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SUMMARY 

This paper discusses the problem of determining the number of observations necessary to 

apply the nonparametric Mann–Whitney test. We describe the method given by Noether 

(1987) for determining a sample size which guarantees that the Mann–Whitney test at a 

given significance level α has a predetermined power 1–β. The presented theory is tested 

by calculating the empirical power in computer simulations. The paper also raises the 

issue of the method of rounding the determined sample size to an even number when the 

sample is divided into two equinumerous subsamples.  
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1. Introduction and notation 

In this paper, we will consider a test statistic whose distribution is asymptotically 

normal with mean μ(S) and standard deviation σ(S). The mean and standard 

deviation of the statistic S, when the null hypothesis is true, will be denoted by 

μ0(S) and σ0(S). For simplification, our discussion will concern a right-tailed test. 

Let Z be a random variable with a standard normal distribution, and let zα be its 

right-tailed critical value, that is, a number such that P(Z > zα) = α. Then the power 

of the test S against the alternative hypothesis Ha has the following form: 
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 As can be seen, the power of this test will be equal to 1–β when the 

expression on the right side of the equality sign in formula (1) is equal to –zβ. This 

can also be formulated as the following condition:  
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Obviously, the ρ value is generally unknown. But for alternatives that do not 

deviate too much from the null hypothesis, the assumption that σ(S) is close to 

σ0(S) may often be appropriate. Equivalently, we may assume that ρ=1. Let us 

refer to )(SQ as the noncentrality parameter of the test S. Then we will obtain an 

approximation to the sample size sought by comparing the noncentrality 

parameter )(SQ  with (zα + zβ)2 and then solving the resulting equation for the 

number of observations. 

The aim of this paper is to test by simulation the sample size proposed by 

Noether which guarantees the maintenance of the assumed power of the test, 

using the example of the Mann–Whitney U test. Attention is also drawn to the 

effect of the method of mathematical rounding of the derived actual number used 

to determine the size of two equinumerous samples. 

2. The Mann–Whitney U test 

We will now illustrate the above theory using the example of a nonparametric 

goodness-of-fit test for two samples. Given are two independent samples 

mXXX ,, 21  and nYYY ,, 21 . We want to test the hypothesis that both samples 

come from the same population, against an alternative hypothesis that they come 

from different populations. These hypotheses may also be formulated using the 

following probabilities: 
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We will use the Mann–Whitney U test in the following form as a test statistic 

to test the hypothesis H0: 

 

njmiXYU ij ,,2,1;,,2,1,)(#    (4) 

where #(A) denotes the power of set A. It is known that μ(U) = mnp (Fisz 1967). 

Moreover, we have  

mnU
2

1
)(0   and 

12

)1(
)(2

0




Nmn
U  (5) 

(Fisz 1967) where N=m+n. Putting m = cN, we obtain  
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For samples with the same size m = n, we have c = 1/2, and the formula (6) 

takes the following form: 
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3. Materials and methods 

The first step in estimating the required sample size N* was to calculate the 

probability p = P(Y>X).  

For this purpose, the properties of a two-dimensional normal distribution 

were used. If the random variable (X,Y) has a two-dimensional normal 

distribution  ,N , the density function is expressed by the following formula: 
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where  
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and  denotes the correlation between X and Y, 
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where  < x < ,  < y <  X > 0, Y  > 0, 1    1, and the constants 

X  and Y  are arbitrary. In this study, independent samples were generated, 

and hence  = 0. 

Finally  

p = P(Y>X) =  






x

dydxyxf ),( . (11) 

After the value of p was calculated from the formula (11) and subsequently 

the value of N* was determined from the formula (7), for the determined 

distribution parameters two N*/2-element samples were generated, and the 

Mann–Whitney test was used to test the hypothesis that they both came from the 

same population (3). Simulations were repeated 50,000 times, using three 

significance levels  (0.01, 0.05 and 0.1) and two levels of the power of the test 

1– (0.9 and 0.8). 

