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Summary

The main estimation and hypothesis testing results are presented for
experiments conducted in proper block designs. It is shown that, under
appropriate randomization, these experiments have the convenient orthog-
onal block structure. Because of this, the analysis of experimental data
can be performed in a comparatively simple way. Certain simplifying pro-
cedures are introduced. The main advantage of the presented methodology
concerns the analysis of variance and related hypothesis testing proce-
dures. Under the adopted approach one can perform them directly, not by
combining results from intra-block and inter-block analyses. Application
of the theory is illustrated by three examples of real experiments in proper
block designs. This is the first of a projected series of papers concerning
the analysis of experiments with orthogonal block structure.
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1. Introduction

The concept of orthogonal block structure, as a desirable property, was
originally introduced for a wide class of designs by Nelder (1965) and then
formalized by Houtman and Speed (1983). After the latter, the following
definition can be adopted.

Definition 1.1 (from Section 2.2 in Houtman and Speed, 1983). An exper-
iment is said to have the orthogonal block structure (OBS) if the covariance
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(dispersion) matrix of the random variables observed on the experimental
units (plots), y = [y1, y2, ..., yn]′, has a representation of the form

D(y) = σ21φ1 + σ
2
2φ2 + · · ·+ σ2tφt,

where the {φα}, α = 1, 2, ..., t, are known symmetric, idempotent and pair-
wise orthogonal matrices, summing to the identity matrix, the last being
usually of the form φt = n

−11n1′n.

It appears that experiments having the OBS property can be analyzed in
a comparatively simple way. In particular, the analysis of variance (ANOVA)
can be performed directly, avoiding the classic procedure of first conducting
intra-block and inter-block analyses and then combining the information
obtained from them, as originally suggested by Yates (1939, 1940) and re-
cently discussed by Kala (2017).

Because of this feature, it may be interesting to show the analytical ad-
vantage of experiments having the OBS property. To indicate the underlying
theory and relevant methodological procedures, it will be more appealing to
do this for different classes of designs separately. Thus, a set of research pa-
pers may be helpful for practical applications. The present paper, as the first
of the projected series of publications, is devoted to experiments conducted
in proper block designs.

Agricultural and other experiments, particularly crop variety trials, are
often conducted in incomplete block designs. Of special interest are the
proper block designs, i.e., those with constant block sizes. These have been
intensively promoted by many researchers, who have also presented relevant
methods of analyzing experiments conducted in these designs; see for exam-
ple Yates (1936, 1940) and Rao (1947, 1956, 1959). The considered designs,
when used with appropriate randomization, induce the OBS property, as
indicated in Caliński and Kageyama (2000, Lemma 3.5.1).

The purpose of the present paper is to show how the OBS property
provides a possibility of performing the analysis of experimental data with a
comparatively simple methodology. In Section 2 the randomization-derived
mixed model, from which the described methodology follows, is introduced.
The theoretical background of the derived analysis is presented in Section
3. In Section 4 some simplifications of the proposed analytical methods are
suggested. In Section 5 attention is drawn to some modifications resulting
from the use of estimated stratum variances. Some examples illustrating
application of the derived analytical methods, ANOVA in particular, are
presented in Section 6. Some concluding remarks concerning the advantage
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of the proposed new approach are given in Section 7. Finally, five appendices
contain helpful derivations of the applied methods.

2. A randomization-derived model

Suppose that v crop varieties (or other treatments) are compared in an
experiment conducted in a proper block design, composed of b blocks, each
of k experimental units (plots). Furthermore, assume that the blocks are
randomized and, independently of this randomization, the plots within each
block are randomized, before being assigned to the varieties according to
the chosen design (as described, for example, in Caliński and Kageyama,
2000, Section 3.1.1, following Nelder, 1954, 1965).

Let the design be described by a v× b incidence matrix N = [nij ], with
rows corresponding to the varieties (treatments) and columns corresponding
to the blocks, the element nij of this matrix being positive if the variety i
(= 1, 2, ..., v) is to be allocated in the block j (= 1, 2, ..., b), nij ­ 1 times,
and being 0 otherwise.

Let the data concerning the yield (or other variable trait) observed on
the plots of the experiment be written in the form of an n×1 vector y, n =
bk, ordered as y = [y′1,y′2, ...,y′b]

′, where yj is the vector of yields observed
for the varieties allocated in the jth block, j = 1, 2, ..., b. Furthermore, let
the corresponding unit (plot) error and technical error variables be written
in the form of n × 1 vectors η and e respectively. Finally, let the variety
(treatment) fixed effects (i.e., their expectations or true means) be written
as τ = [τ1, τ2, ..., τv]′ and the block random effects as β = [β1, β2, ..., βb]′.

The model derived from the adopted randomization procedures can then
be written in the form

y =X1τ +X2β + η + e, (1)

with the associated design matrices X1 for treatments and X2 for blocks.
This allows the expectation vector and the covariance (dispersion) matrix
of y to be written as

E(y) =X1τ , (2)
D(y) ≡ V = σ21φ1 + σ22φ2 + σ23φ3, (3)

where the matrices

φ1 = In − k−1X2X ′2, φ2 = k−1X2X ′2 − n−11n1′n and φ3 = n
−11n1′n
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are the pairwise orthogonal projectors on relevant strata (intra-block, inter-
block and total experimental area, respectively), i.e., are symmetric, idem-
potent and pairwise orthogonal, summing to the identity matrix, and where
σ21, σ

2
2 and σ23 are the corresponding stratum variances (as in Caliński and

Kageyama, 2000, Definition 3.5.1).

3. Theoretical background of the analysis

When analyzing data from an experiment modelled by (1), a variety trial
in particular, attention is usually paid to estimates and tests concerning
the parameters τ = [τ1, τ2, ..., τv]′, or rather the variety (treatment) main
effects, defined as

(Iv − n−11vr′)τ = [τ1 − τ·, τ2 − τ·, ..., τv − τ·]′, where τ· = n−1
v∑
i=1

(riτi),

and also their linear functions. In this regard, first note (referring, for in-
stance, to Caliński and Kageyama, 2000, Section A.2) that, taking the or-
thogonal (V −1-orthogonal) projector

PX1(V −1) =X1(X
′
1V
−1X1)−1X ′1V

−1, (4)

one can decompose the vector y in (1) into two uncorrelated parts, as

y = PX1(V −1)y + (In − PX1(V −1))y. (5)

The role of the two parts on the right in (5) will be seen in the following
considerations.

Under the model (1), with properties (2) and (3), the first term of the
partition in (5) provides the best linear unbiased estimator (BLUE) ofX1τ
in (2), which can be expressed as

X̂1τ = PX1(V −1)y, (6)

as follows from Rao (1974, Theorem 3.2). With regard to the second term in
(5), it can be seen as the residual vector, giving the residual sum of squares
in the form

||(In − PX1(V −1))y||
2
V −1 = y

′(In − PX1(V −1))
′V −1(In − PX1(V −1))y

= y′[V −1 − V −1X1(X ′1V −1X1)−1X ′1V −1]y
= y′V −1(In − PX1(V −1))y, (7)
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with the residual degrees of freedom (d.f.) given by

rank(V :X1)− rank(X1) = n− v;

see Rao (1974, Theorem 3.4) and formula (3.17) there. For convenience
note that, when using the projector (4) in the considered applications, the
variance σ23 in the involved matrix V , defined in (3), can be replaced by 1.
This is evident from formula (3.8.15) in Caliński and Kageyama (2000).

