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Summary

This paper investigates a stopping rule to be utilised in phase I clinical
trials. The motivation is to develop a dynamic rule so that a trial stops
early if the maximum tolerated dose lies towards the beginning of a dose
region. Also, it will employ many patients if the maximum tolerated dose
lies towards the end of a dose region. A two-parameter logistic model
is assumed for the dose-response data. A trial is stopped early before
reaching the maximum number of patients when the width of the Bayesian
posterior probability interval of the slope parameter meets a desired value.
Instead of setting a pre-specified width to stop at, we determine it based
on the parameter estimate obtained after a reasonable number of steps in a
trial. Simulation studies of six plausible dose-response scenarios show that
the proposed stopping rule is capable of limiting the number of patients
to be recruited depending on the underlying scenario. Although the rule is
applied to a D-optimum design here, it will be equally applicable to other
model-based designs.

Key words: phase I clinical trial, maximum tolerated dose, sequential
design, D-optimum design, early stopping rule

1. Introduction

Along with identification of the pharmacokinetics of a drug, a phase I clinical
trial establishes the maximum tolerated dose (MTD). This is the dose at
which an acceptable level of probability of toxicity is attained. The accurate
determination of an MTD depends on its location in the dose region. If the
MTD lies towards the beginning of a dose region, then a small number
of cohorts may be enough to identity it correctly. If the dose lies towards
the end of a dose region, a small number of cohorts may be insufficient
to find it. This issue may be solved by engaging large numbers of cohorts
for all dose-response scenarios. But this will be costly in terms of both
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resources and time, as unnecessarily large numbers of cohorts will be used
for scenarios with MTDs at the beginning of the region. That is to say,
running a trial until it reaches the maximum number of available cohorts
is not always a good choice. An alternative could be stopping trials early
if some stopping rule is met. Many such stopping rules are available in the
dose-finding literature.

Brunier and Whitehead (1994) proposed a Bayesian decision-theoretic
approach to determine the number of patients that should be treated in
phase II trials. The method determines the optimal sample size by max-
imising a utility function, which incorporates both the number of successes
obtained and the costs of treatment. Korn et al. (1994) proposed a rule
for a continual reassessment method (CRM) that stops after c patients are
assigned to the same dose, and via simulation they found the value for c
to be 6. Stallard (1998) also determined sample sizes for phase II clinical
trials under a Bayesian decision-theoretic framework. O’Quigley and Reiner
(1998) proposed a stopping rule for the CRM. The rule stops a trial early
on the basis that continuing the trial would not lead to a change in the dose
recommendation, with high probability. Heyd and Carlin (1999) stopped a
trial when either the width of the Bayesian posterior probability interval for
the model parameter was less than a pre-specified value or when the trial
reached the maximum number of 24 patients, whichever came first. But it is
hard and even impossible to recommend a single value for the width which
would serve as a stopping criteria in all dose-finding studies. The paper does
not provide any insight on this issue. Thall and Russell (1998) developed
a design for phase I/II clinical trials in which a trial stopped early when
the posterior probability that the toxicity rate and the response rate of all
doses were higher or lower, respectively, than the target rates. Zohar and
Chevret (2001) proposed Bayesian stopping rules for the CRM, based on
either posterior or predictive probability distributions that can be applied
sequentially during the trial. These rules aim at early detection of either the
mis-choice of dose range or a prefixed gain in the point estimate or accuracy
of estimated probability of response associated with the MTD. Zohar et al.
(2003) developed software to implement the stopping rules in Zohar and
Chevret (2001) for the CRM.

