
DOI: 10.1515/bile-2017-0009 

 

 

 

Biometrical Letters 

Vol. 54 (2017), No. 2, 155 - 174 

Comparison of Sojourn Time Distributions in Modeling 

HIV/AIDS Disease Progression 

Tilahun Ferede Asena
1
, Ayele Taye Goshu

2 

1School of Mathematical and Statistical Sciences, Hawassa University, Hawassa, 05, Ethiopia 

e-mail: feredetilahun14@gmail.com / tilahun.ferede@amu.edu.et 
2School of Mathematical and Statistical Sciences, Hawassa University, Hawassa, 05, Ethiopia 

e-mail: ayele_taye@yahoo.com 

SUMMARY 

An application of semi-Markov models to AIDS disease progression was utilized to find 

best sojourn time distributions. We obtained data on 370 HIV/AIDS patients who were 

under follow-up from September 2008 to August 2015, from Yirgalim General Hospital, 

Ethiopia. The study reveals that within the “good” states, the transition probability of 

moving from a given state to the next worst state has a parabolic pattern that increases with 

time until it reaches a maximum and then declines over time. Compared with the case of 

exponential distribution, the conditional probability of remaining in a good state before 

moving to the next good state grows faster at the beginning, peaks, and then declines faster 

for a long period. The probability of remaining in the same good disease state declines 

over time, though maintaining higher values for healthier states. Moreover, the Weibull 

distribution under the semi-Markov model leads to dynamic probabilities with a higher 

rate of decline and smaller deviations. In this study, we found that the Weibull distribution 

is flexible in modeling and preferable for use as a waiting time distribution for monitoring 

HIV/AIDS disease progression. 

Key words: HIV/AIDS, semi-Markov model, sojourn time distributions, transition 

probability 

1. Introduction 

Disease modeling and mapping are becoming important in the biomedical 

sciences for investigation of the future status of individual patients. A Markov 

model can describe the natural course of disease progressions. Such models are 

particularly used in medical applications where stages or levels of diseases are 

represented by states in the model. Both semi-Markov and hidden Markov models 
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are promising and exciting tools for modeling a wealth of biological and 

biomedical data. In pathology, individuals who are suffering from a particular 

disease pass through a series of disease stages, moving either to worse or to better 

states. The continual passage of a disease from state to state can be modeled by 

assuming these disease stages to be states of a stochastic model. Disease 

progression modeling is the modeling of the progression of a target disease with 

computational methods, and is an important technique that can help with the early 

detection and management of chronic diseases. By characterizing the entire 

disease progression trajectory, disease progression modeling also facilitates 

improved prognosis, drug development, and clinical trial design. Examples of 

staging systems that are based on disease progression exist for diseases such as 

cancer, HIV, TB, Alzheimer’s, diabetes, and chronic obstructive pulmonary 

diseases. In recent decades homogeneous semi-Markov processes have been 

utilized by Corradi et al. (2004) and Janssen and Monica (2001). Other studies 

include D’Amico et al. (2009) and Goshu and Dessie (2013). 

Progression between the stages of a disease can be characterized by the use of 

well-defined states to represent the various stages. Many diseases have a long 

preclinical phase during which the disease progresses and eventually becomes 

clinically recognized. It is then important to know what factors accelerate the 

progression and when this progression occurs. Disease progression modeling is 

found to be very important because slowing or preventing disease progression 

may be a more effective strategy for reducing morbidity than trying to prevent 

onset. HIV/AIDS is a continuum of progressive damage to the immune system, 

from the time of infection to the manifestation of severe immunological damage 

by the opportunistic infections, neoplasms, wasting, or low CD4 lymphocyte 

count that define AIDS (Teni and Asena , 2015).  

This study deals with the comparison of sojourn times for semi-Markov 

models of longitudinal data, which refers to data on individuals measured 

repeatedly at different times. Semi-Markov models for disease progression have 

been utilized by numerous researchers in the past two decades. Among them, 

early papers on disease progressions using semi-Markov studies include Joly and 
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Commenges (1999), Foucher et al. (2005), Mathieu et al. (2005), Mandel (2010), 

Fonteijn et al. (2011), Masala et al. (2014) and Goshu and Dessie (2013).  

A comprehensive introduction to semi-Markov processes is Janssen and Manca 

(2016), whereas they were first introduced by Levy (1954). Goshu and Dessie 

(2013) and Dessie (2014a, 2014b) used semi-Markov models for disease 

progression modeling in Ethiopia.     