It will also be interesting to note that, as τ = r−δX ′1X1τ , the BLUE
of τ can be obtained, on account of the formulae (4) and (6), as

τ̂ = (X ′1V
−1X1)−1X ′1V

−1y. (8)

Its covariance (dispersion) matrix then takes the form

D(τ̂ ) = (X ′1V
−1X1)−1X ′1V

−1D(y)V −1X1(X ′1V
−1X1)−1

= (X ′1V
−1X1)−1. (9)

The results (7)−(9) can be checked by referring to Theorem 3.1 in Rao
(1971). For this one has to show that the equality[
V X1
X ′1 O

]−
=

[
V −1(In − PX1(V −1)) V −1X1(X ′1V

−1X1)−1

(X ′1V
−1X1)−1X ′1V

−1 −(X ′1V −1X1)−1

]
(10)

holds. In fact, it can easily be shown that the matrix on the right in (10) is
a generalized inverse (g-inverse) of that on the left.

With these results one can now proceed to the concept of testing the
hypothesis

H0 : (Iv − n−11vr′)τ = 0. (11)

First one has to check whether the hypothesis (11) is consistent. Evidently,
it is such algebraically. For its statistical consistency note that the BLUE
of τ ∗ = (Iv − n−11vr′)τ is τ̂ ∗ = (Iv − n−11vr′)τ̂ , with τ̂ given in (8). Its
dispersion matrix is, from (9), of the form

D(τ̂ ∗) = (Iv − n−11vr′)(X ′1V −1X1)−1(Iv − n−1r1′v), (12)

with rank v − 1. It appears that as a g-inverse of D(τ̂ ∗) one can take the
matrix X ′1V

−1X1. Hence,

D(τ̂ ∗)[D(τ̂ ∗)]−τ̂ ∗ = τ̂ ∗, (13)



96 Caliński T., Siatkowski I.

as can be shown (see Appendix 1). The equality (13) indicates that H0 in
(11) is consistent. See formula (3.2.8) in Rao (1971).

Assuming now that y ∼ Nn(X1τ ,V ) and, hence, that
τ̂ ∗ ∼ Nv[τ ∗,D(τ̂ ∗)], where τ ∗ = (Iv − n−11vr′)τ and D(τ̂ ∗) is as in (12),
one can test the hypothesis H0 using the statistic

F =
n− v
v − 1

SSV
SSR
=
n− v
v − 1

τ̂ ′∗X
′
1V
−1X1τ̂ ∗

y′V −1(In − PX1(V −1))y
, (14)

as follows from Theorem 3.2 in Rao (1971). Note, however, that the sums
of squares in (14) can equivalently be written (see Appendix 2) as

SSV = y′V −1X1(Iv − 1vr′/n)(X ′1V −1X1)−1(Iv − r1′v/n)X ′1V −1y,(15)

SSR = y′[V −1 − V −1X1(X ′1V −1X1)−1X ′1V −1]y. (16)

Referring to Theorems 9.2.1 and 9.4.1 in Rao and Mitra (1971), one can
show that the quadratic forms (15) and (16) have, independently, the fol-
lowing χ2 distributions:

SSV ∼ χ2(v − 1, δ), with δ = τ ′∗X
′
1V
−1X1τ ∗, (17)

SSR ∼ χ2(n− v, 0). (18)

Evidently, the distribution in (17) is central if the hypothesis H0 is true,
whereas that in (18) is central whether H0 is true or not. These results
imply that the statistic (14) has a noncentral F distribution with v− 1 and
n − v d.f., and with the noncentrality parameter δ, as in (17). Thus, the
distribution is central if H0 is true.

It should be noted, however, that the above estimation and hypothesis
testing procedures are applicable if the stratum variances σ21, σ22 and σ23
are known. In practice they are usually unknown and have to be estimated.
Hence, the problem is how to estimate them. To answer this question, it
will be helpful to return to formula (7), writing it (following Caliński and
Kageyama, 2000, pp. 143–144) as

||(In − PX1(V −1))y||
2
V −1
=

= y′(In − PX1(V −1))
′V −1(In − PX1(V −1))y

= σ−21 y
′(In − PX1(V −1))

′φ1(In − PX1(V −1))y
+σ−22 y

′(In − PX1(V −1))
′φ2(In − PX1(V −1))y,

(19)
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which follows from the form of D(y) ≡ V , given in (3). This form also
implies, because of φ3 = n−11n1′n = n−11n1′vX

′
1, that

φ3(In − PX1(V −1)) = σ
2
3φ3V

−1(In − PX1(V −1)) = O.

Now, from (19), one can write

E{||(In − PX1(V −1))y||
2
V −1} = σ

−2
1 E{||φ1(In − PX1(V −1))y||

2}

+ σ−22 E{||φ2(In − PX1(V −1))y||
2}

= d′1 + d
′
2 = n− v, (20)

because, as can be shown (see again Caliński and Kageyama, 2000, p. 144),

E{||φ1(In − PX1(V −1))y||
2} = σ21d′1, (21)

where d′1 = tr[φ1(In − PX1(V −1))],

E{||φ2(In − PX1(V −1))y||
2} = σ22d′2, (22)

where d′2 = tr[φ2(In − PX1(V −1))].

With these results it is natural to consider as estimators of σ21 and σ22
the solutions of the equations

||φ1(In − PX1(V −1))y||
2 = σ21d

′
1, (23)

||φ2(In − PX1(V −1))y||
2 = σ22d

′
2, (24)

respectively (as suggested by Nelder, 1968, Section 3).
The above approach, which can be considered as a generalized alterna-

tive to that introduced by Yates (1939, 1940), is also advocated by Houtman
and Speed (1983, Sections 4.5 and 5.1). For completeness, it will be helpful
to note that the equations (23) and (24), with the formulae (21) and (22),
imply on account of (20) the equality

σ̂−21 ||φ1(In − PX(V −1))y||2 + σ̂
−2
2 ||φ2(In − PX(V −1))y||2 =

= d′1 + d
′
2 = n− v.

(25)

Now, returning to (16), note that, after some algebraic transformations,
it can be written equivalently as

SSR = y′[In − V −1X1(X ′1V −1X1)−1X ′1](σ−21 φ1 + σ
−2
2 φ2)[In

− X1(X ′1V −1X1)−1X ′1V −1]y
= σ−21 ||φ1(In − PX(V −1))y||

2 + σ−22 ||φ2(In − PX(V −1))y||
2. (26)
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A comparison of formulae (25) and (26) shows that if the stratum variances
σ21 and σ22 are estimated by solutions of the equations (23) and (24), the
result

ŜSR = σ̂−21 ||φ1(In − PX(V −1))y||
2

+σ̂−22 ||φ2(In − PX(V −1))y||
2 = n− v (27)

then follows. On account of (27) the statistic F in (14) is reduced to the
form

F̂ =
n− v
v − 1

ŜSV
n− v

=
ŜSV
v − 1

, (28)

where ŜSV is as in (15) but with σ21 and σ22 there replaced by their estimates.
However, the χ2 distribution of SSV , indicated in (17), is valid only if

the true stratum variances are used in the applied matrix V −1 = σ−21 φ1 +
σ−22 φ2+σ

−2
3 φ3, resulting from (3). As to the component σ−23 φ3, it does not

in fact play any role in the application of the formula (15) given for SSV (as
will be shown in the next section). Thus, when using in V −1 the estimates
σ̂−21 and σ̂−22 obtained from (23) and (24) respectively, the χ2 distribution
in (17) can be regarded as approximate only.

4. Some simplifying reformulations

As was remarked in the previous section, the component σ−23 φ3 in the for-
mula V −1 = σ−21 φ1+σ

−2
2 φ2+σ

−2
3 φ3 seems to play no role in the formulae

applicable in the considered analysis of experimental data. This suggests
that some reformulation in the methodology presented in Section 3 would
simplify the analysis without changing its results.

