effi-
ciency factors (from Caliński and Łacka, 2014, p. 968):

c1 = 13 ⊗ [−1,−1, 1, 1]′/
√

3, ε11 = 1, ε21 = 0, ε31 = 0,
c2 = [−2, 1, 1]′ ⊗ [−1,−1, 1, 1]′/

√
6, ε12 = 1, ε22 = 0, ε32 = 0,

c3 = [0,−1, 1]′ ⊗ [−1,−1, 1, 1]′/
√

2, ε13 = 1, ε23 = 0, ε33 = 0,
c4 = 13 ⊗ [−1, 1, 0, 0]′

√
2/
√

3, ε14 = 1/2, ε24 = 0, ε34 = 1/2,
c5 = 13 ⊗ [0, 0,−1, 1]′

√
2/
√

3, ε15 = 1/2, ε25 = 0, ε35 = 1/2,
c6 = [−2, 1, 1]′ ⊗ [−1, 1, 0, 0]′/

√
3, ε16 = 1/2, ε26 = 1/2, ε36 = 0,

c7 = [−2, 1, 1]′ ⊗ [0, 0,−1, 1]′/
√

3, ε17 = 1/2, ε27 = 1/2, ε37 = 0,
c8 = [0,−1, 1]′ ⊗ [−1, 1, 0, 0]′, ε18 = 1/2, ε28 = 1/2, ε38 = 0,
c9 = [0,−1, 1]′ ⊗ [0, 0,−1, 1]′, ε19 = 1/2, ε29 = 1/2, ε39 = 0,
c10 = [−2, 1, 1]′ ⊗ 14/

√
6, ε1,10 = 0, ε2,10 = 1, ε3,10 = 0,

c11 = [0,−1, 1]′ ⊗ 14/
√

2, ε1,11 = 0, ε2,11 = 1, ε3,11 = 0.

For each of these eleven basic contrasts the BLUE is obtainable by
formula (38), with U ′L replaced by c′i, and the relevant sum of squares,
SS(ci), follows from (40) with the same replacement.

To simplify the computations it may be useful to calculate first the
vectors

c′i(X
′
1V
−1
∗ X1)

−1 for i = 1, 2, ..., 11.

For this, note that

X ′1V
−1
∗ X1 = σ−21 X

′
1φ1X1 + σ−22 X

′
1φ2X1 + σ−23 X

′
1(In − φ1 − φ2)X1

= (σ−21 − σ
−2
3 )C1 + (σ−22 − σ

−2
3 )C2 + σ−23 rIv,
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where r = 4, v = 12 and

C1 = X ′1φ1X1 = I3 ⊗

 2 0 −1 −1
0 2 −1 −1
−1 −1 2 0
−1 −1 0 2

 , of rank 9,

C2 = X ′1φ2X1 = 3−1
[

2 −1 −1
−1 2 −1
−1 −1 2

]
⊗

 2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

 , of rank 6.

With these results it can be checked whether the condition (44) holds for
any pair of the considered contrasts, i.e., condition c′i(X

′
1V
−1
∗ X1)

−1ci∗ = 0
for any i 6= i∗, and then whether the condition (42), extended to all eleven
basic contrasts, also holds. With these conditions satisfied, one can proceed
to the general ANOVA and to its partition corresponding to the eleven basic
contrasts. Note that the extension of (42) here is of the form

(X ′1V
−1
∗ X1)

−1c1[c′1(X
′
1V
−1
∗ X1)

−1c1]−1c′1

+(X ′1V
−1
∗ X1)

−1c2[c′2(X
′
1V
−1
∗ X1)

−1c2]−1c′2

+...+ (X ′1V
−1
∗ X1)

−1c11[c′11(X
′
1V
−1
∗ X1)

−1c11]−1c′11

= Iv − v−11v1′v.

If this holds, then

SS(c1) + SS(c2) + ...+ SS(c11) = SSV ,

with each component on the left obtainable using formula (40), with UL
replaced by ci. Of course τ̂ ∗ is obtainable by formula (32).

