An overview of statistical methods to detect and understand genotype-by-environment interaction and QTL-by-environment interaction

Open access


Genotype-by-environment interaction (GEI) is frequently encountered in multi-environment trials, and represents differential responses of genotypes across environments. With the development of molecular markers and mapping techniques, researchers can go one step further and analyse the whole genome to detect specific locations of genes which influence a quantitative trait such as yield. Such a location is called a quantitative trait locus (QTL), and when these QTLs have different expression across environments we talk about QTL-by-environment interaction (QEI), which is the basis of GEI. Good understanding of these interactions enables researchers to select better genotypes across different environmental conditions, and consequently to improve crops in developed and developing countries. In this paper we present an overview of statistical methods and models commonly used to detect and to understand GEI and QEI, ranging from the simple joint regression model to complex eco-physiological genotype-to-phenotype simulation models.

Aastveit A.H., Mejza S. (1992): A selected bibliography on statistical methods for the analysis of genotype x environment interaction. Biuletyn Oceny Odmian, 24-25: 83-97.

Alimi N.A., Bink M.C.A.M., Dieleman J.A., Nicolai M., Wubs M., Heuvelink E., Magan J.J., Voorrips R.E., Jansen J., Rodrigues P.C., Vercauteren A., Vuylsteke M., Song Y., Glasbey C., Barocsi A., Lefebvre V., Palloix A., van Eeuwijk F.A. (2012): Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190: 181–201.

Arciniegas-Alarcón S., García-Peña M., Krzanowski W.J., Dias C.T.S. (2014): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction: some new aspects. Biometrical Letters 51: 75-88.

Arciniegas-Alarcón S., Peña M.G., Dias C.T.S., Krzanowski W.J. (2010): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction. Biometrical Letters 47: 1-14.

Annicchiarico P. (2009): Coping with and exploiting genotype-by-environment interactions. In: Ceccarelli, S., E.P., G. & Weltzien, E. (eds.) Plant breeding and farmer participation. Rome: FAO.

Annicchiarico P. (2002): Genotype x Environment Interactions – Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Papers [Online].

Baril C.P., Denis J.B., Wustman R., van Eeuwijk F.A. (1995): Analyzing Genotype by Environment Interaction in Dutch Potato Variety Trials Using Factorial Regression. Euphytica 82: 149-155.

Bertin N., Martre P., Genard M., Quilot B., Salon C. (2010): Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. Journal of Experimental Botany 61: 955-967.

Boer M.P., Wright D., Feng L.Z., Podlich D.W., Luo L., Cooper M., van Eeuwijk F.A. (2007): A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177: 1801-1813.

Bradu D., Gabriel K.R. (1978): Biplot as a Diagnostic Tool for Models of 2-Way Tables. Technometrics 20: 47-68.

Broman K.W., Sen S. (2009): A Guide to QTL Mapping with R/qtl, New York, Springer-Verlag.

Chenu K., Chapman S.C., Tardieu F., Mclean G., Welcker C., Hammer G.L. (2009): Simulating the Yield Impacts of Organ-Level Quantitative Trait Loci Associated With Drought Response in Maize: A “Gene-to-Phenotype” Modeling Approach. Genetics 183: 1507-1523.

Chenu K., Chapman S.C., Hammer G.L., Mclean G., Salah H.B.H., Tardieu F. (2008): Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell and Environment 31: 378-391.

Cooper M., Van Eeuwijk F.A., Hammer G.L., Podlich D.W., Messina C. (2009): Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant Biology 12: 231-240.

Crossa J. (1990): Statistical analyses of multilocation trials. Advances in Agronomy 44: 55-85.

Denis J. B. (1988): Two-way analysis using covariables. Statistics 19: 123-132.

Finlay K.W., Wilkinson G.N. (1963): Analysis of Adaptation in a Plant-Breeding Programme. Australian Journal of Agricultural Research 14: 742-754.

Gabriel K.R. (1971): Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 58: 453-467.

Galwey N. (2006): Introduction to mixed modelling: beyond regression and analysis of variance, Chichester, England; Hoboken, NJ, Wiley.