A desirable simplification can be obtained when the matrix V in the
form given in (3) is replaced by the matrix V ∗ = σ21φ1 + σ

2
2(In − φ1),

i.e., when replacing the inverted matrix V −1 by V −1∗ = σ
−2
1 φ1 + σ

−2
2 (In −

φ1). The relations between V and V ∗, and their inverses, are given by the
equalities

V = V ∗ + (σ23 − σ22)n−11n1′n; V −1 = V −1∗ + (σ−23 − σ
−2
2 )n

−11n1′n.(29)

From (29) it follows (see Appendix 3) that

(X ′1V
−1X1)−1 = (X ′1V

−1
∗ X1)

−1 + (σ23 − σ22)n−11v1′v. (30)
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Applying the equality (30), it can be shown (see again Appendix 3) that
the BLUE of τ ∗ = (Iv − n−11vr′)τ following from (8), i.e.,

τ̂ ∗ = (Iv − n−11vr′)τ̂ = (Iv − n−11vr′)(X ′1V −1X1)−1X ′1V −1y,

can equivalently be written as

τ̂ ∗ = (Iv − n−11vr′)(X ′1V −1∗ X1)−1X ′1V −1∗ y∗, (31)

where y∗ = (In−n−11n1′n)y, with E(y∗) = (In−n−11n1′n)X1τ =X1(Iv−
n−11vr′)τ = X1τ ∗ and D(y∗) = (In − n−11n1′n)V ∗(In − n−11n1′n). The
dispersion matrix of τ̂ ∗, given in (12), can on account of (30) be presented
as

D(τ̂ ∗) = (Iv − n−11vr′)(X ′1V −1∗ X1)−1(Iv − n−1r1′v). (32)

Furthermore, the formulae for SSV and SSR, given in (15) and (16), can
equivalently be written (see Appendices 3 and 4) as

SSV = τ̂ ′∗X
′
1V
−1
∗ X1τ̂ ∗ = y

′
∗V
−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ y∗, (33)

SSR = y′∗[V
−1
∗ − V −1∗ X1(X ′1V −1∗ X1)−1X ′1V −1∗ ]y∗, (34)

with y∗ defined as in (31). The formulae (33) and (34) provide the sum

SSV + SSR = y′∗V
−1
∗ y∗ = SST (say),

which can be called the total sum of squares. Referring again to Rao and
Mitra (1971, Theorem 9.2.1), it can be shown that

SST ∼ χ2(n− 1, δ), with δ = τ ′∗X
′
1V
−1
∗ X1τ ∗. (35)

In fact, as can easily be shown, the form of δ in (35) is equivalent to that
given in (17). These results can be summarized in the form of an analysis
of variance (ANOVA) table, as presented in Table 1.

Table 1. Analysis of variance for an experiment in a proper block design

Source of variation Degrees of freedom Sum of squares Expected mean square

Treatments v − 1 SSV 1 + δ/(v − 1)
Residuals n− v SSR 1

Total n− 1 SST —
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The presentation of ANOVA results in Table 1 corresponds well with
the formula (14) for the relevant F statistic.

Suppose now that after rejecting the hypothesis (11) one is interested
in testing a hypothesis H0,L : U ′Lτ = 0, where U

′
L1v = 0. Note that this

hypothesis, concerning a set of contrasts among treatment parameters, can
also be written, under U ′L1v = 0, as

H0,L : U ′Lτ ∗ = 0, where τ ∗ = (Iv − n−11vr′)τ , (36)

which shows that H0,L is implied by H0 given in (11). To find the relevant
sum of squares, first note that the BLUE of U ′Lτ ∗ is, on account of (31), of
the form

U ′Lτ̂ ∗ = U
′
Lτ̂ = U

′
L(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ y∗. (37)

Its dispersion matrix is, on account of (32), of the form

D(U ′Lτ̂ ∗) = U
′
L(X

′
1V
−1
∗ X1)

−1UL. (38)

Note that, applying Lemma 2.2.6(c) from Rao and Mitra (1971), one can
write

U ′L(X
′
1V
−1
∗ X1)

−1UL[U ′L(X
′
1V
−1
∗ X1)

−1UL]−U ′L = U
′
L, (39)

which, with (38), gives the equality D(U ′Lτ̂ ∗)[D(U
′
Lτ̂ ∗)]

−U ′Lτ̂ ∗ = U
′
Lτ̂ ∗.

This shows that the hypothesis given in (36) is consistent, both algebraically
and statistically. The relevant sum of squares can then be obtained (follow-
ing Theorem 3.2 of Rao, 1971) in the form

SS(UL) = τ̂ ′∗UL[D(U
′
Lτ̂ ∗)]

−U ′Lτ̂ ∗

= τ̂ ′∗UL[U
′
L(X

′
1V
−1
∗ X1)

−1UL]−U ′Lτ̂ ∗, (40)

with the d.f. equal to rank(UL), i.e., equal to rank[D(U ′Lτ̂ ∗)]. Note that
U ′Lτ̂ ∗ is given in (37), and [U ′L(X

′
1V
−1
∗ X1)

−1UL]− follows from (38).
Also note, referring to Lemma 2.2.6(d) in Rao and Mitra (1971), that
UL[U ′L(X

′
1V
−1
∗ X1)

−1UL]−U ′L is invariant for any choice of the involved
g-inverse and is of rank equal to the rank of UL. Of course, if the columns
of UL are linearly independent,

[U ′L(X
′
1V
−1
∗ X1)

−1UL]− becomes [U ′L(X
′
1V
−1
∗ X1)

−1UL]−1.
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Now, following the assumption y ∼ Nn(X1τ ,V ), adopted in Section 3,
one can also assume that U ′Lτ̂ ∗ ∼ N [U ′Lτ ∗,D(U ′Lτ̂ ∗)]. With this, applying
Theorem 9.2.3 from Rao and Mitra (1971), it can be shown, using the
equality (39), that

SS(UL) ∼ χ2[rank(UL), δL], with δL = τ ′∗UL[D(U
′
Lτ̂ ∗)]

−U ′Lτ ∗,

this distribution being central, i.e., with δL = 0, if H0,L is true.
If there are several sets of contrasts for which individual hypothesis

testing is of interest, then for each of them the sum of squares presented
in (40) can be used accordingly. In some situations a relevant partition of
the treatment (variety) sum of squares, as given in (33), may be of interest
in the application of ANOVA. The question then arises, of what kind of
conditions the chosen sets of contrasts have to satisfy. It can be shown (see
Appendix 5) that for two such sets of contrasts, e.g. U ′Aτ ∗ and U

′
Bτ ∗, the

equality

SS(UA) + SS(UB) = SSV (41)

holds, for any vector τ̂ ∗ = (Iv − n−11vr′)τ̂ , if and only if

(X ′1V
−1
∗ X1)

−1UA[U ′A(X
′
1V
−1
∗ X1)

−1UA]−U ′A
+ (X ′1V

−1
∗ X1)

−1UB[U ′B(X
′
1V
−1
∗ X1)

−1UB]−U ′B
= Iv − n−11vr′. (42)

This, in turn, implies that

U ′B(X
′
1V
−1
∗ X1)

−1UA = O. (43)

These results can be extended for any number of considered sets of
contrasts used in a partition of the type (41). The condition (43) can then
be written as

U ′L(X
′
1V
−1
∗ X1)

−1UL∗ = O for L 6= L∗. (44)

It may be interesting to note that for some classes of designs this condition
reduces to U ′LUL∗ = O. This is true, in particular, for any balanced incom-
plete block (BIB) design (see, for example, Definition 2.4.2 in Caliński and
Kageyama, 2000).
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5. Application with estimated stratum variances

The hypothesis testing procedures presented in Section 4 are fully applica-
ble if the stratum variances σ21 and σ22 are known. As already mentioned in
Section 3, in practical applications these variances are usually unknown and
have to be estimated. This can be done by solving the equations (23) and
(24). However, with these estimates the residual sum of squares SSR, pre-
sented in (16) and equivalently in (34), is reduced to n−v, the corresponding
d.f., as shown in formula (27). This leads to corresponding reduction of the
F statistic (14) to that presented in (28). The estimated treatment (variety)
sum of squares appearing there, ŜSV , can, on account of formulae (33), (34)
and their sum, be written as

ŜSV = y′∗V̂
−1
∗ y∗ − (n− v) ≡ ŜST − n+ v. (45)

In the case of known (true) values of σ21 and σ22 the distribution of SST =
y′∗V

−1
∗ y∗ is as given in (35). If the hypothesis H0 given in (11) holds, then

δ = 0 and the distribution is central. However, the indicated distribution
of SST is fully applicable only if the true stratum variances σ21 and σ22
appearing in V −1∗ = σ−21 φ1 + σ

−2
2 (In − φ1) are used. Because now the

matrix V −1∗ is replaced by

V̂
−1
∗ = σ̂

−2
1 φ1 + σ̂

−2
2 (In − φ1), (46)

the estimated total sum of squares ŜST , appearing in (45), does not have
an exact χ2 distribution with n−1 d.f., as shown in (35). That distribution
can, however, be considered as an approximation of the real distribution of
ŜST . This approximation will be the closer the larger is the number n, i.e.,
the size of the experiment.

