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SUMMARY 

Genotype-by-environment interaction (GEI) is frequently encountered in multi-

environment trials, and represents differential responses of genotypes across 

environments. With the development of molecular markers and mapping techniques, 

researchers can go one step further and analyse the whole genome to detect specific 

locations of genes which influence a quantitative trait such as yield. Such a location is 

called a quantitative trait locus (QTL), and when these QTLs have different expression 

across environments we talk about QTL-by-environment interaction (QEI), which is the 

basis of GEI. Good understanding of these interactions enables researchers to select better 

genotypes across different environmental conditions, and consequently to improve 

crops in developed and developing countries. In this paper we present an overview of 

statistical methods and models commonly used to detect and to understand GEI and QEI, 

ranging from the simple joint regression model to complex eco-physiological genotype-to-

phenotype simulation models. 

Keywords: Genotype-by-environment interactions; QTL-by-environment interactions; 

QTL detection; Additive main effects and multiplicative interaction model; Eco-

physiological genotype-to-phenotype simulation models. 

1. Introduction 

One of the main challenges in statistical genetics is to find superior genotypes 

over a wide range of agro-ecological conditions and also over a number of years. 

This is also a challenge for farmers, breeders and geneticists, although farmers 

and breeders often have conflicting interests: breeders want a genotype that can 

be sold everywhere, and farmers a genotype adapted to their climate and soil 
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management. To achieve this purpose, multi-environment trials (METs) are 

conducted, in which a series of genotypes is evaluated over environmental 

conditions and over time. The data from these trials are usually summarised in  

a two-way table with genotypes in the rows and environments (locality/year 

combinations) in the columns, or vice versa. In most of these two-way tables it is 

possible to find differences between genotypes in their phenotype (e.g. yield) 

stability along environments; that is, the genotypic and environmental effects are 

not simply additive, and genotype-by-environment interaction (GEI) is present in 

the data (van Eeuwijk et al., 2016). GEI is defined by the change of the genetic 

ranking of genotypes with the environment; for instance, a genotype that is 

superior in well-watered conditions may yield poorly under dry conditions.  

The GEI can be expressed either as crossovers, when two different genotypes 

change in rank order of performance when evaluated in different environments, 

or as inconsistent responses of some genotypes across environments without 

changes in rank order. The study and understanding of these interactions is a 

major challenge, serving to improve complex traits (e.g. yield) across 

environmental gradients (Annicchiarico, 2002, 2009; Crossa, 1990; Romagosa et 

al., 2009; van Eeuwijk et al., 2016). 

With the development of molecular markers and mapping techniques, 

researchers can go one step further than GEI and analyse the whole genome to 

detect specific locations of genes which influence a quantitative trait. Such  

a location is called a quantitative trait locus (QTL), and when these QTLs have 

different expression across environments we talk about QTL-by-environment 

interaction (QEI), which is the basis of GEI (Romagosa et al., 2009; Gauch et al., 

2011; Rodrigues et al., 2014). A good understanding of these interactions allows 

researchers to select better genotypes across different environmental gradients, 

and consequently to improve crops for developed and, in particular, for 

developing countries, based on their climate and soil characteristics.  

A physiologically inspired alternative approach to GEI is based on crop 

growth simulation models. Crop growth models represent a class of genotype-to-

phenotype models based on prior knowledge (Spitters, 1990; van Ittersum et al., 
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2003; Chenu et al., 2009; Rodrigues, 2012) that has proved to be useful for 

understanding GEI and QEI. These models allow the use of genetic and 

environmental characteristics to simulate the behaviour of each genotype in each 

environmental set-up along the growing season (Rodrigues, 2012; Cooper et al., 

2009; Bertin et al., 2010; Letort et al., 2008), which is very useful for decision-

making in crop science and plant breeding. 