Table 6. Analysis of variance for an experiment in a nested block design
analyzed in Example 2

Source Degrees Sum Mean
of variation of freedom of squares square

Treatments 11 103246.2 9386.018

Residuals 36 36 1

Total 47 103282.2 —
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Table 7. Analysis of variance for the contrasts considered in Example 2

Source Degrees Sum Mean F̂ P
of freedom of squares square value

Treatments 11 103246.20 9386.02 9386.02 < 0.0001
c′1τ 1 38874.34 38874.34 38874.34 < 0.0001
c′2τ 1 32927.98 32927.98 32927.98 < 0.0001
c′3τ 1 2669.24 2669.24 2669.24 < 0.0001
c′4τ 1 3690.55 3690.55 3690.55 < 0.0001
c′5τ 1 28.52 28.52 28.52 < 0.0001
c′6τ 1 214.89 214.89 214.89 < 0.0001
c′7τ 1 26.57 26.57 26.57 < 0.0001
c′8τ 1 4125.63 4125.63 4125.63 < 0.0001
c′9τ 1 0.69 0.69 0.69 = 0.4107
c′10τ 1 20526.73 20526.73 20526.73 < 0.0001
c′11τ 1 161.06 161.06 161.06 < 0.0001

Residuals 36 36 1
Total 47 103282.20

The critical values, at the 1 percent level of significance, for the approximate
distribution of the above test statistic F̂ , following from (29), are: 2.25 for
11 d.f. and 6.63 for 1 d.f.

The results presented in Tables 6 and 7 were obtained with the use of
the empirical estimates (i.e., based on σ̂21 = 0.23019, σ̂22 = 0.35245 and
σ̂23 = 1.53393)

τ̃ = [64.037, 75.263, 8.275, 5.325, 2.564, 37.436,
2.107, 1.293, 13.412, 14.388, 13.315, 12.940]′

and

τ̃ ∗ = [43.174, 54.400, −12.588, −15.538, −18.299, 16.573,
−18.756, −19.570, −7.451, −6.475, −7.548, −7.923]′,

following the same approach as that applied in Example 1. These esti-
mates also provide the empirical estimates of the considered basic contrasts:
c̃′1τ = −94.596, c̃′2τ = 87.061, c̃′3τ = 24.788, c̃′4τ = 38.436, c̃′5τ = −3.379,
c̃′6τ = 7.736, c̃′7τ = 2.721, c̃′8τ = −33.896, c̃′9τ = 0.439, c̃′10τ = −85.056
and c̃′11τ = 7.534.
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These results are very close to those presented in Caliński and Łacka
(2014, pp. 970-971), obtained by the classical approach, namely by first per-
forming the within-stratum analyses, based on the relevant submodels, and
then combining their results. Here the results are obtainable from a direct
analysis.

Example 3. Ceranka (1983) analyzed data from a plant-breeding field ex-
periment with 25 breeding strains and 2 standard varieties of sunflower
compared in an NB design based on an incidence matrix N∗ of the type

N∗ =
[
N
1s1′b

]
,

with

N = [N1 : N2 : N3 : N4 : N5 : N6],

where

N ′1 =


1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 ,

N ′2 =


1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

 ,

N ′3 =


1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

 ,

N ′4 =


1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

 ,
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N ′5 =


1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

 ,

N ′6 =


1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

 ,
and with

1s1′b = [121′5 : 121′5 : 121′5 : 121′5 : 121′5 : 121′5].

It has b = 30 blocks, each of size k = 7, grouped into a = 6 superblocks,
each of size n0 = 35. Note that the design by which the 27 treatments are
arranged into 6 superblocks, denoted by D, is here based on the 27 × 6
incidence matrix

M =
[
125 125 125 125 125 125
512 512 512 512 512 512

]
.

The plant trait observed on the experimental units (plots), and taken
here for analysis, is the average diameter of the capitulum (head) in cen-
timeteres. The individual plot observations are presented and analyzed in
Caliński and Kageyama (2003, Example 7.3.22). These data have already
been analyzed in Caliński and Siatkowski (2017, Example 2). That analysis,
however, was performed without taking into account the grouping of blocks
into superblocks. Here the analysis is conducted as for an NB design. The
results are presented in Table 8.

Table 8. Analysis of variance for an experiment in a nested block design
analyzed in Example 3

Source Degrees Sum Meane F̂ P value
of variation of freedom of squares square
Treatments 26 93.2401 3.5862 3.5862 < 0.0001
Residuals 183 183 1
Total 209 276.2401
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The critical value, at the 1 percent level of significance, for the approximate
distribution of the above test statistic F̂ , following from (29), is here 1.76
for 26 d.f.