With this approximation, the estimated mean square M̂SV = ŜSV /(v − 1)
may be treated in a practical application as having (under H0) approxi-
mately the distribution of χ2(v − 1, 0)/(v − 1), as follows from the relation
in (45).

Thus, referring the test statistic (28) to the χ2(v−1, 0)/(v−1) distribu-
tion, one will obtain an approximate test of the hypothesis H0 formulated
in (11). This means that when calculating the relevant P values for testing
H0, or hypotheses implied by H0, one has to consider them as approximate.
The results obtained by Volaufova (2009) seem to suggest that the above
ANOVA type F test approximation will in most cases provide reasonably
accurate P values.
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6. Examples

The methods considered in the previous sections will now be illustrated
using data from three experiments conducted in different proper block de-
signs. The analysis concerning the first of these experiments (Example 1)
illustrates the methods of obtaining the general ANOVA, as presented in
Table 1, and also the partitioned ANOVA, usually of interest for factorial
experiments. The analysis applied to the other two experiments (Examples
2 and 3) is confined to the general ANOVA. All required computations were
performed with the use of R (R Core Team, 2017).

Example 1. Ceranka and Kaczmarek (1998) analyzed data from a plant
breeding field experiment with 28 barley genotypes compared in a block
design based on the incidence matrix

N = [N1 :N2],

where

N1 =



1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0
0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0
0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1



,
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N2 =



0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0
0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0



.

This represents a BIB design with parameters v = 28, r = 9, b = 36, k =
7, λ = 2 (as recorded at No. 76 in Table 8.2 of Caliński and Kageyama,
2003). The design can be presented more transparently as in Table 2.

As follows from the considerations in Sections 8.2 of Caliński and Ka-
geyama (2003), the design used here is a binary proper and equireplicate
design with the parameters given above, and with the efficiency factor ε1 =
λv/(rk) = 8/9 = 0.8889 of multiplicity ρ1 = v − 1 = 27.

In this example the role of the v treatments (genotypes) is played by 28
progenies (three-line hybrids) obtained from the triallel crossing between 7
lines (first group of parental lines, P), 2 testers (second group of parental
lines, Q) and 2 varieties (third group of parental lines, R) of barley. (For
details of the triallel crossing system see Ceranka and Kaczmarek, 1998, and
the references given there.) Thus, the analyzed data can well be considered
as resulting from a factorial experiment with three factors, P, Q and R,
applied at 7, 2 and 2 levels respectively. The labels of the progenies are
ordered lexicographically with respect to the levels of the factors P, Q and
R, in the sense that those labeled 1, 2, 3, 4 correspond to the first level
of P, the first two of them to the first level of Q, and the very first of
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them to the first level of R, etc. As usual, it is assumed here that the
compared progenies were assigned to the experimental plots subject to the
randomization of blocks and plots within the blocks, in accordance with the
rule described in Section 2.

Table 2. The BIB design used in Example 1 (before randomization)

Block Treatments Block Treatments
1 1 2 4 13 20 24 28 2 2 3 5 14 20 21 25
3 1 3 4 7 15 21 22 4 2 4 5 6 16 22 23
5 3 5 8 17 23 24 26 6 4 6 9 18 24 25 27

Block Treatments Block Treatments
7 5 6 7 10 19 25 28 8 1 6 7 8 11 20 26
9 2 7 9 12 21 26 27 10 3 8 10 13 22 27 28
11 4 7 8 9 14 23 28 12 1 5 9 10 11 15 24

Block Treatments Block Treatments
13 1 2 8 10 12 16 25 14 2 3 6 9 11 13 17
15 3 4 10 11 12 14 18 16 4 5 12 13 15 19 26
17 5 7 11 13 14 16 27 18 6 12 14 15 17 20 28

Block Treatments Block Treatments
19 6 8 13 15 16 18 21 20 1 9 14 16 17 19 22
21 2 7 10 15 17 18 23 22 3 7 16 18 19 20 24
23 4 8 11 17 19 21 25 24 5 8 9 12 18 20 22

Block Treatments Block Treatments
25 9 10 13 19 20 21 23 26 6 10 14 21 22 24 26
27 11 15 20 22 23 25 27 28 11 12 16 21 23 24 28
29 7 12 13 17 22 24 25 30 1 13 14 18 23 25 26

Block Treatments Block Treatments
31 2 8 14 15 19 24 27 32 3 9 15 16 25 26 28
33 4 10 16 17 20 26 27 34 1 5 17 18 21 27 28
35 2 11 18 19 22 26 28 36 1 3 6 12 19 23 27
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Table 3. Experimental observations of the grain yield of the barley progenies
analyzed in Example 1

Block label Progeny labels
j (ξ) Observations

4 7 8 9 14 23 281 (11) 63.8 52.1 69.6 44.1 52.3 42.5 52.0
1 5 9 10 11 15 242 (12) 42.1 38.0 46.2 51.3 52.8 54.6 59.3
6 8 13 15 16 18 213 (19) 56.3 67.9 41.1 54.2 62.0 41.3 51.1
7 12 13 17 22 24 254 (29) 52.6 49.3 40.6 47.8 64.5 58.1 56.0
4 10 16 17 20 26 275 (33) 64.5 51.0 63.5 49.2 39.8 68.5 41.2
2 11 18 19 22 26 286 (35) 53.0 52.5 41.2 45.1 64.0 64.3 49.6
1 3 6 12 19 23 277 (36) 41.3 56.2 55.4 50.1 44.2 41.3 44.1
2 3 5 14 20 21 258 ( 2) 53.1 57.1 38.8 47.2 37.3 48.6 57.2
1 2 8 10 12 16 259 (13) 44.2 55.6 69.1 52.2 46.3 63.1 56.2
2 3 6 9 11 13 1710 (14) 55.1 58.2 54.1 41.0 52.2 41.6 48.0
4 5 12 13 15 19 2611 (16) 65.1 37.2 52.1 44.1 53.2 44.2 67.9
3 7 16 18 19 20 2412 (22) 58.2 52.0 63.1 42.5 45.3 41.1 59.2
6 10 14 21 22 24 2613 (26) 55.1 51.0 53.1 48.2 66.1 57.8 68.0