2. Genotype-by-environment interactions – the statistical  

analysis of two-way tables 

To better understand GEI and to make predictions for different locations and/or 

different years, a wide range of statistical methods have been used. They have 

been applied to the output of extensive experiments and plant breeding 

programmes conducted under different environmental conditions (or locations) 

and over several years (van Eeuwijk et al., 2005; Malosetti et al., 2010; Aastveit 

and Mejza, 1992; Kang and Gauch, 1996). 

In a chronological analysis of research on GEI and QEI, Rodrigues (2012) 

found that the number of publications on GEI together with QTL analyses had 

remained almost constant between 2005 and 2012. Research on regression-based 

techniques continues to increase within GEI analysis, and since 1990 has been 

the most commonly used statistical tool. The particular case of factorial 

regression models represents less than 10% of total research on regression for 

GEI. Research articles which use graphical techniques such as biplots (Gabriel, 

1971) or genotype main effect plus genotype-by-environment interaction (GGE) 

biplots (Yan and Kang, 2002) have increased sharply in number, especially since 

2004. There is also a clear increase in research on singular value decomposition 

techniques such as principal component analysis (PCA) and additive main effects 

and multiplicative interaction (AMMI) models (Gauch, 1992). The steep increase 

in the use of biplots is, in part, explained by the increase in the use of PCA and 

AMMI models, which also use these graphical representations in their outputs. 
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2.1. Statistical models based on regression and singular value 

decomposition 

The simplest model to describe phenotypic observations along environments is 

the additive model without interaction terms. In this case, the expected 

phenotypic response for genotype 𝑖, 𝑖 = 1, … , 𝐼, in environment 𝑗, 𝑗 = 1, … , 𝐽, 

equals the grand mean plus the genotype and environment main effects (both 

expressed as deviations from the grand mean), that is 

𝑦𝑖,𝑗 =  𝜇 +  𝐺𝑖 +  𝐸𝑗 +  𝜀𝑖,𝑗.                                                                   (1) 

The additive model is the basis of all models with interaction, but it is only 

applicable when there is no GEI in the two-way table with genotypes in the rows 

and environments in the columns, that is, when the phenotypic response across 

environments is a set of parallel lines. If there is interaction between genotypes 

and environments, model (1) can be written to account for GEI, that is 

𝑦𝑖,𝑗 =  𝜇 +  𝐺𝑖 +  𝐸𝑗 +  (𝐺. 𝐸)𝑖,𝑗 + 𝜀𝑖,𝑗,                                             (2) 

where (𝐺. 𝐸)𝑖,𝑗 represents the GEI term for genotype i and environment 𝑗.  

The full interaction model (2) has as many parameters to be estimated as 

genotype-by-environment combinations, which is associated with less precise 

tests and represents a less parsimonious model. An alternative extension of the 

additive model (1) was first proposed by Finlay and Wilkinson (1963), where the 

phenotypic responses across environments are regressed on the phenotypic mean 

over environments (a measure of productivity or biological quality in the absence 

of other environmental characterisations). The GEI is expressed by the I slopes 

βi, and the model can be written as 

𝑦𝑖,𝑗 =  𝜇 +  𝐺𝑖 +  𝐸𝑗 +  𝛽𝑖𝐸𝑗. + 𝜀𝑖,𝑗.                                                          (3) 

Another regression-based model was presented by Gusmão (1985), where the 

(physical) block information is used to correct for spatial effects. In this way  

the phenotypic responses per block are regressed across environments, resulting 

in 𝑖 × 𝑏 regressions, where 𝑏 is the number of blocks. Other studies and 



 

 

 

 

Statistical methods to detect and understand GxE and QTLxE            127 

 

generalisations related to Gusmão’s approach were presented by Pereira et al. 

(2007, 2012b). 