The results presented in Table 8 were obtained with the use of the
empirical estimates (i.e., based on σ̂21 = 0.91939, σ̂22 = 2.03387 and σ̂23 =
201.50110)

τ̃ = [15.552, 15.808, 15.099, 15.627, 16.347, 15.725, 15.426,
15.747, 16.025, 15.290, 16.418, 15.454, 15.430, 15.664,
15.591, 15.811, 15.300, 16.564, 15.473, 17.628, 14.937,
15.211, 14.618, 14.678, 14.326, 14.690, 15.780]′

and
τ̃ ∗ = [0.063, 0.319, −0.390, 0.138, 0.858, 0.237, −0.062,

0.259, 0.537, −0.198, 0.929, −0.034, −0.058, 0.176,
0.102, 0.322, −0.189, 1.076, −0.015, 2.140, −0.552,
−0.277, −0.871, −0.811, −1.163, −0.799, 0.291]′,

following the same approach as that applied in Example 1.
It may be interesting to note that the test statistic F̂ is here slightly

larger than in Example 2 of the previous paper (Caliński and Siatkowski,
2017), where the grouping of blocks into superblocks is ignored.

7. Concluding remarks

The present paper is the second in a series concerning a new approach to the
analysis of experiments with the OBS property. The first paper in this series,
by the same authors (Caliński and Siatkowski, 2017), concerns experiments
conducted in proper block designs. Here the new approach is applied to
experiments in nested block designs that induce the OBS property.

Exactly as in the first work, it appears that when the unknown stratum
variances within the covariance (dispersion) matrix V , given in (3), are
replaced by their estimates, obtained from the estimation procedure sug-
gested by Nelder (1968), the residual sum of squares SSR is reduced to its
d.f., that is, its expectation. This result is obtainable due to the proposed
new approach to the analysis of experimental data.

The indicated result, presented in Section 3, follows from the use of a
covariance matrix V not in the form

V = σ21[φ1 + (σ22/σ
2
1)φ2 + (σ23/σ

2
1)φ3 + (σ24/σ

2
1)φ4] = σ21F (say)

(appearing in the general Gauss−Markov model), as usually applied in the
literature (as recalled by Kala, 2017), but in its original form V = σ21φ1 +
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σ22φ2 + σ23φ3 + σ24φ4. This ensures that E(SSR) = n − v, as follows from
(19). As a consequence of this application, the test statistic (13) is reduced
to the form (29), i.e., to the estimated treatment mean square, M̂SV =
ŜSV /(v − 1). This can be seen as an advantage, particularly with regard
to the approximation of the relevant distribution, indicated at the end of
Section 5.

Another feature of the proposed approach relates to simplification of the
main analytical procedures, as presented in Section 4. One of the resulting
advantages is the reduction of the number of stratum variances involved,
from four to three, that is, to σ21, σ22 and σ23 only. This substantially simplifies
the computations.

However, as can be seen from the examples analyzed in Section 6, the
main advantage of the proposed approach is the fact that the ANOVA
results are obtainable directly, not by first performing some partial analyses,
under relevant stratum submodels, and then combining their results (as is
done in most of the relevant literature).

The indicated advantages are similar to those presented in the first pa-
per in the series, planned for different classes of designs inducing the OBS
property.

Finally, returning to the examples presented in Section 6, it may be
noted that the design considered in Example 1 can be regarded as a split-
plot type design. On the other hand, the design applied in Example 3, when
restricted to the part represented by the incidence matrixN , can be seen as
a resolvable block type design. Because these two types of design are often
used in practice, it may be interesting to devote to them separate papers in
the present series.
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Appendix

Appendix 1

For formula (12) one has first to show that X ′1V
−1X1 can be taken as a g-inverse

of D(τ̂ ∗) as given in (11), i.e., that the equality

(Iv − n−11vr′)(X ′1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1X1(Iv

− n−11vr′)(X
′
1V
−1X1)−1(Iv − n−1r1′v)

= (Iv − n−11vr′)(X ′1V
−1X1)−1(Iv − n−1r1′v)

holds. For this, it is sufficient to consider the equalities

X ′1V
−1X1(Iv − n−11vr′) = (Iv − n−1r1′v)X

′
1V
−1X1 and

(Iv − n−1r1′v)(Iv − n−1r1′v) = (Iv − n−1r1′v).