11 15 20 22 23 25 2714 (27) 52.3 56.1 40.1 64.2 42.5 58.1 39.2
1 5 17 18 21 27 2815 (34) 39.2 39.4 46.5 40.0 46.2 37.2 48.1
2 7 9 12 21 26 2716 ( 9) 51.9 49.8 41.3 48.0 47.2 63.5 37.1
3 8 10 13 22 27 2817 (10) 59.5 69.5 52.1 44.3 65.1 44.0 55.2
6 12 14 15 17 20 2818 (18) 56.2 51.3 53.2 55.8 50.1 43.2 54.6
4 8 11 17 19 21 2519 (23) 66.1 69.9 52.8 49.5 46.3 52.1 57.2
1 13 14 18 23 25 2620 (30) 43.8 43.2 54.1 42.5 44.1 56.0 67.1
2 4 5 6 16 22 2321 ( 4) 51.0 62.3 36.7 54.1 60.3 64.2 40.3
3 4 10 11 12 14 1822 (15) 55.2 63.1 48.2 49.5 49.6 51.3 39.2
1 9 14 16 17 19 2223 (20) 39.8 40.6 50.1 59.5 47.1 42.5 61.8
1 2 4 13 20 24 2824 ( 1) 40.9 51.3 63.1 41.7 38.2 55.5 50.2
3 5 8 17 23 24 2625 ( 5) 58.2 41.3 69.2 49.6 44.5 59.2 69.1
5 6 7 10 19 25 2826 ( 7) 38.3 57.2 54.1 52.3 46.8 58.3 54.1
1 6 7 8 11 20 2627 ( 8) 43.1 56.2 55.1 69.4 53.2 42.1 67.7
9 10 13 19 20 21 2328 (25) 46.3 51.1 42.0 43.6 40.1 52.4 43.6
2 8 14 15 19 24 2729 (31) 53.1 69.2 53.4 55.1 46.8 51.3 41.2
3 9 15 16 25 26 2830 (32) 58.0 46.1 56.2 62.7 57.1 68.8 51.9
5 8 9 12 18 20 2231 (24) 37.7 68.7 45.4 49.2 41.3 42.4 63.6

11 12 16 21 23 24 2832 (28) 51.9 48.3 62.5 52.3 42.9 57.1 50.2
1 3 4 7 15 21 2233 ( 3) 43.6 58.1 65.2 54.1 57.2 51.3 66.6
5 7 11 13 14 16 2734 (17) 39.1 54.5 53.6 44.5 53.2 63.6 41.4
4 6 9 18 24 25 2735 ( 6) 65.2 57.8 46.2 43.2 59.1 57.2 40.8
2 7 10 15 17 18 2336 (21) 54.1 41.8 50.0 54.2 48.3 40.6 41.5
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The plant trait observed on the experimental units (plots), and analyzed
for this example, is the grain yield. The individual plot observations are
given in Table 3. Its rows are ordered according to the actual order of
blocks (labeled j) in the field layout of the experiment, ξ denoting the
original label of the block before randomization. The progenies are ordered
as in the columns of the incidence matrix N given above.

When analyzing these data, the researcher (a plant breeder) would be
interested in estimating and testing several sets of treatment parametric
functions, which can be defined as follows (according to the approach of
Ceranka and Kaczmarek, 1995, 1998):

gP = [gP1 , g
P
2 , ..., g

P
7 ]
′ =

[(
I7 −

1
7
171′7

)
⊗1
2
1′2 ⊗

1
2
1′2

]
τ ∗ = U ′Pτ ∗,

gQ = [gQ1 , g
Q
2 ]
′ =

[
1
7
1′7 ⊗

(
I2 −

1
2
121′2

)
⊗1
2
1′2

]
τ ∗ = U ′Qτ ∗,

gR = [gR1 , g
R
2 ]
′ =

[
1
7
1′7 ⊗

1
2
1′2 ⊗

(
I2 −

1
2
121′2

)]
τ ∗ = U ′Rτ ∗,

sPQ = [sPQ
11 , s

PQ
12 , ..., s

PQ
72 ]

′

=
[(
I7 −

1
7
171′7

)
⊗
(
I2 −

1
2
121′2

)
⊗1
2
1′2

]
τ ∗ = U ′PQτ ∗,

sPR = [sPR
11 , s

PR
12 , ..., s

PR
72 ]
′

=
[(
I7 −

1
7
171′7

)
⊗1
2
1′2 ⊗

(
I2 −

1
2
121′2

)]
τ ∗ = U ′PRτ ∗,

sQR = [sQR
11 , s

QR
12 , s

QR
21 , s

QR
22 ]

′

=
[
1
7
1′7 ⊗

(
I2 −

1
2
121′2

)
⊗
(
I2 −

1
2
121′2

)]
τ ∗ = U ′QRτ ∗,

sPQR = [sPQR
111 , s

PQR
112 , ..., s

PQR
722 ]

′

=
[(
I7 −

1
7
171′7

)
⊗
(
I2 −

1
2
121′2

)
⊗
(
I2 −

1
2
121′2

)]
τ ∗ = U ′PQRτ ∗,

where g stands for general effects and s for specific effects of the relevant
parents, their pairs or triplets. Note that all of these functions are contrasts
of treatment parameters, related to a complete set of basic contrasts of the
design (see Definition 3.4.1 in Caliński and Kageyama, 2000). For any set
of these contrasts, say UL, the BLUE is obtainable according to formula
(37), and the relevant SS(UL) follows from (40). It may be helpful to note
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that for this example (for a BIB design) these formulae can be simplified,
due to the relation

U ′L(X
′
1V
−1
∗ X1)

−1 = [ε1σ−21 + (1− ε1)σ
−2
2 ]
−1r−1U ′L. (47)

It may also be interesting to note that when considering all seven sets
of contrasts jointly, i.e., the set U ′τ ∗, where

U = [UP : UQ : UR : UPQ : UPR : UQR : UPQR],

the equality

SS(U) = SS(UP) + SS(UQ) + SS(UR) + SS(UPQ)

+ SS(UPR) + SS(UQR) + SS(UPQR)

holds. This can easily be checked, noting that (for any experiment in a BIB
design) U ′LUL∗ = 0 for L 6= L∗ (with L, L∗ for P, Q, R, PQ, PR, QR and
PQR), and hence,

U(U ′U)−U ′ = UP(U
′
PUP)

−U ′P +UQ(U
′
QUQ)

−U ′Q +UR(U
′
RUR)

−U ′R

+ UPQ(U
′
PQUPQ)

−U ′PQ +UPR(U
′
PRUPR)

−U ′PR

+ UQR(U
′
QRUQR)

−U ′QR +UPQR(U
′
PQRUPQR)

−U ′PQR

= I28 − 28−11281′28. (48)

These comments correspond to the results presented in Section 4, partic-
ularly those in formulae (40)–(44), reduced considerably for BIB designs.
This can be seen when comparing the formula (48) above with that in (42).
It may also be helpful to note, referring to (47) and (48), that formula (40)
can be reduced to SS(UL) = [ε1σ

−2
1 + (1− ε1)σ

−2
2 ]rτ̂

′
∗UL(U

′
LUL)

−U ′Lτ̂ ∗,
and that the equality

SS(U) = [ε1σ−21 + (1− ε1)σ
−2
2 ]rτ̂

′
∗(Iv − v−11v1′v)τ̂ ∗

= [ε1σ−21 + (1− ε1)σ
−2
2 ]rτ̂

′
∗τ̂ ∗ = SSV (49)

holds for the present example, as it does for any experiment in a BIB design.
Now it will be possible to present the relevant ANOVA, in its general

form (as in Table 1) and in a more detailed form, corresponding to the
sets of contrasts presented above. Before proceeding to this, however, one
has to estimate the unavailable stratum variances σ21 and σ22 appearing in
the matrix V −1∗ = σ−21 φ1 + σ

−2
2 (In − φ1). Applying a relevant iterative
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procedure (using R) to solve the equations (23) and (24), the estimates
σ̂21 = 1.86957 and σ̂22 = 12.43493 were obtained after 6 iteration cycles.
With these estimates, the following results concerning the ANOVA were
obtained.