Based on these 50,000 sample pairs, the empirical power of the Mann–

Whitney test was determined through simulation by counting the number of cases 

when the hypothesis H0 was rejected. To increase the calculation precision of this 

value, each determination of the empirical power was repeated 10 times, and the 

mean value based on those 10 repetitions was presented as the final result. 

 Samples in the simulations were randomly selected from a population with a 

normal distribution. The first sample, from the distribution N(0.1), was compared 

with the second sample from a population having a distribution with a standard 
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deviation equal to 1 and with the mean determined by the effect size ES, ranging 

from 0.1 to 1.0. The value of ES measures the deviation of the alternative 

hypothesis from the null hypothesis. The effect size was defined by Cohen as “the 

degree to which the null hypothesis is false” (Cohen, 1992). In our case, this value 

is based on means and calculated according to the following formula (Cohen, 

1988): 

𝐸𝑆 =
𝜇2−𝜇1

𝜎
  (12) 

Although the effect size may exceed a value of 1, Cohen referred to small, 

medium and large effect sizes, and in the case of formula (12) the values 

corresponding to these terms are 0.2, 0.5 and 0.8 respectively. Therefore, in our 

simulation test the value of ES does not exceed the value 1.  

The simulations were performed using MathWorks MatLab 2014a software 

and our own code, as well as built-in procedures to generate random numbers and 

compute the nonparametric Mann–Whitney test. 

4. Results 

The graphs for the determined (averaged) empirical power are shown in 

Figure 1. The values on the Y axis were restricted to an interval close to the 

expected value of the power. The simulations show that the power of the test 

maintains its value for small effect values, but when the effect size increases, the 

test’s power is slightly overestimated. The curves for different values of alpha 

and beta change similarly. Hence, only an increase in the parameter ES is 

responsible for an increase in the test’s power relative to its set value.  

The graphs for the determined size N* are shown in Figure 2. Large variation 

between the curves determined by different choices of  can be observed only for 

small values of ES. It decreases with increasing effect size.  

To test how much the sample size N* can be reduced while maintaining the 

assumed power of the test, an additional simulation was carried out. The value of 

N* was reduced by 1 until two consecutive values were below the assumed value 

1–. The graph shows the mean number, determined based on 10 repetitions, by  
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Figure 1. Empirical power for the determined N* for different levels of ,  

depending on effect size 

 

Figure 2. Size N* for different levels of ,  depending on effect size 

which the number N* can be reduced (Figure 3). The mean value by which N* 

was reduced is denoted as Nr, and it was determined as the mean difference 

between N* and the sample size that maintains the assumed level of the test’s 

power depending on effect size. 
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 Figure 3. Difference Nr between N* and the sample size maintaining the 

assumed level of the test’s power for different values of ,  depending on 

effect size 

It can be seen on the graphs that N* is overestimated by about 3–7 elements 

in the sample, regardless of effect size and thus regardless of the sample size N*, 

and these differences increased with decreasing values of  and β.  

Taking into account the large variation in the value of N* for different effects, 

this difference is shown in relative values (Figure 4). 

 Figure 4. Relative difference Nr between N* and the sample size maintaining 

the assumed level of the test’s power for different values of ,  depending on 

effect size 
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It can be noted that for small values of ES this difference is insignificant, but 

for large values of the effect size, due to the small number of observations 

required to detect it, this difference amounts to 10–12% depending on the set 

power of the test.  

After the value of Nr reducing the sample size N* was determined, it was 

tested whether the newly determined size N** = N* – Nr maintains the assumed 

level of the test’s power. The value of Nr was different depending on the assumed 

levels of significance  and β (Table 1). 
 