The second equality is obvious. To prove the first, one may use the equalities

X1(Iv − n−11vr′) = (In − n−11n1′n)X1 and
V −1(In − n−11n1′n) = (In − n−11n1′n)V

−1,

which can easily be checked remembering that X11v = 1n and 1′nX1 = r′, and
also recalling the properties of the matrices φ1, φ2, φ3 and φ4 in formula (3).

Now, withX ′1V
−1X1 as a g-inverse of D(τ̂ ∗), the equality (12) follows, which

can easily be checked noting that (Iv − n−11vr′)τ̂ ∗ = τ̂ ∗.

Appendix 2

For formula (13) note that the sum of squares SSV can, on account of (8) and the
relation τ̂ ∗ = (Iv − n−11vr′)τ̂ , be written as

SSV = y′V −1X1(X
′
1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1X1(Iv

− n−11vr′)(X
′
1V
−1X1)−1X

′
1V
−1y,

which, by the equalities

X ′1V
−1X1(Iv − n−11vr′)(X ′1V

−1X1)−1 = Iv − n−1r1′v and
(Iv − n−11vr′)(X ′1V

−1X1)−1 = (X ′1V
−1X1)−1(Iv − n−1r1′v)

(see Appendix 1), can be reduced to the form in (14). As to the sum of squares
SSR, its formula (15) follows directly from (13) on account of (4).

Appendix 3

For the formulae in (30) note that, using the well-known formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1,
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one can write

V −1 = V −1∗ − V
−1
∗ n−11n1′n[(σ

2
4 − σ23)−1In + n−11n1′nV

−1
∗ n−11n1′n]

−1n−11n1′nV
−1
∗ ,

from which

X ′1V
−1X1 = X ′1V

−1
∗ X1 −X

′
1V
−1
∗ n−11n1′n[(σ

2
4 − σ23)−1In

+ n−11n1′nV
−1
∗ n−11n1′n]

−1n−11n1′nV
−1
∗ X1

= X ′1V
−1
∗ X1 −X

′
1V
−1
∗ X11vn

−11′n[(σ
2
4 − σ23)−1In

+ n−11n1′vX
′
1V
−1
∗ X11vn

−11′n]
−1n−11n1′vX

′
1V
−1
∗ X1

= [(X ′1V
−1
∗ X1)

−1 + n−11v1′n(σ
2
4 − σ23)n−11n1′v]−1

= [(X ′1V
−1
∗ X1)

−1 + (σ24 − σ23)n−11v1′v]−1.
Taking the inverse of this, one obtains the formula (31). From (30) it also follows
that

X ′1V
−1X1 = X ′1V

−1
∗ X1 + (σ−24 − σ

−2
3 )n−1rr′,

due to the relation 1′nX1 = r′. Furthermore, with these results the equality (32)
can be proved, proceeding as follows:

τ̂ ∗ = (Iv − n−11vr′)(X ′1V
−1X1)−1X

′
1V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1y

= (Iv − n−11vr′)(Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1(Iv − n−1r1′v)X
′
1V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1(In − n−11n1′n)V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1(Iv − n−11n1′n)[V
−1
∗

+ (σ−24 − σ
−2
3 )n−11n1′n]y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1
∗ (Iv − n−11n1′n)y,

because (Iv − n−1r1′v)X
′
1 = X ′1(In − n−11n1′n) and (In − n−11n1′n)V

−1
∗ =

V −1∗ (Iv − n−11n1′n), as can easily be checked (see also Appendix 1).