Table 4. Analysis of variance for an experiment in a proper block (here BIB)
design – Example 1

Source of variation Degrees of freedom Sum of squares Mean square

Treatments 27 8612.792 318.992

Residuals 224 224 1

Total 251 8836.792 —

Table 5. Analysis of variance for the sets of contrasts considered in Example 1
Source d.f. Sum of squares Mean square F̂ P value

Treatments 27 8612.792 318.992 318.992 < 0.0001
P 6 1545.604 257.601 257.601 < 0.0001
Q 1 133.608 133.608 133.608 < 0.0001
R 1 1972.722 1972.722 1972.722 < 0.0001
PQ 6 3259.716 543.286 543.286 < 0.0001
PR 6 1570.013 261.669 261.669 < 0.0001
QR 1 28.393 28.393 28.393 < 0.0001
PQR 6 102.736 17.123 17.123 < 0.0001

Residuals 224 224 1
Total 251 8836.792

The results presented in Tables 4 and 5 were obtained with the use of
the empirical estimates (i.e., based on σ̂21 and σ̂22)

τ̃ = [42.188, 54.200, 57.350, 64.287, 38.515, 55.508, 51.602,
68.602, 44.356, 50.836, 52.198, 49.587, 42.352, 52.153,
54.949, 62.326, 48.743, 41.716, 44.927, 40.296, 50.263,
64.623, 42.664, 57.190, 56.595, 67.010, 40.722, 51.653]′

and

τ̃ ∗ = [−9.505, 2.507, 5.656, 12.594, −13.178, 3.814, −0.091,
16.909, −7.337, −0.858, 0.505 −2.107, −9.341, 0.460,
3.256, 10.632, −2.950, −9.977, −6.767, −11.398, −1.430,
12.929, −9.030, 5.497, 4.902, 15.317, −10.971, −0.040]′,
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the former obtainable by formula (8), the latter either from the relation
τ̃ ∗ = (Iv − n−11vr′)τ̃ , or directly by formula (31).

The sums of squares in Table 4 were obtained by formulae (33) and (34),
using the simplification for SSV shown in (49). Not surprisingly, when V −1∗
in (34) is replaced by V̂

−1
∗ as given in (46), the residual sum of squares

SSR is reduced to its d.f., as follows from formula (27). The sums of squares
for the chosen sets of contrasts, presented in Table 5, were obtained in
accordance with formula (40), which for this example (of a BIB design) is
simplified with the use of the relation given in (47).

The indicated simplifications are applicable to any BIB design and, more
generally, to any block design belonging to the class of efficiency-balanced
(EB) designs, in the terminology of Williams (1975) and Puri and Nigam
(1975a, 1975b), i.e., satisfying the condition

C1 =X ′1φ1X1 = ε1(r
δ − n−1rr′).

where ε1 is the relevant efficiency factor. For more on this, see for example
Caliński and Kageyama (2000, Section 4.4).

Example 2. Ceranka (1975, 1983) analyzed data from a plant breeding field
experiment with 25 breeding strains and 2 standard varieties of sunflower
compared in a block design based on the incidence matrix N∗ of the type

N∗ =
[
N
1s1′b

]
,

with

N = [N1 :N2 :N3 :N4 :N5 :N6],

where

N ′1 =


1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 ,

N ′2 =


1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

 ,



On a new approach to the analysis of experiments in proper block designs 111

N ′3 =


1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

 ,

N ′4 =


1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

 ,

N ′5 =


1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

 ,

N ′6 =


1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

 ,
and with

1s1′b = [121
′
5 : 121

′
5 : 121

′
5 : 121

′
5 : 121

′
5 : 121

′
5].

It can be seen that the 25× 30 incidence matrix N of the basic design
represents a BIB design, with v = 25 treatments (here breeding strains)
replicated r = 6 times, every two of the treatments concurring in exactly
λ = 1 block and each of the b = 30 blocks being of size k = 5.

In addition, it may be noted that the 2×30 incidence matrix 1s1′b of the
supplementary treatments represents a randomized complete block design,
with s = 2 treatments (here standard varieties) replicated b = 30 times.

Thus, on account of Definition 4.4.1 in Caliński and Kageyama (2000),
the resulting design given by the 27×30 incidence matrixN∗ (see above) is
a (ρ∗0; ρ∗1; 0)-EB design with parameters v∗ = v + s = 27, b∗ = b = 30, r∗ =
[r1′v, b1

′
s]
′ = [61′25, 301

′
2]
′, k∗ = k + s = 7, and the efficiency factors ε∗0 = 1,

ε∗1 = 1−(r−λ)/[r(k+s)] = 1−5/42 = 37/42 (= 0.880952), of multiplicities
ρ∗0 = s = 2, ρ

∗
1 = v − 1 = 24.
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To complete the description of the design and its use in the analyzed
experiment, it will be assumed that the randomization of blocks and of
plots within the blocks has been implemented according to the procedure
described in Section 2. This assumption means that the order in which the
columns of the matrixN∗ are assigned to the real blocks of plots, formed in
the experimental field, has been chosen at random, and that for each block
the order in which the treatments indicated by 1’s in the assigned column
of N∗ are then assigned to the plots of the block has also been chosen at
random.

The plant trait observed on the experimental units (plots), and taken
here for analysis, is the average diameter of the capitulum (head) in cen-
timeters. The individual plot observations are presented and analyzed in
Caliński and Kageyama (2003, Example 7.3.22). The analysis applied there
is based on the classic approach of first performing the intra-block and
the inter-block analyses, and then combining their results. Here the direct
ANOVA results, obtained by the methods described above (Sections 3 and
4), are given in Table 6.

Table 6. Analysis of variance for an experiment in a proper block design –
Example 2

Source of Degrees of Sum of Mean F̂ P value
variation freedom squares square

Treatments 26 87.86414 3.37939 3.37939 < 0.0001

Residuals 183 183 1 — —
Total 209 270.8641 — — —

Similarly as in Example 1, the results presented in Table 6 were ob-
tained using the formulae (33) and (34), but with the stratum variances σ21
and σ22 (appearing in the matrix V∗) replaced by their estimates, σ̂21 and
σ̂22, obtained by solution of the equations (23) and (24). These estimates,
σ̂21 = 0.91893 and σ̂22 = 36.61797 (obtained here, with the use of R, after
5 iteration cycles) coincide exactly with those obtained in the analysis pre-
sented in Caliński and Kageyama (2003, p.121). Also the empirical estimate
of τ obtained here,

τ̃ = [15.701, 15.800, 15.053, 15.695, 16.388,
15.571, 15.449, 15.730, 16.003, 15.164,
16.301, 15.458, 15.531, 15.751, 15.700,
15.836, 15.314, 16.577, 15.582, 17.492,
14.749, 15.309, 14.633, 14.555, 14.408,
14.690, 15.780]′,
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is exactly the same as that given there. From this, or directly with the use
of (31),

τ̃ ∗ = [0.212, 0.311, −0.435, 0.206, 0.900,
0.082, −0.039, 0.241, 0.515, −0.325,
0.812, −0.030, 0.042, 0.262, 0.212,
0.347, −0.174, 1.088, 0.093, 2.003,
−0.740, −0.179, −0.855, −0.933, −1.081,
−0.799, 0.291]′,

which by formula (33) gives ŜSV = τ̃
′
∗X
′
1V̂
−1
∗ X1τ̃ ∗.

Of course, with the replacement of σ21 and σ22 by their estimates, the
sums of squares indicated in Table 6 are such that the test statistic (14) is
reduced to (28). Its exact distribution under H0 is not known, but it can
be approximated by the distribution of χ2(v − 1)/(v − 1), as indicated in
Section 5. From this, the corresponding P value is obtained, as given in the
last column of the table.

Comparing the results summarized in Table 6 with those presented in
Example 7.3.22 of Caliński and Kageyama (2003), it may be noted that
in the latter only the intra-block and inter-block ANOVA tables are given.
This shows the advantage of the present approach.