A further alternative to the full interaction model is the additive main effects 

and multiplicative interaction (AMMI) model (Gollob, 1968; Mandel, 1969; 

Bradu and Gabriel, 1978; Gauch, 1988; Gauch, 1992; Paderewski et al., 2011; 

Hongyu et al., 2014; Rodrigues et al., 2016), which is more flexible than the 

Finlay and Wilkinson regression, because it can partition the interaction into  

𝑁 = min (𝐼 − 1, 𝐽 − 1) terms. It combines analysis of variance (ANOVA) and 

principal component analysis (PCA), with ANOVA performed first, and then 

PCA (i.e. singular value decomposition) applied to the resultant GEI matrix 

(Gauch, 1992). The model can be written as 

   𝑦𝑖,𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + ∑ 𝜆𝑛𝛾𝑖,𝑛𝛿𝑗,𝑛
𝑁
𝑛=1 + 𝜀𝑖,𝑗  

         = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + ∑ 𝑎𝑖,𝑛𝑏𝑗,𝑛
𝑁
𝑛=1 + 𝜀𝑖,𝑗,                                                (4) 

where 𝜆𝑛 is the singular value for interaction principal component (IPC) 𝑛, 𝛾𝑖,𝑛 

is the left singular vector for genotype 𝑖 in component 𝑛, 𝛿𝑗,𝑛 is the right singular 

vector for environment 𝑗 in component 𝑛, 𝜀𝑖,𝑗 is the residual for genotype i in 

environment 𝑗, and 𝑁 is the number of retained components. Rodrigues et al. 

(2011) and Pereira et al. (2012a) made comparisons in terms of “robustness” with 

different incidence rates of missing values, and in terms of dominant/winner 

genotypes.  

A remarkable feature of the AMMI model is its ability to create mega-

environments, that is, groups of environments with a similar response to the 

variable of interest (e.g. yield) (Gauch and Zobel, 1997) and to produce biplot 

graphs that are very useful to delineate mega-environments. A useful role of 

mega-environments is the possibility of more accurate prediction for new years 

and/or new environments with similar environmental conditions as in a given 

mega-environment. 

The AMMI model, in its standard form, implicitly assumes that all entries of 

the two-way data table have equal weights and that no outliers are present in the 

data (Gauch, 1992; Paderewski and Rodrigues, 2014). Several data imputation 
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techniques have been proposed to deal with the missing data, such as those of 

Arciniegas-Alarcón (2010, 2014) and Gauch and Zobel (1990). Rodrigues et al. 

(2014) proposed a weighted AMMI algorithm where different weights are 

assigned to columns and/or rows and/or particular cells of the two-way data table, 

and Rodrigues et al. (2016) proposed a robust version of the AMMI model that 

accounts for data contamination. Moreover, Josse et al. (2014) and references 

therein discuss the use of the Bayesian AMMI model to study genotype-by-

environment data.  

A similar alternative to the GEI model is the GGE model (Yan and Kang, 

2002, 2003; Yang et al., 2009) which applies PCA (i.e. singular value 

decomposition) to the two-way table without environmental main effects, that is: 

𝑦𝑖,𝑗 =  𝜇 + 𝐸𝑗 + ∑ 𝑎𝑖,𝑛𝑏𝑗,𝑛
𝑁
𝑛=1 + 𝜀𝑖,𝑗,                                                      (5) 

where 𝑎𝑖,𝑛 and 𝑏𝑗,𝑛 are genotypic and environmental parameters (scores) for the 

bilinear term 𝑛. Both the AMMI and GGE models are more useful when using 

graphical representations such as biplots (Gabriel, 1971). 

Gauch et al. (2008), and references therein, present detailed comparisons 

between the AMMI and GGE models. 

2.2. Factorial regression – including environmental and genotypic 

information in the model 

When specific environmental (and/or genotypic) information is available (e.g. 