Appendix 4

Formulae (34) and (35) are to be shown to be equivalent to formulae (14) and (15)
respectively. To prove this, it may be helpful first to note the following equalities,
which can easily be checked (see also Appendices 1 and 3):

(X ′1V
−1X1)−1(Iv − n−1r1′v) = (X ′1V

−1
∗ X1)

−1(Iv − n−1r1′v),
X1(Iv − n−11vr′) = (In − n−11n1′n)X1,
(Iv − n−1r1′v)X

′
1 = X ′1(In − n−11n1′n),

V −1(In − n−11n1′n) = V −1∗ (In − n−11n1′n),
(In − n−11n1′n)V

−1 = (In − n−11n1′n)V
−1
∗ ,

V −1∗ (In − n−11n1′n) = (In − n−11n1′n)V
−1
∗ .
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With these observations, it is easy to proceed as follows:

SSV = y′V −1X1(Iv − n−11vr′)(X ′1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1y

= y′V −1X1(Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1(Iv − n−1r1′v)X
′
1V
−1y

= y′V −1(In − n−11n1′n)X1(X
′
1V
−1
∗ X1)

−1X ′1(In − n−11n1′n)V
−1y

= y′(In − n−11n1′n)V
−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ (In − n−11n1′n)y,

which, with y∗ = (In − n−11n1′n)y, is equivalent to the formula (34).
Now, considering formula (15), first note (recalling Appendix 1) that

[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1]n−11n1′n

= V −1n−11n1′n − V
−1X1(X

′
1V
−1X1)−1X

′
1V
−1n−11n1′n

= V −1n−11n1′n − V
−1X1(X

′
1V
−1X1)−1X

′
1V
−1X11vn−11′n

= V −1n−11n1′n − V
−1X11vn−11′n = V −1n−11n1′n − V

−1n−11n1′n = O.

With this result, formula (15) can be written as

SSR = y′[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1]y

= y′[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1](In − n−11n1′n)y

= y′[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1](In − n−11n1′n)(In − n−11n1′n)y

= y′[V −1(In − n−11n1′n)− V
−1X1(X

′
1V
−1X1)−1X

′
1V
−1(In − n−11n1′n)]y∗

= y′[(In − n−11n1′n)V
−1 − V −1X1(X ′1V

−1X1)−1X
′
1(In − n−11n1′n)V

−1]y∗
= y′[(In − n−11n1′n)V

−1
∗ − V

−1X1(X
′
1V
−1X1)−1X

′
1(In − n−11n1′n)V

−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1X1(X
′
1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1X1(X
′
1V
−1
∗ X1)

−1(Iv − n−1r1′v)X
′
1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1X1(Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1(In − n−11n1′n)X1(X
′
1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − (In − n−11n1′n)V

−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗

= y′∗[V
−1
∗ − V

−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗,

which is equivalent to (35).

Appendix 5

For formula (41) note that, from (40),

SS(UA) + SS(UB) = τ̂ ′∗{UA[U ′A(X ′1V
−1
∗ X1)

−1UA]−U ′A
+ UB[U ′B(X ′1V

−1
∗ X1)

−1UB]−U ′B}τ̂ ∗
= τ̂ ′(Iv − n−1r1′v){UA[U ′A(X ′1V

−1
∗ X1)

−1UA]−U ′A
+ UB[U ′B(X ′1V

−1
∗ X1)

−1UB]−U ′B}(Iv − n−11vr′)τ̂ ,
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which, because U ′A1v = 0 = U ′B1v, reduces to

SS(UA) + SS(UB) = τ̂ ′{UA[U ′A(X ′1V
−1
∗ X1)

−1UA]−U ′A
+ UB[U ′B(X ′1V

−1
∗ X1)

−1UB]−U ′B}τ̂ .

On the other hand, from the equivalence of SSV in (13) and (34), one can write
(also from Appendix 3) that

SSV = τ̂ ′∗X
′
1V
−1X1τ̂ ∗ = τ̂ ′(Iv − n−1r1′v)X

′
1V
−1X1(Iv − n−11vr′)τ̂

= τ̂ ′(Iv − n−1r1′v)X
′
1V
−1
∗ X1(Iv − n−11vr′)τ̂ .

Hence, for any τ̂ , the equality (41) holds if and only if

UA[U ′A(X ′1V
−1
∗ X1)

−1UA]−U ′A + UB[U ′B(X ′1V
−1
∗ X1)

−1UB]−U ′B
= (Iv − n−1r1′v)X

′
1V
−1
∗ X1(Iv − n−11vr′)

= X ′1V
−1
∗ X1(Iv − n−11vr′),

because (Iv − n−1r1′v)X
′
1V
−1
∗ X1 = X ′1V

−1
∗ X1(Iv − n−11vr′). Now, premulti-

plying by (X ′1V
−1
∗ X1)

−1, one obtains the condition (42).


