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Summary

We introduce a method that eliminates the specification error and spurious
relationships in regression. In addition, we introduce a test of strong
causality. Furthermore, hypothesis testing (inference) becomes almost
unneeded. Moreover, this method virtually resolves error problems such as
heteroscedasticity, autocorrelation, non-stationarity and endogeneity.

Key words: spurious regression, strong causality, specification error

1. Introduction

Model specification has been a major obstacle in regression analysis. This is
due to omitted variables, irrelevant variables, or the wrong functional form.
It is virtually impossible for the researcher to know a priori all of the relevant
explanatory variables. The existing methods that deal with specification
error offer partial and limited solutions (see, for example, Asteriou and
Hall, 2011).

Furthermore, the related problem of spurious regressions remains largely
unresolved. Needless to say, the existing causality tests, such as Granger’s
test and the related literature (see Granger, 1969, 1980) are weak and suffer
well-known limitations. Alternative methods of determining causality also
suffer serious limitations and are cumbersome (see, for example, Shiffrin,
2016 and Varian, 2016 for discussion).

In this paper, we introduce a simple method that resolves the problems
of specification error, spurious regressions, and weak causality. In doing
so, we introduce a method that eliminates the specification error. We also
develop a test of strong causality.
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2. The method

Assume the true model is

y = β0 + β1x1 +
∑
i
βixi + ε,

where β is the parameter to be estimated, and ε is the error. We adopt the
following two-step estimation procedure. First, we estimate the following
regression (assuming that x1 is the explanatory variable of interest):

y = β0 + β1x1 + u, (1)

where u is the error; clearly, u =
∑
βixi+ε.We fit the line of regression (1)

and then we use the residuals of this regression û to accurately estimate the
true parameter. We note that all of the (unknown and known) explanatory
variables that explain y are included in û. The residuals are given by

û = y − β̂0 − β̂1x1 = β0 + β1x1 +
∑
i
βixi + ε− β̂0 − β̂1x1

= β0 − β̂0 +
(
β1 − β̂1

)
x1 + u,

where β̂ is the estimated parameter. Multiplying both sides by x1 yields

ûx1 = (β0 − β̂0)x1 +
(
β1 − β̂1

)
x21 + ε1,

where ε1 = ux1. We save the residuals from the regression ε̂1 and use them
as a new explanatory variable in the original regression in (1), as follows:

y = β0 + β1x1 + β2
ε̂1
x1

+ ε2, (2)

where ε̂1x1 is an estimate of u =
∑
βixi + ε, since u = ε1

x1
. The fitted line of

this regression is given by

y = β∗0 + β∗1x1 + β∗2
ε̂1
x1

+ ε∗2. (3)

Subtracting (3) from (2) yields

Z = β0 − β∗0 + (β1 − β∗1)x1 + β2
ε̂1
x1

+ ε2 − ε∗2,

where Z ≡ β∗2 ε̂1x1 . Then we estimate this regression

Z = β0 − β∗0 + (β1 − β∗1)x1 + β2
ε̂1
x1

+ ε3,
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where the error ε3 = ε2−ε∗2.We note that the residuals from this regression
ε̂3 are an estimate of ε2−ε∗2 (the error of the error). We use ε̂3 to re-estimate
(2) as follows:

y = β0 + β1x1 + β3v + ε4, (4)

where v ≡ β∗2 ε̂1x1 + ε̂3.
We note that all of the explanatory variables that explain y are included

in v. Therefore the model is perfectly specified. This virtually resolves the
(choice of variable) misspecification problem. This is particularly helpful for
models with lags, since the choice of number of lags is a major difficulty in
empirical studies. According to our method, the researcher can choose one
lag, while all other relevant lags are automatically included in û. We also
note that hypothesis testing (and sampling) becomes almost uneeded, since
the residuals are virtually zero, regardless of the sample choice or size, and
thus the parameters are virtually equal to the true parameters. Further-
more, this method virtually resolves error problems such as heteroscedas-
ticity, autocorrelation, non-stationarity and endogeneity. We also note that,
if needed, the procedure (2)−(4) can be repeated until the standard error of
the regression is zero. A computer program can easily and quickly achieve
this.

3. Large causality test

Clearly, the model specification in (4) precludes spurious relationships, since
all of the other variables that explain y are accounted for in û. Consequently,
we can test for a strong version of causality as follows:

First, run these regressions

yt = β4 + β5xt−1 + ε4,

xt = β6 + β7yt−1 + ε5,

where the subscript t− 1 denotes the first lag. Follow the procedure in the
previous section to obtain

yt = β4 + β5xt−1 + β8v1 + ε6,

xt = β6 + β7yt−1 + β9v2 + ε7,

then estimate these regressions. If β5 6= 0 and β7 = 0, we conclude that x
causes y.
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4. A non-linear functional form

If the relationship between y and xi is non-linear, we obtain the following
exact Taylor’s expansion around a vector of constants c:

y = f (x) = f (c) +
∑
i
fxi (c) x̄i +R (x, c) ,

where R is the remainder and x is a vector of regressors, fxi is the first
partial derivative of f with respect to xi, and the bar superscript denotes
the deviation from the point of expansion (x̄i ≡ xi − ci). The remainder is
explicitly given by

R (x, c) =
1
2

∑
fxixj (ẋ) x̄2i x̄

2
j ,

where ẋi is a number between xi and ci, and ẋ is a vector of these numbers.
The remainder can be approximated as

R (x, c) ≈
∑

βix̄
2
i x̄
2
j ,

where βi is a parameter. Thus, we obtain the following regression model

y = β0 +
∑

βixi +
∑

βix̄
2
i x̄
2
j + ε4.

Now the model is linear in the parameters; therefore we can apply our
method as before. This will eliminate the specification error due to the
functional form.
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