O’Quigley (2002) pointed out two potential problems with the stop-
ping rule of Heyd and Carlin (1999). Firstly, to achieve the most commonly
accepted level of precision, many patients are likely to be recruited, and
therefore, in practice the trial is not likely to halt before the maximum
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number of patients has been included under a fixed-sample scheme. Sec-
ondly, obtaining some fixed level of precision for the probability of toxicity
at the recommended dose is a major concern per se. O’Quigley (2002) sug-
gested a simple rule, stopping a trial when the same dose is repeated m
times. This is similar to the idea in which a trial stops if it is found that
the future doses will not be different from the current dose. In both cases,
a trial is stopped when convergence to a dose level is achieved. Tighiouart
and Rogatko (2012) determined the sample size for escalation with overdose
control in a way that the posterior variance of the MTD, on the average
over all possible trials, is no more than a specified margin. Early stopping
in a clinical trial is implemented in East software, version 6.3 (Cytel). Its
sequential feature assists in conducting cost-effective trials. It helps at a
midway point to decide whether or not a trial should be continued. Vali-
dated stopping rules for efficacy and futility are available in this software.

Alam (2016) developed a D-optimum design for phase I clinical trials
and compared it with the CRM. It was learnt from the comparison that
the D-optimum design can outperform the CRM in many cases. In this
article, we present a modified version of the proposal for early stoppage
given by Heyd and Carlin (1999). In particular, instead of setting a pre-
specified width for stopping, we set it based on the parameter estimate
after the accrual of some data in a trial. The new stopping rule, which
we call a dynamic rule, is applied to the D-optimum design developed by
Alam (2016). Section 2 gives the motivation of the paper. Section 3 outlines
the dose-finding design and the proposed stopping rule. We outline how
the method can be implemented in section 4. The simulation settings are
considered in section 5, to investigate a variety of circumstances. Section
6 gives an illustration of how the method would work in practice through
large-scale simulations. Finally, conclusions appear in section 7.

2. Motivation

The paper is intended to propose a simple stopping rule that will engage
either many or few patients to recommend the MTD for further testing
in the next phase. Assume that a drug was found promising in preclinical
testing and hence deserves testing in humans. Assume that d ordered doses
X = {x(1), . . . , x(d)} of that experimental drug are available for testing in
humans, and we would like to determine the MTD to be carried to the
next phase. Ideally, a dose-finding design should be able to identify the
MTD accurately without exposing many patients. Continuing a trial until
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the entire sample is exhausted is often problematic, as the location of the
MTD is not the same across scenarios. Sometimes it may lie towards the
beginning of a dose region, and therefore, a small number of patients may
be enough to identify it correctly. In other cases, it lies towards the end of a
dose region, and the correct identification of the MTD requires engaging a
large number of patients. Hence determining the optimal number of patients
to be recruited in a trial is crucial to avoid wastage of resources. Although
a number of papers on this subject have been published, it remains an
interesting research problem for which new solutions can be developed.

It is likely that as the number of patients increases, the identification of
the MTD improves. Alam (2016) also found improvements in identification
with an increased number of patients for both of their designs. We are
motivated by those findings to consider a stopping rule that should engage
an appropriate number of patients depending on the underlying shape of
the dose-response relationship. Here we present a rule that is utilised in
finding the MTD when dose allocation is based on aD-optimum design only.
However, the method should work equally in the CRM and other model-
based adaptive designs. In the following section, we describe theD-optimum
design for dose allocation along with the proposed dynamic stopping rule.

3. Methods

3.1. Design

The theory of optimal design can be used in designing clinical trials, as it
provides some advantages over non-optimal designs. A D-optimum design
depends on the Fisher information matrix (FIM), and it ensures efficient pa-
rameter estimation. The FIM for a linear model depends on the design vari-
able, not on the model parameters. However, for a non-linear dose-response
model like ours, the FIM also depends on the model parameters along with
the design variable. As a consequence, to find the D-optimum dose, some
values of the parameters need to be assumed, and such a design is known
as locally optimal (Chernoff, 1953). Model parameter estimates obtained at
each stage of an adaptive trial can be utilised in the FIM to determine the
optimum dose for the next patient.