According to the study of Goshu and Dessie (2013) on the progression of 

HIV/AIDS disease stages at Felege Hiwot referral hospital, Ethiopia, which also 

used semi-Markov processes, the probability of being in a better state is non-zero, 

but smaller than the probability of being in a worse state. Their results suggest 

that patient transition from one state to another depends on how long the patient 

has been in the state. They also report that the survival probability of an 

HIV/AIDS patient depends on his/her current disease state: the lower is the CD4 

count, the higher is the risk of transitioning to a worse health state or death state. 

The World AIDS report (2013) shows that 19 million of the 35 million people 

living with HIV today do not know that they have the virus. The report highlights 

that efforts to increase access to ART are working. In 2013, an additional 2.3 

million people gained access to the life-saving medicines. This brings the global 

number of people accessing ART to nearly 13 million by the end of 2013. Based 

on past scale-up, UNAIDS projects that as of July 2014 as many as 13,950,296 

people were accessing ART. By ending the epidemic by 2030, the world would 

avert 18 million new HIV infections and 11.2 million AIDS-related deaths 

between 2013 and 2030. Infection by the human immunodeficiency virus (HIV) 

gradually evolves to the acquired immune deficiency syndrome (AIDS), and 

AIDS evolves to death if not handled carefully. Therefore, we consider the 

progression of HIV infection to AIDS and then to death as a stochastic process, 

splitting the progression into various states of the disease based on an 

immunological indicator, namely CD4+ count, and including death as one state, 

following Janssen and Monica (2001). The division of HIV/AIDS progression 

into five disease states is based on Center for Disease Prevention and Control 

(CDC) (1992). In this study five states will be considered: state one (CD4 
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count>500); state two (350<CD4 count<500); state three (200<CD4 count<350); 

state four (CD4 count<200); and state five (Death).  

It is believed that accurate and detailed modelings of HIV/AIDS disease 

progressions are crucially important for reliable early diagnosis and the 

determination of effective treatments (Titman and Sharples, 2010). Models of 

disease progression are among the core tools of modern medicine for early 

disease diagnosis, for determining treatment and for explaining symptoms to 

patients. Thus, the aim of this study is to analyze the progression of the disease in 

order to provide theoretical support for decision-making on health intervention, 

prognostics and prevention and to establish the best sojourn time distributions for 

monitoring HIV/AIDS disease progression. 

2. Statistical Methods and Data 

2.1. Markov Model 

The Markov assumption is restrictive and not necessary realistic. In recent times 

semi-Markov models have been highly utilized to model the progression of 

HIV/AIDS disease stages: see for instance Titman and Sharples (2010), Goshu 

and Zelalem (2013), Dessie (2014a, 2014b). It is also known that the environment 

of the semi-Markov process is much richer than the Markov chain, and complete 

application of semi-Markov processes is the right choice to model the progression 

of disease states under the homogeneous discrete time scheme (Foucher et al., 

2005; Goshu and Dessie, 2013). Time-homogeneous semi-Markov models 

assume that the trajectory of the process depends only on the amount of time 

spent in the current state, allowing the sojourn times in each state to have an 

arbitrary distribution rather than only exponential distribution.  

2.2. The Semi-Markov Model 

Semi-Markov models were studied in detail by Janssen and Monica (2001), 

Corradi et al. (2004) and Foucher et al. (2005). In a semi-Markov model we have 

two important quantities: the first is the state of the transition, denoted by Xn, and 
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the second is the time of the transition Tn. In defining these two important 

variables we are able to consider the randomness of the state along with the 

randomness of the time elapsed in each state. Thus we define the two random 

variables simultaneously as: 

 :,: nn TSX                                                                             (1) 

Xn represents the state at the n
th
 transition of the Markov process with state space 

S= {S1, S2, ..., Sm}, and Tn represents the time of the n
th
 transition. The kernel 
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The transition probabilities are given by (5), for which the solutions should be 

obtained using the progression or evolution equation (6). 
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Corradi et al. (2004) proved a numerical solution for equation (7) that converges 

to the discrete time HSMP described as an infinite countable linear system by: 
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where h represents the discretization step, and 
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The evolution equation in (8) can be written in matrix form as: 
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Goshu and Zelalem (2013) implemented this algorithm by writing R code. The 

same R code is used for the computations in this study.
 
Given the solutions of the 

evolution equation )(ˆ tij  for transition probabilities, the reliability function is 

computed as:
 


Uj

iji ttR )(ˆ)(                                                      (11) 

For the algorithm, we refer the reader to the Appendix. 