rainfall, radiation, temperature, marker information), the linear-bilinear model 

recommended for use is the biadditive factorial regression model, also termed 

reduced rank factorial regression (Denis, 1988; van Eeuwijk et al., 1996; van 

Eeuwijk, 1995) because it allows this extra information to be included in the 

model. Considering the simple case in which the interaction is due to two 

environmental variables 𝑍1𝑗 and 𝑍2𝑗, the model can be written as 

𝑦𝑖,𝑗 =  𝜇 + 𝐺𝑖 +  𝐸𝑗 + 𝛽1,𝑖𝑍1,𝑗 + 𝛽2,𝑖𝑍2,𝑗 + 𝜀𝑖,𝑗,                                                (6) 

where 𝛽1,𝑖 and 𝛽2,𝑖  are the genotypic sensitivities to the two respective 

environmental variables. This model is an extension of the Finlay–Wilkinson 
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regression (1.2) in which the interaction is written based on several real 

environmental variables. This allows a physiological interpretation of the GEI in 

terms of real environmental information. The generalisation to the case when 𝐻 

environmental covariates 𝑍1,𝑗, … , 𝑍𝐻,𝑗 are available is straightforward: 

𝑦𝑖,𝑗 = 𝜇 +  𝐺𝑖 +  𝐸𝑗 + ∑ 𝛽ℎ,𝑖𝑍ℎ,𝑗
𝐻
ℎ=1 + 𝜀𝑖,𝑗.                                            (7) 

A similar expression can be obtained when, instead of only 𝐻 environmental 

covariates, we also have information about 𝐾 genotypic covariates (e.g. 

physiological parameters or marker information). The generalisation to 𝐻 

environmental covariates 𝑍1,𝑗, … , 𝑍𝐻,𝑗, and 𝐾 genotypic covariates 𝑋1,𝑖, … , 𝑋𝐾,𝑖, 

can be written as: 

𝑦𝑖,𝑗 = 𝜇 +  𝐺𝑖 +  𝐸𝑗 + ∑ 𝛽ℎ,𝑖𝑍ℎ,𝑗
𝐻
ℎ=1 + ∑ 𝑋𝑘,𝑖𝜏𝑘,𝑗

𝐾
𝑘=1 +

           ∑ ∑ 𝜑𝑘,ℎ𝑋𝑘,𝑖𝑍ℎ,𝑗
𝐻
ℎ=1

𝐾
𝑘=1 + 𝜀𝑖,𝑗.                                                      (8) 

These coefficients are not genotype- or environment-dependent. The coefficients 

𝛽ℎ,𝑖 are genotypic sensitivities to the environmental covariables 𝑍ℎ,𝑗, and the 𝜏𝑘,𝑗 

denote environmental weighting constants with respect to the genotypic 

covariable 𝑋𝑘,𝑖 (Baril et al., 1995). The parameters 𝜑𝑘,ℎ represent coefficients 

with respect to cross-products of the genotypic covariables 𝑋𝑘,𝑖 and 

environmental covariables 𝑍ℎ,𝑗. Further generalisations are possible depending 

on the research objectives (van Eeuwijk et al., 1996; Romagosa et al., 2009). 

2.3. Linear mixed model – taking into account the variance structure  

of the data 

A more elaborate approach to understanding GEI is the mixed model framework 

(Galwey, 2006; Verbeke and Molenberghs, 2009). This methodology combines 

the modelling of the mean and the variance, and provides a powerful tool to 

analyse GEI. The main advantage of these models is the ability to model the 

heterogeneity of variance across environments and correlations between 

environments. Unlike the models presented above, where all terms except the 

residual are fixed, the mixed linear model (Searle, 1971) provides a framework 

where the fixed effects can be combined with several random terms (Lourenço  
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et al., 2017). Residual maximum likelihood (REML) (Patterson and Thompson, 

1971; Searle et al., 1992) is used to estimate variances and random parameters.  

A mixed model for a two-way table indexed by genotypes and environments is  

𝑦𝑖,𝑗 =  𝜇 +  𝐺𝑖 +  𝐸𝑗 +  (𝐺. 𝐸)𝑖,𝑗 + 𝜀𝑖,𝑗                                               (9) 

where the model parameters are defined as before. Typically, 𝐸𝑗 is fixed and 𝐺𝑖, 

(𝐺. 𝐸)𝑖,𝑗 and 𝜀𝑖,𝑗 are random, following a normal distribution with zero mean and 

a variance specific to the term (Boer et al., 2007; Malosetti et al., 2004). Piepho 

(1997) proposed an analysis of genotype-by-environment data using mixed 

models with multiplicative terms which can be seen as a mixed effects model 

version of the fixed effects AMMI model. 