We utilise the following two-parameter logistic model to depict the dose-
response relationship accurately:

ψ(x,ϑ) =
exp(ϑ1 + ϑ2x)

1 + exp(ϑ1 + ϑ2x)
, (1)
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where x is the dose given to a patient and ϑ = (ϑ1, ϑ2) is the vector of dose-
response parameters. Assume that we are conducting an adaptive trial, and
at each stage thereof, a dose from X is given to a patient based on the design
criterion. Let x = {x1, . . . , xl, . . . , xk}T be the vector of doses assigned to
k successive patients, and r = {r1, . . . , rl, . . . , rk}T be the corresponding
vector of binary toxic outcomes. Then we can form the likelihood function
at stage k as

Lk(ϑ | x, r) =
k∏
l=1

{ψ(xl,ϑ)}rl{1− ψ(xl,ϑ)}1−rl .

Until we get both toxic and non-toxic responses from patients receiv-
ing different doses, it is not possible to estimate the parameters through
maximum likelihood estimation. If we run a rule-based design until a toxic
outcome occurs in a trial, only then can the maximum likelihood procedure
be applied, and the design can follow a model-based procedure afterwards.
However, to make the design fully model-based, here we estimate the dose-
response parameters ϑ utilising the Bayesian approach. At the kth stage,
the posterior means of the parameters are obtained as

ϑ̂ik =
∫

Θ ϑi g(ϑ)Lk(ϑ | x, r)dϑ∫
Θ g(ϑ) Lk(ϑ | x, r) dϑ

, i = 1, 2, (2)

where Θ is the parameter space and a choice of Θ̃ = {ϑ : u1 < ϑ1 < u2,
u3 < ϑ2 < u4} gives the prior distribution as

g(ϑ) =
1

(u2 − u1)(u4 − u3)
, ϑ ∈ Θ̃.

To compute the variance of the estimate of ϑ2 in section 3.2, we also
compute

ϑ̂2
2k =

∫
Θ ϑ

2
2 g(ϑ)Lk(ϑ | x, r)dϑ∫

Θ g(ϑ) Lk(ϑ | x, r) dϑ
. (3)

It can be shown that the Fisher information matrix for a patient is

I(xl,ϑ) =

 ψl(1− ψl) xlψl(1− ψl)

xlψl(1− ψl) x2
l ψl(1− ψl)

 .
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Since the D-optimum design at stage k depends on the accumulated
information and the new information coming from a dose, the weighted
Fisher information matrix is defined as

M(x|ξk, ϑ̂k) =
k

k + 1
M(ξk, ϑ̂k) +

1
k + 1

I(x, ϑ̂k),

where M(ξk, ϑ̂k) =
∑k
l=1 I(xl, ϑ̂k) is the accumulated information and

I(xl, ϑ̂k) is the Fisher information matrix for a patient who received the
dose xl. A more detailed description of the construction of an optimum de-
sign is available in Atkinson et al. (2014). The dose for the next patient is
selected so that

xk+1 = arg max
x∈X

ΦD{M(x|ξk, ϑ̂k)}, (4)

where ΦD{M} = |M |. A trial is continued until it meets the stopping rule
proposed in section 3.2 or it reaches the maximum number of n patients,
whichever comes first. Once the trial stops, the MTD is determined as the
dose that would be allocated to patient n + 1 if he/she were in the trial.
This is the dose for which the absolute difference between the estimated
probability of toxicity and the target toxicity rate γ is minimum. That is,

xMTD = arg min
x∈X
|ψ(x, ϑ̂k)− γ|. (5)

3.2. Dynamic stopping rule

The method involves constructing a Bayesian posterior probability interval
for the dose-response parameter ϑ2. An approximate 95% interval at stage

k is obtained as ϑ̂2k±1.96
√

̂var(ϑ2k), where var(ϑ2k) = E(ϑ2
2k)− [E(ϑ2k)]2.