                 
2.3. Sojourn Time Distributions 

We suppose that the sojourn or waiting time in a given state is random and has a 

distribution. It is assumed that the process spends some time in a given state, and 

the random time has distribution G(t). Two sojourn distributions are considered 

here for modeling the progression of the disease. The first is the exponential 

distribution 0,)exp(1)(  ttG ijij  , where 
ijij  /1  is the expected time 



 

 

 

 

Comparison of Sojourn Time Distributions in Modeling HIV/AIDS Disease        161 

that the process spends in state i before it enters state j from i, with scale 

parameter ij  > 0. The second distribution we consider is the Weibull distribution

0 ,)exp(1)(  tttG ijv

ijij  , with scale parameter 0ij  and shape 

parameter 0ijv . When the shape is equal to 1, the Weibull becomes an 

exponential distribution. 

2.4. Data  

The data considered for this study were taken from Yirgalem General Hospital, 

which is located 300 km south of Addis Ababa in the town of Yirgalem, Sidama 

zone, in the Southern Nation’s Nationalities and Peoples regional state. HIV 

patients have enrolled for ART follow-up in the hospital since 2000. We adopted 

a simple random sampling procedure to collect our data from the lists of patients 

who were under ART follow-up from 2008 to 2015. The following sample size 

determination formula (Cochran, 1977) is used: 
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where 2/Z  is computed on a standard normal distribution for the significance 

level   = 0.05, which gives 2/Z =1.96. The term p represents the proportion of 

deaths among HIV/AIDS patients. It was obtained from the previous comparable 

study Goshu and Dessie (2013) on data taken from Felege-Hiwot Referral 

Hospital, from which p = 0.1043. The degree of precision d selected for this study 

was taken to be 0.03. From a total number of N = 1570 HIV/AIDS patients at the 

Yirgalem General Hospital, the sample size for this study was calculated to be 

375 patients.        

Referring to the CDC (1992) immunological classification of HIV/AIDS 

infected patients, we have five states, where the first four states are good states 

and the last is the bad or death state. Thus, based on the seriousness of cases, we 

have the following states: 

SI: CD4 count > 500x10
6
 cells/L 
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SII: 350 x10
6
 cells/L < CD4 count ≤ 500 x10

6
 cells/L 

SIII: 200 x10
6
 cells/L < CD4 count ≤ 350 x10

6
 cells/L 

SIV: CD4 count ≤ 200 x10
6
 cells/L. 

D: Death. 

The death state D is considered an absorbing state, while the other four “good” 

states all communicate with each other. 

3. Results and Discussion 

We study the progression of the HIV/AIDS disease and health risk factors and its 

relationship with the well-being of HIV/AIDS patients in order to provide 

theoretical support for decision-making on health intervention, prognostics and 

prevention, using flexible waiting time distributions. For comparison purposes we 

use an exponential distribution and a two-parameter Weibull distribution as 

waiting time distributions in semi-Markov stochastic processes. Semi-Markov 

models explicitly define distributions of waiting times, giving an extension of 

continuous time and homogeneous Markov models based implicitly on 

exponential distributions. To see the difference in waiting time distribution of 

disease progressions, we obtain results for both distributions. Finally, we compare 

the two models of HIV/AIDS disease progression and estimate the transition 

probabilities using these waiting time distributions in stochastic processes. The 

data analyzed in this study were collected at Yirgalem General Hospital during 

September 2008 to August 2015, when follow-up visits took place every six 

months at known and fixed time points, although the transition between levels of 

the state space could occur at any time. Frequencies and estimated transition 

probabilities between the states are summarized from the data and displayed in 

Table 1. Each patient was tracked throughout the study period for changes of 

status of the disease under ART follow-up. Among these patients, 69 (18.4%) 

died. 