Gauch H.G. (1992): Statistical analysis of regional yield trials: AMMI analysis of factorial designs, Amsterdam, Elsevier.

Gauch H.G. (1988): Model Selection and Validation for Yield Trials with Interaction. Biometrics 44: 705-715.

Gauch H.G., Rodrigues P.C., Munkvold J.D., Heffner E.L., Sorrells M. (2011): Two New Strategies for Detecting and Understanding QTL x Environment Interactions. Crop Science 51: 96-113.

Gauch H.G., Piepho H.P., Annicchiarico P. (2008): Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science 48: 866-889.

Gauch H.G., Zobel R.W. (1997): Identifying mega-environments and targeting genotypes. Crop Science 37: 311-326.

Gauch H.G., Zobel R.W. (1990): Imputing Missing Yield Trial Data. Theoretical and Applied Genetics 79: 753-761.

Gollob H.F. (1968): A Statistical Model Which Combines Features of Factor Analysis and Analysis of Variance Techniques. Psychometrika 33: 73-115.

Gusmão L. (1985): An Adequate Design for Regression-Analysis of Yield Trials. Theoretical and Applied Genetics 71: 314-319.

Hongyu K., García-Peña M., Araújo L.B., Dias C.T.S. (2014): Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters 51: 89-102.

Ishii T., Hayashi T., Yonezawa K. (2010): Categorization of Quantitative Trait Loci by Their Functional Roles: QTL Analysis for Chemical Concentration in Seed Grains. Crop Science 50: 784-793.

Josse J., van Eeuwijk F., Piepho H.-P., Denis J.B. (2014): Another look at Bayesian analysis of AMMI models for genotype-environment data. Journal of Agricultural, Biological, and Environmental Statistics 19: 240-257.

Kang M.S., Gauch H.G. (1996): Genotype-by-Environment Interaction, Boca Raton, CRC Press.

Letort V., Mahe P., Cournede P.H., De Reffye P., Courtois B. (2008): Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of Botany 101: 1243-1254.

Lourenço V., Rodrigues P.C., Pires A.M., Piepho H.-P. (2017)): A robust DF-REML framework for variance components estimation in genetic studies. Bioinformatics 33: 3584-3594.

Malosetti M., Ribaut J.M., van Eeuwijk F.A. (2010): The analysis of multi-environment data: modeling genotype by environment and QTL by environment interaction. In: Monneveux P. & Ribaut J.M. (eds.) Drought phenotyping in crops: from theory to practice.

Malosetti M., Voltas J., Romagosa I., Ullrich S.E., van Eeuwijk F.A. (2004): Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137: 139-145.

Mandel J. (1969): Partitioning of Interaction in Analysis of Variance. Journal of Research of the National Bureau of Standards Section B-Mathematical Sciences B 73: 309-&.

Paderewski J., Rodrigues P.C. (2014): The usefulness of EM-AMMI to study the influence of missing data pattern and application to Polish post-registration winter wheat data. Australian Journal of Crop Science 8: 640–645.

Paderewski J., Gauch H.G., Madry W., Drzazga T., Rodrigues P.C. (2011): Yield Response of Winter Wheat to Spatial Conditions Using AMMI and Cluster Analysis. Crop Science 51: 969-980.

Patterson H.D., Thompson R. (1971): Recovery of Inter-Block Information When Block Sizes Are Unequal. Biometrika 58: 545-&.

Pereira D., Rodrigues P.C., Mejza S., Mexia J.T. (2012a): A comparison between Joint Regression Analysis and the AMMI model: a case study with barley. Journal of Statistical Computation and Simulation 82: 193-207.

Pereira D., Rodrigues P.C., Mejza I., Mejza S., Mexia J.T. (2012b): Analyzing genotypes by environment interaction by curvilinear regression. Scientia Agricola 69: 357-363.

Pereira D.G., Mexia J.T., Rodrigues P.C. (2007): Robustness of Joint Regression Analysis. Biometrical Letters,44: 105-128.