This variance is computed using the estimates in (2) and (3). The width of

such an interval is 2 × 1.96
√

̂var(ϑ2k). A trial can be stopped early if the
width of the interval is less than or equal to a specified value. If we specify a
large value, the trial will stop quickly, but if we specify a small value then the
trial will take a relatively long time to stop. Also, it is hard to find a width
that will work in all situations. That is, choosing an appropriate width in
advance of a trial is a significant challenge. Therefore, we propose setting
the value based on the parameter estimate ϑ̂2k obtained at stage k = 15.
Stage 15 is chosen to ensure that the dose-response curve has been learned
sufficiently. It is clear that a trial does not stop before 15 patients have been
engaged. The width for stopping is taken as wϑ̂2k, where w = 2/3. Other
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choices of w such as 1/2 or 1/3 could be made as well, but that would make
the stopping value even smaller, resulting in longer trials. Also, we avoid
using just ϑ̂2k, as it would give a relatively large value, causing a trial to
stop too early. A trial stops when the width of the approximate Bayesian
posterior probability interval is less than or equal to the specified width
(as explained) or when the trial reaches a maximum number of n patients,
whichever comes first

4. Computational algorithm

The associated computational algorithm to implement the D-optimum de-
sign is given below, along with the proposed stopping rule. As already indi-
cated, the stage of the trial is represented by k, its initial value being taken
as 1.

Step 1: Assign the current best dose to a patient and observe the
response.

Step 2: Estimate the dose-response parameters ϑ.

Step 3: Determine the dose for the next patient. Do not jump more
than one dose level at a time during escalation.

Step 4: If k < 15, set k = k + 1 and repeat Steps 1–4.

Step 5: If k = 15 then determine the width wϑ̂2k for stopping.

Step 6: Obtain the width of the interval for ϑ2. If the obtained width
is either smaller than or equal to the stopping width or if the trial
reaches k = n then stop, and go to Step 7.

Otherwise, set k = k + 1 and repeat Steps 1–6.

Step 7: Determine the MTD as the dose for which the absolute dif-
ference between the estimated probability of toxicity and the target
toxicity rate is minimum.

5. Simulation settings

To investigate the operating characteristics of the design under the new
stopping rule, we consider six plausible dose-response scenarios as shown
in Figure 1. Note that the scenarios are the same as in Alam (2016), and
this serves to assess the new stopping rule under the same settings. In each
scenario, we have six dose levels: X = {1, 3, 5, 7, 9, 11}. The steepness of
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the dose-toxicity curve decreases as we move from Scenario 1 to 4. The
target toxicity probability γ is assumed as 0.33, so that 3, 5, 7, and 11
are the respective true MTDs in the first four scenarios. These doses have
true toxic probabilities of 0.32, 0.32, 0.33, and 0.32, respectively. Scenarios
5 and 6 are different from the others in that the target toxicity probability
lies midway between two available doses. The true MTD in Scenario 5 is
dose 6. Since dose 6 is not available in X , we assume 5 as the true MTD.
It is important to note that the probabilities of toxicity at dose 5 and
7 are 0.24 and 0.43, respectively. Similarly, dose 10 is the true MTD in
Scenario 6. Since it is not available in the dose vector X , we assume 9
as the true MTD. Doses 9 and 11 have probabilities of toxicity 0.28 and
0.39, respectively. The last two cases are considered as they may arise in
the actual conduct of trials. To facilitate the Bayesian estimation of dose-
response parameters ϑ, we assume a bivariate uniform distribution. The
parameter space Θ̃ = {ϑ : −4.3 < ϑ1 < −2.3, 0 < ϑ2 < 1} is considered
for all the scenarios to see what would happen if a common prior were
utilised. It has been found that the above parameter space can lead to
many extreme scenarios, including those assumed for the simulation study.
Hence, the assumed prior can be regarded as non-informative enough to
work with.