The model we consider is a continuous time Markov model. It helps us to 

compute  transition  probabilities  and mean waiting times over time. The solution 
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Table 1: Transition probability matrix computed from the progression data 

State I II III IV D 

I 171 (0.438462) 169 (0.433333) 32 (0.082051) 7 (0.017949) 11 (0.028205) 

II 240 (0.495868) 76 (0.157025) 132 (0.272727) 22 (0.045455) 14 (0.028926) 

III 59 (0.166667) 183 (0.516949) 52 (0.146893) 41 (0.115819) 19 (0.053672) 

IV 12 (0.079470) 30 (0.198675) 77 (0.509934) 7 (0.046358) 25 (0.165563) 

 

for the  transition  probabilities   tij   at  time  t  is  obtained  using  the  defined 

algorithm given m = 5 states, T = 204 months, and transition probability matrix P 

as given in Table 1. For the Weibull sojourn time distribution, the shape 

parameter is taken to be 1.5 (the choice of the shape parameter is based on the 

natural properties of the two-parameter Weibull distribution, i.e. when the shape 

parameter is greater than 1, the disease progression increases with time. This 

happens when there is an “aging” process or parts are more likely to fail as time 

goes on; this means that the hazard function is a monotonically increasing 

function of the progression). The scale parameters are estimated from the data.  

All analysis is based on the algorithm defined. The results are plotted in 

Figures 1–7. The plots in Figure 1 display the several conditional probabilities 

that a patient will be in state j at time t given that she/he is initially in state i – 

among the good states. These progressions are computed for SI to SII, SII to SIII 

and SIII to SIV, for a specific HIV/AIDS patient.  

 
(a) Using exponential distribution                         (b) Using Weibull distribution 

Figure 1. Conditional probability that a patient will be in state j, j{SI,SII,SIII,SIV} after 

t  months given that she/he is currently in state i{SI,SII,SIII,SIV}. The plot in the left 

panel is for exponential sojourn time and that in the right panel for Weibull sojourn time 

distribution. 
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The plots in the left panel are for exponential sojourn time, and those in the 

right panel for Weibull sojourn time distributions. Figure 1(a) is plotted for the 

exponential waiting time distribution. The parabolic curves of the probability 

reach peaks at the time-probability points (48, 0.314) for state I to II, (36, 0.161) 

for state II to III, and (12, 0.054) for state III to IV. The peaks may indicate the 

time when a patient will be at highest risk of passing to a worse state. Moreover, 

the transition probability from SII to SIII is lower than the others. It is interesting 

to observe that, within the good states, the transition probability from a given state 

to the next worst state increases with time, reaches a maximum at a certain time 

and then decreases with increasing time, when the exponential waiting time 

distribution is considered. 
 

Figure 1(b) is plotted for the Weibull waiting time. The progressions from 

state SI to SII, SII to SIII and SIII to SIV for a specific HIV/AIDS patient result 

in a similar parabolic curve to that obtained for exponential waiting time 

distribution, with peak points (48, 0.314), (72, 0.160) and (36, 0.054) on the time-

probability axes. Interestingly, we observed a marked increment in progression 

from SI to SII, SII to SIII and SIII to SIV for a specific HIV/AIDS patient when 

considering a Weibull waiting time distribution as compared to an exponential 

waiting time distribution. This fact suggests a relationship between clinical 

outcomes and the duration of waiting times, which could explain the increase or 

decrease in transition probabilities of disease stages of patients in the cohort. In 

addition, for Weibull as compared to the exponential model, the conditional 

probability of remaining in a good state before moving to another good state 

grows faster at the beginning, reaches a peak, and then declines faster over a long 

period of time. 

Figure 2 displays the conditional probabilities that an HIV/AIDS patient who 

is currently in a given state SI, SII, SIII, SIV will be in the death state after t 

months. These transitions are plotted from SI to D, SII to D, and SIII to D and 

SIV to D. Based on the exponential waiting time distribution, the probability of 

dying after 204 months is 0.396 for a patient who is in the first stage, 0.404 for 

one who is in the second stage, 0.4298 for one who is in the third stage and 
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0.5057 for one who is in the fourth stage of the disease. The probability of dying 

will increase by 9 percent for a specific HIV/AIDS patient in state three compared 

with an HIV/AIDS patient in state one. Similarly the probability of dying will 

increase by 20 percent for a specific HIV/AIDS patient in state four compared 

with an HIV/AIDS patient in state one. 

 
(a) Using exponential distribution                              (b) Using Weibull distribution 

Figure 2: The conditional probability that a patient will be in death state after t  months 

given that she/he is initially in state i{SI,SII,SIII,SIV}. The plot in the left panel is for 

exponential sojourn time and that in the right panel for Weibull sojourn time distribution 

For the Weibull distribution model, the probability of dying after 204 months 

is 0.213 for a patient who is in the first stage, 0.224 for one who is in the second 

stage, 0.256 for one who is in the third stage and 0.353 for one who is in the 

fourth stage of the disease. Each plot is an increasing parabolic curve over time 

with no peak point. The probability of dying will increase by 5 percent for a 

specific HIV/AIDS patient in state three compared with an HIV/AIDS patient in 

state one. Similarly the probability of dying will increase by 66 percent for a 

specific HIV/AIDS patient in state four compared with an HIV/AIDS patient in 

state one. This can be interpreted as indicating that the probability that an 

HIV/AIDS patient in any one of the good states will reach the death state is 

increasing with time. Moreover, a patient who is in the fourth state has the highest 
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probability of dying after any given t months, while the probability for one who is 

in the first state is the lowest throughout the time considered.  