3. QTL-by-environment interaction 

QTL scans are a quick and relatively straightforward way to find a rough 

localisation of genetic factors that influence a complex trait. These QTL scans 

are usually conducted in multiple environments in order to increase generality 

and reliability (Broman and Sen, 2009; Alimi et al., 2012), but often inconsistent 

QTL detections are found. Inconsistent results raise questions about the validity 

and utility of these QTLs, especially those that are only marginally significant or 

infrequent. Inconsistent QTLs can emerge from a mixture of two causes: (i) from 

false positives and false negatives due to inadequate population size or imperfect 

statistical models and noisy phenotypic data; and (ii) from actual QTL-by-

environment interaction (QEI) due to a given allele increasing a phenotypic trait 

in only some environments while having no detectable effect or even a significant 

negative effect in other environments (Gauch et al., 2011). 

When dealing with QEI instead of GEI, the previously described fixed and 

mixed models can be easily adapted. For example, the QTL model with 

interaction can be written as 

𝑦𝑖,𝑗 =  𝜇 + 𝑄𝑇𝐿𝑖 +  𝐺𝑖
∗ +  𝐸𝑗 +  (𝑄𝑇𝐿. 𝐸)𝑖,𝑗 + (𝐺. 𝐸)𝑖,𝑗

∗ + 𝜀𝑖,𝑗,             (10) 
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where 𝑄𝑇𝐿𝑖 is the QTL main effect, (𝑄𝑇𝐿. 𝐸)𝑖,𝑗 is the QEI, 𝐺𝑖
∗ is the genotypic 

residual, and (𝐺. 𝐸)𝑖,𝑗
∗  is the residual from the interaction. More details on these 

models and how to include genetic information such as marker information can 

be found in van Eeuwijk et al. (2005) and Romagosa et al. (2009).  

A major point of interest is whether QEI can be detected for the phenotypic 

trait of interest and whether this QEI can be interpreted in terms of underlying 

QTLs for physiological parameters or molecular markers. The QTL model of 

interest uses explicit marker-derived information to describe the GEI in terms of 

QTLs as dependent on the environments (i.e. the QEI). The inclusion of this 

marker information (genetic predictors) allows one to test whether the phenotypic 

trait (e.g. yield) is affected by the DNA at a particular genome position, and 

whether this effect depends on the environment. Romagosa et al. (1996) proposed 

the use of the AMMI model for QTL mapping, and Gauch et al. (2011) followed 

up on that approach, applying a parsimonious AMMI model to the phenotypic 

data in order to gain accuracy, and then using the AMMI predicted values to 

obtain the QTL scans, so as to order the environments by AMMI scores and 

enable the analysis of patterns with ecological or biological interpretation.  

A three-stage approach that is able to account for differences in error variance 

across environments, proposed by Rodrigues et al. (2014), uses a weighted 

AMMI algorithm, instead of the standard AMMI model, to obtain the predicted 

values that are used to obtain the QTL scans. 

If, instead of a fixed effects model, a mixed effects framework is considered, 

the model can be defined as (Boer et al., 2007): 

𝑦𝑖,𝑗 = [𝜇 + 𝐸𝑗] + [𝐺𝑖 + (𝐺. 𝐸)𝑖,𝑗]  

       = [𝜇𝑗] + [∑ 𝑥𝑘,𝑖𝛼𝑘,𝑗
𝐾
𝑘=1 + 𝜃𝑖,𝑗]                                                  (11) 

where 𝜇𝑗 is the intercept for each environment, 𝑥𝑘,𝑖 is derived from marker 

genotype information for genotype 𝑖, 𝛼𝑘,𝑗 is the QTL allele substitution effect for 

environment 𝑗, 𝐾 is the total number of QTLs underlying 𝑦𝑖,𝑗 (e.g. yield), and 𝜃𝑖,𝑗 

follows a multivariate normal distribution with zero mean vector and a given 

variance-covariance (VCOV) matrix. The choice of the best VCOV structure can 
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be made by following the procedure described in Malosetti et al. (2004) and Boer 

et al. (2007). 