Piepho H.P. (1997): Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics 53: 761-766.

Quilot B., Genard M., Lescourret F., Kervella J. (2005): Simulating genotypic variation of fruit quality in an advanced peach x Prunus davidiana cross. Journal of Experimental Botany 56: 3071-3081.

Reymond M., Muller B., Tardieu F. (2004): Dealing with the genotypexenvironment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. Journal of Experimental Botany 55: 2461-2472.

Reymond M., Muller B., Leonardi A., Charcosset A., Tardieu F. (2003): Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology 131: 664-675.

Rodrigues P.C., Monteiro A., Lourenço V.M. (2016): A robust additive main effects and multiplicative interaction model for the analysis of genotype-by-environment data. Bioinformatics 32: 58-66.

Rodrigues P.C., Malosetti M., Gauch H.G., van Eeuwijk F.A. (2014): A weighted AMMI algorithm to study genotype-by-environment interaction and QTL-by-environment interaction. Crop Science 54: 1555-1570.

Rodrigues P.C. (2012): New strategies to detect and understand genotype-by-environment interactions and QTL-by-environment interactions. PhD Thesis, Faculty of Sciences and Technology, Nova University of Lisbon, Lisboa, Portugal.

Rodrigues P.C., Pereira D.G., Mexia J.T. (2011): A comparison between JRA and AMMI: the robustness with increasing amounts of missing data. Scientia Agricola 68: 679-686.

Romagosa I., van Eeuwijk F.A., Thomas W.T.B. (2009): Statistical analyses of genotype by environment data. In: Carena M.J. (ed.) Cereals. Springer, New York: 291-331.

Romagosa I., Ullrich S.E., Han F., Hayes P.M. (1996): Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theoretical and Applied Genetics 93: 30-37.

Searle S.R. (1971): Linear models, New York, Wiley.

Searle S.R., Casella G., Mcculloch C.E. (1992): Variance components, New York, Wiley.

Spitters C.J.T. (1990): Crop growth models: their usefulness and limitations. Acta Horticulture 267: 349-368.

Tardieu F. (2003): Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science 8: 9-14.

van Eeuwijk F.A., Bustos-Kortsa D.V., Malosetti M. (2016): What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? Crop Science 56: 2119-2140.

van Eeuwijk F.A., Bink M.C.A.M., Chenu K., Chapman S.C. (2010): Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant Biology 13: 193-205.

van Eeuwijk F.A., Malosetti M., Yin X.Y., Struik P.C., Stam P. (2005): Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Australian Journal of Agricultural Research 56: 883-894.

van Eeuwijk F.A., Denis J. B., Kang M.S. (1996): Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang M.S. & Gauch H.G. (eds.) Genotype by Environment Interaction: New Perspectives. Boca Raton: CRC Press.

van Eeuwijk F.A. (1995): Linear and Bilinear Models for the Analysis of Multi-Environment Trials. 1. An Inventory of Models. Euphytica 84: 1-7.

van Ittersum M.K., Leffelaar P.A., van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. (2003): On approaches and applications of the Wageningen crop models. European Journal of Agronomy 18: 201-234.

Verbeke G., Molenberghs G. (2009): Linear mixed models for longitudinal data, New York, Springer.

Yan W., Kang M.S. (2003): GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists, Boca Raton, Fla., CRC Press.

Yan W., Kang M.S. (2002): GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists, Boca Raton, Florida, CRC Press.

Yang R.C., Crossa J., Cornelius P.L., Burgueno J. (2009): Biplot Analysis of Genotype x Environment Interaction: Proceed with Caution. Crop Science 49: 1564-1576.

Yin X.Y., Chasalow S.D., Dourleijn C.J., Stam P., Kropff M.J. (2000): Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity 85: 539-549.

Yin X.Y., Struik P.C., Kropff M.J. (2004): Role of crop physiology in predicting gene-to-phenotype relationships. Trends in Plant Science 9: 426-432.

Biometrical Letters

The Journal of Polish Biometric Society

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 41
PDF Downloads 87 87 34