In comparison with the Weibull waiting time, the exponential waiting time 

gives higher probabilities that an HIV/AIDS patient in any one of the good states 

will reach the death state. This result also shows that over a long time, the 

Weibull distribution leads to a smaller deviation of probabilities than the 

exponential case. Special medical intervention may be required to slow down the 

rate of decline. For instance, at time 204 months, the differences between the 

probabilities are smaller for the Weibull than for the exponential distribution.  

Figures 3–7 display conditional probabilities of a patient’s transitioning 

between disease states given his/her current status, using exponential and Weibull 

waiting time distributions. The results show that the probabilities of being in the 

same state for both waiting time distributions across the study period decrease 

with time. However, the probabilities are much smaller for exponential waiting 

time distributions than for Weibull waiting time distributions, demonstrating that 

low probabilities (small rates) tend to be those with low waiting time rates and, 

consequently, slow progression.  
 

        (a) Using exponential distribution                              (b) Using Weibull distribution 

Figure 3. Conditional probability of being in the next state j after month t given the 

starting state I. The plot in the left panel is for exponential sojourn time and that in the 

right panel for Weibull sojourn time distribution  
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            (a) Using exponential distribution                              (b) Using Weibull distribution 

Figure 4: Conditional probability of being in the next state j after t months given a 

starting state II. The plot in the left panel is for exponential sojourn time and that in the 

right panel for Weibull sojourn time distribution 

 

            (a) Using exponential distribution                              (b) Using Weibull distribution 

Figure 5: Conditional probability of being in the next state j after t months given a 

starting state III. The plot in the left panel is for exponential sojourn time and that in the 

right panel for Weibull sojourn time distribution 
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            (a) Using exponential distribution                              (b) Using Weibull distribution 

Figure 6: Conditional probability of being in the next state j after t months given a 

starting state IV. The plot in the left panel is for exponential sojourn time and that in the 

right panel for Weibull sojourn time distribution 

            (a) Using exponential distribution                              (b) Using Weibull distribution 

Figure 7: The conditional probability that a patient remains in a good disease state for at 

least t months. The plot in the left panel is for exponential sojourn time and that in the 

right panel for Weibull sojourn time distribution  
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Conversely, it demonstrates that high probabilities (high rates) tend to be 

those with high waiting time rates and early progression. Thus, physicians can 

monitor a patient’s disease status at each state and take corrective actions as 

needed as early as possible, if Weibull waiting time distributions are considered. 

Therefore, considering the Weibull waiting time distribution is far preferable to 

the exponential waiting time distribution in terms of the early detection and 

management of diseases.  

In Figure 7, we compute the probability of staying in same state. It is 

interesting to observe that the conditional probability of staying in the same state 

decreases with increasing time for both waiting time distributions. This result 

indicates that an HIV/AIDS patient in a specific good state of the disease will stay 

in that state with a non-zero probability.  

The patient is more likely to be in a good state than a worse state; for 

example, the probabilities of being in state I, II, III and IV at time 24 months are 

about 0.545, 0.433, 0.321 and 0.187 respectively under the exponential model. 

This result also indicates that for an HIV/AIDS patient in a specific state of the 

disease, the probability of being in the same state decreases over time. With the 

good (living) states, the results show that the probability of being in a better state 

is non-zero, but is less than the probability of being in worse states. 

4. Discussion 

This study was intended to model the progression of HIV/AIDS to predict the 

future clinical state and survival probability of a patient in order to provide 

theoretical support for decision-making in health intervention, prognostics and 

prevention, using flexible waiting time distributions. Accordingly, different 

probability plots are produced from the semi-Markov model based on the data on 

CD4+ counts of patients under ART follow-up during September 2008 to August 

2015. The results showed that high deviations are observed when exponential 

waiting time distribution is used in modeling HIV/AIDS disease progression, as 
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compared with Weibull waiting time distribution, which leads to lower 

deviations.  