Doses are allocated to the patients sequentially in a trial with the lowest
dose of 1 mg/kg-body weight applied to the first patient. After receiving a
dose, the binary response for that patient is generated from the Bernoulli
distribution, and the true probability of toxicity in this case comes from the
respective dose-response scenario. After obtaining the dose-response out-
comes, the parameters are estimated as described in section 3.1. The dose
for the second patient is determined by the dose optimisation criterion in
(4). On obtaining the response from the second patient, the model parame-
ters are estimated again, and a dose is chosen for the third patient. A trial
continues until it meets the stopping rules in section 3.2. The MTD is then
determined so that the absolute difference between the estimated probabil-
ity of toxicity and the target toxicity rate is minimum, as shown in (5).

The proposed stopping rule is investigated for the variable width wϑ̂2k

determined at stage k = 15 for w = 2/3. It is also investigated for the
fixed widths 0.50, 0.40, 0.30, and 0.20. The maximum number of patients
n is taken as 60. Each of the six scenarios is investigated through 1000
simulated trials using a self-written R code.
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Figure 1. Assumed dose-response scenarios for simulation study; the parameter
values in the respective scenarios are ϑ = (−3.3, 0.85), ϑ = (−3.3, 0.51),
ϑ = (−3.3, 0.37), ϑ = (−3.3, 0.23), ϑ = (−3.3, 0.43) and ϑ = (−3.3, 0.26);

the target toxicity rate γ is indicated by the dotted horizontal line
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6. Simulation findings

The results obtained for the fixed stopping width are presented in Table 1. In
the table, the bold percentage for each scenario is the rate of identification of
the true MTD. A common finding which is consistent across scenarios is that
as the value of the fixed width decreases, the accuracy of identification of the
MTD increases. For example, Scenario 1, which has dose 3 as the true MTD,
achieves 98.3% accuracy of MTD identification when the stopping width is
set to 0.50. However, when the value is set to 0.20, the accuracy improves
to 99.9%. Similar patterns can be found in other scenarios. Another finding
is that when the true MTD lies at the end of the dose region, it is identified
with lower accuracy. For instance, in Scenario 4, where the true MTD is dose
11, the accuracy percentages range between 73.2% and 80.8%, compared
with the much higher range of 82-95.8% for Scenario 2, which has 5 as the
true MTD. In Scenario 5, the true MTD is 6. Since this dose is not available
in the dose vector X , the design mostly recommends the neighbouring doses
5 and 7 as the MTD. Similarly, the true MTD in Scenario 6 lies between
doses 9 and 11, and the design recommends these doses as the MTD most
often. As in the previous scenarios, identification improves with a decrease
in width.

Although the average numbers of patients used at widths 0.50 and 0.20
are similar across the scenarios, this is not the case for the other two widths.
To achieve the stopping widths 0.40 and 0.30, higher numbers of patients are
found to be engaged when the MTD lies towards the beginning of the dose
region than in scenarios where the MTD lies towards the end. This is because
the true parameter ϑ2 is relatively large in the early-MTD scenarios, and
therefore, to achieve the desired width, it takes a large number of patients.
On the other hand, in the scenarios where ϑ2 has small values, a relatively
small number of patients is required to reach the desired width.

While Table 1 suggests that identification of MTD improves with lower
values of the stopping width, it also shows that the accuracy comes at the
cost of involving many patients, which makes a trial unnecessarily long.
For instance, Scenario 1 requires 59.9 patients, almost the entire sample on
average, to achieve the impressive 99.9% accuracy in MTD identification
when the width is set to 0.20. Since in this scenario the true MTD lies
towards the beginning of the dose region, ideally it should not take that
many patients to recommend a MTD for further development in the next
phase. Also, unless we have some idea about the dose-response curve, it is
quite impossible to suggest a width for stopping. That is to say, in some
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scenarios a width of 0.20 may be a good choice, whereas in other scenarios it
may be either too narrow or too wide to be achieved. Hence, setting a fixed
width in advance of a trial has some serious limitations, and this motivated
us to develop the dynamic stopping rule.