Table 1. Mean values of Nr depending on the values of the parameters  and β 

 β 

 0.1 0.2 

0.01 6.9 4.5 

0.05 5.3 3.2 

0.1 4.2 2.6 

 

An additional problem was the method of rounding the value of N**. The 

value of N* determined according to the formula (7) is an actual number and the 

total size of both samples. In our work, we wanted to give the most effective size 

N** being an even natural number. To this end, we tested eight methods of 

rounding the N** to an integer value, as defined in Table 2. 
 

Table 2. Rounding options in sample size determination 

Denotation Rounding method 

P1 round(N*/2) – floor(Nr/2); 

P2 ceil(N*/2) – floor(Nr/2); 

P3 round(N*/2) – round(Nr/2); 

P4 ceil(N*/2) – round (Nr/2); 

P5 ceil((N*– Nr)/2); 

P6 round((N* – Nr)/2); 

P7 round((N* – Nr + 1)/2); 

P8 round((N* – Nr + 2)/2); 
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The empirical power of the test for the size N** derived by rounding methods 

P1–P8 is shown on the graphs below (Figures 5 and 6).  

 

β=0.1 

 

 

 

Figure 5. Empirical power of the test for the size N** and the value β=0.1 
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β=0.2 

 

 

 

Figure 6. Empirical power of the test for the size N** and the value β=0.2 
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The P value shown in the graphs is the value of the power for the calculated 

value of N* (without reduction in observations and rounding), and Teor 

represents theoretical values of the power test. Rounding methods that certainly 

do not meet the assumptions are marked with dashed lines. 

The above graphs show that it is impossible to indicate unambiguously a best 

method for rounding the size regardless of the assumed level of significance and 

the test’s power. Given that we observe the largest changes in the power of N** 

for higher values of ES, in selecting the best method our intention was that in 

these areas the plot should be as close as possible to the assumed value of the 

test’s power and, at the same time, it should not be below this value. It seems that 

P2, P4 and P6 can be indicated as the most effective rounding methods for β=0.1 

and =0.01, while for =0.05 the best choice is P2, and for =0.1 it is P8. For 

β=0.2 and =0.01 and =0.05, the most optimal choices would be the methods 

P2 and P8, while for =0.1 they would be P2 and P4. 

As can be seen, method P2 appears almost everywhere among the indicated 

methods for determining N**, apart from the case in which the values of both 

parameters were 0.1, where P8 was indicated as the most efficient method for 

obtaining the desired number of observations.  

5. Conclusions 

The obtained simulation results demonstrate that the method given by Noether is 

an effective method for determining sample size in the Mann–Whitney test. The 

determined empirical power of the test for the obtained sample size is closest to 

the theoretical power for small effect sizes, whereas for large effects the empirical 

power is far greater. This suggests that it is possible to reduce slightly the 

determined sample size, which can be important in the case of expensive 

experiments. 

The determined value of N* is an actual value. Due to the fact that it is the 

total sample size of both samples, with the assumption that they should be 

equinumerous, we expect that it will be an even natural number. Therefore, it is 
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necessary to round this value. The attempt undertaken in this study to reduce the 

size and obtain an even value for the determined N* suggests that in almost all 

cases the best rounding method was to round up the value (N*/2) and to subtract 

half of the Nr value, rounded down. The rounding method expressed by the 

formula ROUND((N* – Nr + 2)/2) proved to be more effective only in the case 

of 90% theoretical power and a significance level of 0.1. 

 

REFERENCES 

Cohen, J. (1988) Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ: Erlbaum. 

Cohen, J. (1992) A power primer. Psychological Bulletin, Vol 112(1), 155–159. 

Fisz M. (1967) Rachunek Prawdopodobieństwa i Statystyka Matematyczna. PWN, 

Warsaw. 

Hamedani, G. G.; Tata, M. N. (1975) On the determination of the bivariate normal 

distribution from distributions of linear combinations of the variables. The American 

Mathematical Monthly, 82 (9): 913–915. 

Noether G. E. (1987) Sample Size Determination for Some Common Nonparametric 

Tests. Journal of the American Statistical Association 82: 645–647. 

 

 