Example 3. Ceranka, Mejza and Wiśniewski (1979) analyzed data from
a plant breeding field experiment with 12 sunflower strains compared in a
block design based on the incidence matrix

N =



1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
2 2 2 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0
0 0 0 2 2 2 0 0 0 0 0 0 2 2 2 0 0 0
0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 2 2 2


.

Evidently, this matrix represents a nonbinary, proper, nonequireplicate and
disconnected block design, with v1 = 9 treatments (here new strains) repli-
cated r1 = 2 times and v2 = 3 treatments (standard strains) replicated
r2 = 12 times, each of the b = 18 blocks being of size k = 3. It is assumed
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that the randomization of blocks and of plots within the blocks has been
implemented according to the procedure described in Section 2. The plant
trait observed on the experimental units was again (as in Example 2) the
average head diameter in centimeters. The individual plot observations are
as follows (ordered as in N):

Block Strain Observ. Block Strain Observ. Block Strain Observ.
1 1 12.3 7 7 18.4 13 4 18.5
1 10 14.5 7 12 15.5 13 11 18.8
1 10 15.0 7 12 15.8 13 11 18.7
2 2 14.5 8 8 12.5 14 5 13.0
2 10 15.0 8 12 16.0 14 11 19.2
2 10 14.8 8 12 16.1 14 11 19.0
3 3 16.4 9 9 19.5 15 6 19.0
3 10 15.1 9 12 15.8 15 11 18.0
3 10 15.2 9 12 16.0 15 11 18.3
4 4 18.4 10 1 12.0 16 7 19.5
4 11 18.8 10 10 15.1 16 12 14.9
4 11 18.5 10 10 15.3 16 12 15.2
5 5 14.5 11 2 13.5 17 8 12.0
5 11 18.8 11 10 14.8 17 12 15.0
5 11 18.7 11 10 15.0 17 12 15.5
6 6 19.6 12 3 17.4 18 9 19.0
6 11 19.0 12 10 14.5 18 12 15.6
6 11 18.9 12 10 14.9 18 12 15.9

Because the design of this experiment does not belong to any specified class
of block designs, it may be interesting to see its layout. This is presented in
Table 7.

Table 7. The proper block design used in Example 3 (before randomization)

Block Treatments Block Treatments Block Treatments
1 1 10 10 2 2 10 10 3 3 10 10
4 4 11 11 5 5 11 11 6 6 11 11
7 7 12 12 8 8 12 12 9 9 12 12

Block Treatments Block Treatments Block Treatments
10 1 10 10 11 2 10 10 12 3 10 10
13 4 11 11 14 5 11 11 15 6 11 11
16 7 12 12 17 8 12 12 18 9 12 12

The data from the experiment considered here were analyzed in Caliński
and Kageyama (2000, Example 3.8.1) following the classic approach, where
intra-block and inter-block analyses are first performed, and then the results
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are combined. Here, as in the previous two examples, a direct analysis is
of interest. The results of the direct ANOVA obtained by the methods
described in Sections 3 and 4 are presented in Table 8.

Table 8. Analysis of variance for an experiment in a proper block design –
Example 3

Source of Degrees of Sum of Mean F̂ P value
variation freedom squares square

Treatments 11 1440.293 130.9358 130.9358 < 0.0001

Residuals 42 42 1 — —
Total 53 1482.293 — — —

Again, the results given in Table 8 were obtained using formulae (33) and
(34), but with the stratum variances σ21 and σ22 replaced by their estimates
σ̂21 and σ̂22, obtainable as in the previous examples. Here they were obtained
(at the 5th iteration cycle) as σ̂21 = 0.14878 and σ̂22 = 0.19454, which
coincide with those obtained in Caliński and Kageyama (2000, p. 174).

Finally, as in the previous examples, in drawing inferences from the
ANOVA results (Table 8) the empirical estimates of the parameter vectors
τ and τ ∗ = (Iv − n−11vr′)τ are of interest. These are obtained here as

τ̃ = [12.143, 14.006, 16.901, 18.454, 13.716, 19.330,
18.994, 12.243, 19.213, 14.933, 18.725, 15.608]′

and

τ̃ ∗ = [−4.176, −2.313, 0.583, 2.136, −2.603, 3.011,
2.675, −4.076, 2.895, −1.385, 2.406, −0.710]′.

As indicated in Example 2, the latter is used in obtaining the estimated
treatment sum of squares ŜSV . Also note that in all of these three examples
the estimated residual sum of squares, ŜSR, is equal to the corresponding
d.f., in accordance with formula (27).
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7. Concluding remarks

The present work was stimulated by a result obtained during the prepara-
tion of a paper by Caliński et al. (2017). It concerns the residual sum of
squares, SSR, in the ANOVA applied to data from an experiment with the
OBS property. It was found that when the unknown stratum variances are
replaced by their estimates obtained from the estimation procedure sug-
gested by Nelder (1968), the SSR is reduced to its d.f., i.e., its expectation.
This result is obtainable due to a proposed new approach to the analysis of
experimental data.

In this paper the new approach is applied to proper block designs. The
indicated result follows from the use, in the estimation and hypothesis test-
ing procedures, of the covariance (dispersion) matrix (3) not in the form

V = σ21[φ1 + (σ
2
2/σ
2
1)φ2 + (σ

2
3/σ
2
1)φ3] = σ

2
1F (say),

usually applied in the literature (as recalled recently by Kala, 2017), but in
its original form V = σ21φ1 + σ

2
2φ2 + σ

2
3φ3, which ensures that E(SSR) =

n − v, as follows from (18). As a consequence of this application, the test
statistic (14) is reduced to the form (28), i.e., to the estimated treatment
mean square. This can be seen as an advantage for the approximation of
the relevant distribution.

Another feature of the proposed approach concerns simplification of the
analytical procedures, as presented in Section 4. One of the resulting ad-
vantages is the reduction of the number of stratum variances involved from
three to two, i.e., to σ21 and σ22 only. This greatly simplifies the computa-
tions.

However, as can be seen from the analyzed examples, the main advantage
of the proposed approach is the fact that the ANOVA results are obtainable
directly, not by first performing intra-block and inter-block analyses and
then combining their results.

Finally, it is expected that this paper will be followed by others, con-
cerning different classes of designs inducing the OBS property.
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Appendix

Appendix 1

For formula (13) one has first to show that X ′1V
−1X1 can be taken as a g-inverse

of D(τ̂ ∗) given in (12), i.e., that the equality

(Iv − n−11vr′)(X ′1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1X1(Iv

− n−11vr′)(X
′
1V
−1X1)−1(Iv − n−1r1′v)

= (Iv − n−11vr′)(X ′1V
−1X1)−1(Iv − n−1r1′v)

holds. For this, it is sufficient to consider the equalities

X ′1V
−1X1(Iv − n−11vr′) = (Iv − n−1r1′v)X

′
1V
−1X1 and

(Iv − n−1r1′v)(Iv − n−1r1′v) = (Iv − n−1r1′v).
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The second equality is obvious. To prove the first, one has to use the equalities

X1(Iv − n−11vr′) = (In − n−11n1′n)X1 and
V −1(In − n−11n1′n) = (In − n−11n1′n)V

−1,

which can easily be checked remembering that X11v = 1n and 1′nX1 = r′, and
also recalling the properties of the matrices φ1, φ2 and φ3 in formula (3).

Now, withX ′1V
−1X1 as a g-inverse of D(τ̂ ∗), the equality (13) follows, which

can easily be checked noting that (Iv − n−11vr′)τ̂ ∗ = τ̂ ∗.

Appendix 2

For formula (14), note that the sum of squares SSV can, on account of (8), be
written as

SSV = y′V −1X1(X ′1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1X(Iv

− n−11vr′)(X
′
1V
−1X1)−1X

′
1V
−1y,

which, by the equalities

X ′1V
−1X1(Iv − n−11vr′)(X ′1V

−1X1)−1 = Iv − n−1r1′v and
(Iv − n−11vr′)(X ′1V

−1X1)−1 = (X
′
1V
−1X1)−1(Iv − n−1r1′v)

(see Appendix 1), can be reduced to the form in (15). As to the sum of squares
SSR, its formula (16) follows directly from (14) on account of (4).