Table 1. Average number of patients used, distribution of the MTD, and dose
allocation (in parentheses) obtained at various widths for the scenarios; the bold

numbers indicate the percentage of correct MTD selection for the
respective scenarios

Dose

Scenario Width Patients 1 3 5 7 9 11
0.50 19.6 0.1(22.1) 98.3(25.8) 1.6(19.9) 0.0(28.1) 0.0(3.6) 0.0(0.4)

1 0.40 42.4 0.8(28.5) 99.1(20.9) 0.0(27.7) 0.1(21.6) 0.0(1.2) 0.0(0.1)
0.30 57.8 0.3(29.2) 99.5(20.2) 0.2(28.3) 0.0(20.9) 0.0(1.2) 0.0(0.2)
0.20 59.9 0.0(24.4) 99.9(24.6) 0.1(22.6) 0.0(26.6) 0.0(1.6) 0.0(0.2)

0.50 17.3 0.0(4.7) 3.7(34.4) 82.0(4.6) 14.2(31.3) 0.1(14.1) 0.1(10.9)
2 0.40 28.8 0.0(7.4) 6.4(30.6) 82.7(7.3) 9.9(28.7) 0.8(12.5) 0.2(13.4)

0.30 55.6 0.0(2.7) 2.3(35.6) 92.8(2.6) 4.9(30.8) 0.0(12.5) 0.0(15.6)
0.20 59.1 0.0(2.5) 2.0(35.5) 95.8(2.6) 2.2(30.3) 0.0(11.9) 0.0(17.1)

0.50 15.2 0.0(10.4) 0.0(20.1) 30.9(9.8) 43.7(18.2) 17.8(12.8) 7.6(28.6)
3 0.40 16.9 0.0(9.5) 0.0(21.1) 22.9(8.8) 55.0(19.3) 15.0(12.3) 7.1(28.9)

0.30 32.7 0.0(5.7) 0.0(24.0) 12.2(5.5) 71.8(21.6) 14.7(7.4) 1.3(35.8)
0.20 59.5 0.0(4.2) 0.0(25.5) 9.6(4.6) 83.3(22.8) 7.0(5.5) 0.1(37.4)

0.50 15.0 0.0(22.4) 0.0(4.8) 0.6(19.7) 7.8(4.7) 18.4(18.5) 73.2(29.8)
4 0.40 15.0 0.0(22.4) 0.0(4.8) 0.6(19.7) 7.6(4.7) 17.3(18.5) 74.5(29.8)

0.30 29.8 0.0(21.2) 0.0(4.2) 0.0(19.1) 2.9(4.2) 22.6(19.4) 74.5(31.8)
0.20 59.8 0.0(21.3) 0.0(4.7) 0.0(18.5) 0.5(4.5) 18.7(18.4) 80.8(32.7)

0.50 15.7 0.0(7.9) 1.2(25.9) 61.9(7.8) 32.1(23.4) 4.2(12.4) 0.6(22.6)
5 0.40 19.6 0.0(6.3) 0.0(26.9) 51.1(6.2) 43.5(24.6) 4.6(12.3) 0.8(23.6)

0.30 43.1 0.0(3.1) 0.1(29.9) 53.3(3.2) 45.2(26.1) 1.3(7.9) 0.1(29.7)
0.20 59.0 0.1(2.5) 0.2(29.7) 56.7(3.3) 42.9(25.6) 0.1(6.2) 0.0(32.8)

0.50 15.0 0.0(19.8) 0.0(7.6) 2.8(17.4) 16.0(7.3) 25.4(16.8) 55.8(31.1)
6 0.40 15.1 0.0(19.8) 0.0(7.7) 0.7(17.3) 16.8(7.3) 26.3(16.5) 56.2(31.5)