4. Eco-physiological genotype-to-phenotype models 

All of the models described above are intended to analyse data after it has been 

collected in multi-environment trials. This procedure of collecting data is 

expensive and time-consuming, and has limitations regarding the number of 

genotypes, traits and environmental conditions considered. Simulation tools such 

as genotype-to-phenotype models have proved to be useful for gaining better 

understanding of GEI and QEI (van Eeuwijk et al., 2010).  

A physiologically inspired alternative approach for collecting field data is 

based on physiological crop growth simulation models. Crop growth models 

represent a class of genotype-to-phenotype (G-P) models with a prior biological 

structure (Spitters, 1990; van Ittersum et al., 2003) that can be used to help 

understand GEI and QEI (Tardieu, 2003; van Eeuwijk et al., 2005; Letort et al., 

2008; Chenu et al., 2009; Cooper et al., 2009; Bertin et al., 2010; van Eeuwijk 

et al., 2010). These models allow the simulation of the trait of interest (e.g. yield) 

along the growing season (i.e. every day) and require as input: (i) genotypic 

information on the crop at hand, i.e. the genetic map with the position of the 

markers in the chromosomes and marker information; (ii) information about the 

physiological parameters of the model for each of the considered genotypes; and 

(iii) environmental characteristics of the study locations (i.e. weather, soil, etc.).  

The integration of statistical genetics and crop growth modelling for reliable 

and robust prediction of phenotypic traits, on the basis of genotype-specific and 

stable physiological parameters and environmental characteristics, is the subject 

of extensive research in the plant sciences (Tardieu, 2003; Chenu et al., 2008; 

Malosetti et al., 2010). These G-P models allow the inclusion of genetic 

information such as previously found QTLs for the trait and/or QTLs for the 

physiological parameters, which will result in a more parsimonious and 

meaningful model. A particular strength of crop growth models in comparison 
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with the more statistical G-P models is that they contain explicit representations 

of development over time, which may be useful in describing GEI (Chenu et al., 

2009). Otherwise, “time” would be an extra dimension on the phenotypic 

observations and harder to collect. Recently, a wide spectrum of physiological 

models have been proposed for better interpretation of GEI and QEI, focusing on 

traits of varying complexity such as yield (Yin et al., 2000; Tardieu, 2003; Yin et 

al., 2004; Chenu et al., 2008), leaf elongation (Reymond et al., 2003; Reymond 

et al., 2004; Chenu et al., 2008), chemical concentration in seed grains (Ishii et 

al., 2010) and fruit quality (Quilot et al., 2005). Rodrigues (2012) developed a 

seven-component eco-physiological model for yield in pepper that simulates 

yield and yield components, where the yield components were given a simple 

QTL basis, and showed how credible patterns of GEI and QEI for yield can be 

simulated from genotype-specific yield components with a simple QTL basis. 

5. Discussion 

In this paper we have described some of the standard techniques used to analyse 

and to structure genotype-by-environment interaction (GEI), provided a general 

overview of fixed and mixed effects models commonly used to detect and to 

understand quantitative trait locus (QTL)–by-environment interaction (QEI), and 

given a brief introduction and review of eco-physiological genotype-to-

phenotype models. Despite the wide range of existing references and techniques 

to explore and better understand GEI and QEI, not all of them are available to all 

breeders and researchers. In some cases, the statistical methods are too complex 

to be computationally implemented and applied by non-statisticians; in other 

cases, although these complex techniques are already well implemented in 

statistical packages, the software is commercial and too expensive for budgets in 

developing countries, where statistical improvements are slow to arrive. 

However, free software (e.g. QTL Cartographer, MATMODEL, R/agricolae and 

R/qtl) is available for most of the basic methods discussed in this paper. 
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