Appendix 3

For the formulae in (29), note that using the known formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

[see, e.g., (A.2.4f) in Mardia, Kent and Bibby (1979)], one can write, on account
of (29),

V −1 = V −1∗ − V
−1
∗ n−11n1′n[(σ

2
3 − σ22)−1In + n−11n1′nV

−1
∗ n−11n1′n]

−1n−11n1′nV
−1
∗ ,

from which

X ′1V
−1X1 = X

′
1V
−1
∗ X1 −X

′
1V
−1
∗ n−11n1′n[(σ

2
3 − σ22)−1In

+ n−11n1′nV
−1
∗ n−11n1′n]

−1n−11n1′nV
−1
∗ X1

= X ′1V
−1
∗ X1 −X

′
1V
−1
∗ X11vn

−11′n[(σ
2
3 − σ22)−1In

+ n−11n1′vX
′
1V
−1
∗ X11vn

−11′n]
−1n−11n1′vX

′
1V
−1
∗ X1

= [(X ′1V
−1
∗ X1)

−1 + n−11v1′n(σ
2
3 − σ22)n−11n1′v]−1

= [(X ′1V
−1
∗ X1)

−1 + (σ23 − σ22)n−11v1′v]−1.
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Taking the inverse of this, one obtains

(X ′1V
−1X1)−1 = (X

′
1V
−1
∗ X1)

−1 + (σ23 − σ22)n−11v1′v,

i.e., the formula (30). From (29) it also follows that

X ′1V
−1X1 =X

′
1V
−1
∗ X1 + (σ

−2
3 − σ

−2
2 )n

−1rr′,

due to the relation 1′nX1 = r′.
Furthermore, with these results the equality (31) can be proved, proceeding as

follows:

τ̂ ∗ = (Iv − n−11vr′)(X ′1V
−1X1)−1X

′
1V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1y

= (Iv − n−11vr′)(Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1(Iv − n−1r1′v)X
′
1V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1(In − n−11n1′n)V
−1y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1(Iv − n−11n1′n)[V
−1
∗

+(σ−23 − σ
−2
2 )n

−11n1′n]y

= (Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1
∗ (Iv − n−11n1′n)y,

because (Iv − n−1r1′v)X
′
1 = X ′1(In − n−11n1′n) and (In − n−11n1′n)V

−1
∗ =

V −1∗ (Iv − n−11n1′n), as can easily be checked.

Appendix 4

Formulae (33) and (34) are found to be equivalent to formulae (15) and (16)
respectively. To prove this, it may be helpful first to note the following equalities,
which can easily be checked (see also Appendices 1 and 3):

(X ′1V
−1X1)−1(Iv − n−1r1′v) = (X

′
1V
−1
∗ X1)

−1(Iv − n−1r1′v),
X1(Iv − n−11vr′) = (In − n−11n1′n)X1,
(Iv − n−1r1′v)X

′
1 = X

′
1(In − n−11n1′n),

V −1(In − n−11n1′n) = V
−1
∗ (In − n−11n1′n),

(In − n−11n1′n)V
−1 = (In − n−11n1′n)V

−1
∗ ,

V −1∗ (In − n−11n1′n) = (In − n−11n1′n)V
−1
∗ .

With these observations, it is easy to proceed as follows:

SSV = y′V −1X1(Iv − n−11vr′)(X ′1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1y

= y′V −1X1(Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1(Iv − n−1r1′v)X
′
1V
−1y

= y′V −1(In − n−11n1′n)X1(X
′
1V
−1
∗ X1)

−1X ′1(In − n−11n1′n)V
−1y

= y′(In − n−11n1′n)V
−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ (In − n−11n1′n)y,
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which, with y∗ = (In − n−11n1′n)y, is equivalent to the formula (33).
Now, considering formula (16), it will be helpful first to note (recalling Ap-

pendix 1) that

[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1]n−11n1′n

= V −1n−11n1′n − V
−1X1(X

′
1V
−1X1)−1X

′
1V
−1n−11n1′n

= V −1n−11n1′n − V
−1X1(X

′
1V
−1X1)−1X

′
1V
−1X11vn−11′n

= V −1n−11n1′n − V
−1X11vn−11′n = V

−1n−11n1′n − V
−1n−11n1′n = O.

With this result formula (16) can be written as

SSR = y′[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1]y

= y′[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1](In − n−11n1′n)y

= y′[V −1 − V −1X1(X ′1V
−1X1)−1X

′
1V
−1](In − n−11n1′n)(In − n−11n1′n)y

= y′[V −1(In − n−11n1′n)− V
−1X1(X

′
1V
−1X1)−1X

′
1V
−1(In − n−11n1′n)]y∗

= y′[(In − n−11n1′n)V
−1 − V −1X1(X ′1V

−1X1)−1X
′
1(In − n−11n1′n)V

−1]y∗
= y′[(In − n−11n1′n)V

−1
∗ − V

−1X1(X
′
1V
−1X1)−1X

′
1(In − n−11n1′n)V

−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1X1(X
′
1V
−1X1)−1(Iv − n−1r1′v)X

′
1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1X1(X
′
1V
−1
∗ X1)

−1(Iv − n−1r1′v)X
′
1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1X1(Iv − n−11vr′)(X ′1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − V

−1(In − n−11n1′n)X1(X
′
1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗

= y′[(In − n−11n1′n)V
−1
∗ − (In − n−11n1′n)V

−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗

= y′∗[V
−1
∗ − V

−1
∗ X1(X

′
1V
−1
∗ X1)

−1X ′1V
−1
∗ ]y∗,

which, with y∗ = (In − n−11n1′n)y, is equivalent to (34).

Appendix 5

For formula (41), note that, from (40),

SS(UA) + SS(UB) = τ̂ ′∗{UA[U
′
A(X

′
1V
−1
∗ X1)

−1UA]−U
′
A

+ UB[U
′
B(X

′
1V
−1
∗ X1)

−1UB]−U
′
B}τ̂ ∗

= τ̂ ′(Iv − n−1r1′v){UA[U
′
A(X

′
1V
−1
∗ X1)

−1UA]−U
′
A

+ UB[U
′
B(X

′
1V
−1
∗ X1)

−1UB]−U
′
B}(Iv − n−11vr′)τ̂ ,

which, because U ′A1v = 0 = U
′
B1v, reduces to

SS(UA) + SS(UB) = τ̂ ′{UA[U ′A(X
′
1V
−1
∗ X1)

−1UA]−U
′
A

+ UB[U
′
B(X

′
1V
−1
∗ X1)

−1UB]−U
′
B}τ̂ .

On the other hand, from (14) and Appendix 3,

SSV = τ̂ ′∗X
′
1V
−1X1τ̂ ∗ = τ̂

′(Iv − n−1r1′v)X
′
1V
−1X1(Iv − n−11vr′)τ̂

= τ̂ ′(Iv − n−1r1′v)X
′
1V
−1
∗ X1(Iv − n−11vr′)τ̂ .
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Hence, for any τ̂ , the equality (41) holds if and only if

UA[U
′
A(X

′
1V
−1
∗ X1)

−1UA]−U
′
A + UB[U

′
B(X

′
1V
−1
∗ X1)

−1UB]−U
′
B

= (Iv − n−1r1′v)X
′
1V
−1
∗ X1(Iv − n−11vr′)

= X ′1V
−1
∗ X1(Iv − n−11vr′),

because (Iv − n−1r1′v)X
′
1V
−1
∗ X1 = X

′
1V
−1
∗ X1(Iv − n−11vr′). Now, premulti-

plying by (X ′1V
−1
∗ X1)

−1, one obtains the condition (42).