0.30 29.3 0.0(18.5) 0.1(7.2) 0.1(16.8) 8.4(7.1) 37.3(17.2) 54.1(33.3)
0.20 59.7 0.0(17.3) 0.2(9.1) 0.1(15.1) 4.2(8.6) 43.7(15.1) 51.8(34.8)

The results for the proposed stopping rule are presented in Table 2.
As mentioned earlier, here we use parameter estimates after a few stages
to set the dynamic width. This is a more natural way of setting width,
since in an unknown situation we will be completely ignorant of its value.
Also, to achieve the same level of accuracy in identifying the MTD, the
width should be different across the scenarios. It is seen from the table
that in Scenario 1 the true MTD is identified 99.5% of times utilising on
average 20.7 patients. The same percentage can be achieved, at the cost of
a large number of patients, when fixed width is used. In Scenario 2, the
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new stopping rule identifies the true MTD in 88.5% of the trials with an
average of 40.3 patients used. The rate of correct identification of the MTD
in Scenario 3 is 75.6%, at the cost of 46.8 patients per trial. As the MTD
lies towards the end of the dose region in Scenario 4, the average number
of patients utilised is 59.2, a relatively large number compared with the
previous scenarios. Dose 5 is identified as the MTD in 57.1% of the trials in
Scenario 5, while dose 7, which is also close to the true MTD, is identified
in 42.2% of the trials. These two doses are identified in a total of 99.3%
of the trials, with an average of 41.1 patients. In Scenario 6, doses 9 and
11 are identified as the MTD in 94.8% of the trials, the average number of
patients used being 58.3.

Table 2. Average number of patients used, distribution of the MTD, and dose
allocation (in parentheses) obtained for the scenarios assuming the width as

(2/3)ϑ̂2k; the bold numbers indicate the percentage of correct MTD selection for
the respective scenarios

Dose

Scenario Patients 1 3 5 7 9 11
1 20.7 0.1(22.1) 99.5(26.0) 0.4(19.6) 0.0(28.7) 0.0(3.1) 0.0(0.4)
2 40.3 0.1(3.4) 6.7(35.3) 88.5(3.4) 4.7(31.0) 0.0(11.2) 0.0(15.8)
3 46.8 0.0(5.0) 0.1(25.0) 17.2(4.9) 75.6(22.7) 7.1(6.2) 0.0(36.2)
4 59.2 0.0(21.6) 0.0(4.4) 0.0(18.7) 1.3(4.3) 17.3(18.6) 81.4(32.6)
5 41.1 0.1(3.3) 0.4(29.7) 57.1(3.6) 42.2(26.1) 0.2(7.00) 0.0(30.4)
6 58.3 0.0(18.2) 0.0(8.1) 0.2(15.8) 5.0(7.7) 39.8(15.9) 55.0(34.4)

7. Conclusion

This study has been undertaken to investigate the proposed dynamic stop-
ping rule. The essence of the rule is that it does not require the width to
be specified at the beginning of a trial. Instead, it can be set based on pa-
rameter estimates obtained after accumulating information from the first
few patients. The motivation comes from the fact that it is hard to suggest
a pre-specified width which will work in different dose-response situations.
Our simulation results indicate that the proposed stopping rule can reduce
the challenge in setting a width. Also, it can decrease the number of pa-
tients to be employed in a trial. Therefore, the proposed stopping rule can
be regarded as a simple alternative to the fixed-width case.

Instead of using w = 2/3, one may utilise a small weight so that the
width becomes smaller. However, this will increase the average number of
patients to be used, although MTD identification will improve further. Simi-
larly, we can choose the weight in such a way that the width becomes larger.
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This will use fewer patients to recommend an MTD. Determining the op-
timal value for the weight is an open research problem requiring further
exploration. The presented approach of setting the width is a more general
one. It is expected to work well with other model-based adaptive designs
for phase I trials. Other dose-response models may be used as well. Also, a
similar approach can be investigated in the settings of seamless phase I/II
clinical trials.
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