The high deviation observed for exponential waiting time distribution led to a 

higher growth rate, and the lower deviations for Weibull waiting time distribution 

result in a low growth rate. The study revealed that within the good states, the 

transition probability from a given state to the next worst state increases with 

time, reaches a maximum at a certain time, and then decreases with increasing 

time, when an exponential waiting time distribution is considered. This is 

consistent with the findings of Goshu and Dessie (2013). Furthermore, for a 

Weibull waiting time distribution, the conditional probability of remaining in a 

good state before moving to another good state grows faster at the beginning, 

reaches a peak, and then declines faster over a long period of time. 

We obtained similar findings as in Goshu and Dessie (2013), that the 

probability that an HIV/AIDS patient in any one of the good states will reach the 

death state is increasing over time. Moreover, a patient who is in the fourth state 

has the highest probability of dying after any given t months, while the 

probability for one who is in the first state is the lowest throughout the time 

considered. This is because of the fact that the fourth state is the most advanced 

sickness stage, and a patient at this stage is more likely to move to the absorbing 

state. Such patients need effective medical care in order to divert the disease 

progression to the healthier states.   

In this paper, we study the disease progression of AIDS without considering 

risk factors or covariates, which may affect the progression. While exclusion of 

these factors is one of the limitations of this study, past studies have confirmed 

that AIDS disease progression is affected by covariates such as opportunistic 

infections, treatments, etc. (Foucher et al., 2005; Fonteijn et al., 2011; Mandel, 

2010). Thus, we anticipate that if those factors are included the trends of disease 

progression seen in Figures 2–7 might change. The results also show that high 

deviations are observed when an exponential waiting time distribution is used in 

modeling HIV/AIDS disease progression, as compared with Weibull waiting time 

distribution, which leads to lower deviations. The observed high deviation in the 
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case of exponential waiting time distribution results in a higher growth rate, and 

the lower deviations in the case of Weibull waiting time distribution result in a 

low growth rate.  

In conclusion, as the expected AIDS disease progression is dependent on risk 

factors and the use of appropriate mathematical models, our study has provided a 

theoretical support for decision-making in health intervention, prognostics and 

prevention, and this in turn reduces the costs of diagnosis and therapy. 

5. Conclusions 

This study was intended to model the progression of HIV/AIDS to predict a 

patient’s future clinical state and probability of survival. The semi-Markov model 

is used to model the progression using varying waiting time distributions. Thus, 

the following conclusions are drawn from this study. Within the good states, the 

transition probability from a given state to the next worst state increases with 

time, reaches a maximum at a certain time and then decreases with increasing 

time, when exponential and Weibull waiting time distributions are considered. 

However, the probability becomes narrower for exponential waiting time 

distribution as compared with the Weibull distribution. This indicates that patients 

will suffer at some time in their follow-up period, and thus it is recommended that 

physicians can help patients with the early detection and management of their 

disease symptoms and intervene during their follow-up and alter their medication 

systems. We observed a marked increment in progression from a good state to the 

next consecutive worst state for a specific HIV/AIDS patient when Weibull 

waiting time distribution was considered, compared with exponential waiting time 

distribution. In the Weibull case, as compared to the exponential case, the model 

shows that the conditional probability of remaining in a good state before moving 

to another good state grows faster at the beginning, reaches a peak, and then 

declines faster over a long period of time. The probabilities of being in the same 

state across the study period, for both waiting time distributions, decrease over 

time. Comparatively, however, the probability of remaining in the same good 
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state declines faster for the Weibull waiting time distribution than for the 

exponential distribution.  

The findings indicate that the probability of staying in same good state of the 

disease declines over time, with higher values for healthier states. The survival 

probabilities are all decreasing with increasing time, for both waiting time 

distributions. Moreover, the Weibull distribution under the semi-Markov model 

leads to dynamic probabilities with higher rate of decline and smaller deviations. 

The Weibull distribution is flexible in modeling, and so it is preferable for use as 

a waiting time distribution for semi-Markov modeling and monitoring of 

HIV/AIDS disease progression over time.  

It would be desirable and recommended that the study be further enhanced by 

studying the effects of covariates, such as opportunistic infections and treatments, 

on sojourn times by using the Cox proportional model. It is also recommended to 

explore non-parametric alternatives to the exponential and Weibull distributions 

and compare the results. Thus, we recommend that further study should be 

conducted by incorporating time-dependent covariates and others proxy factors of 

AIDS disease progression. 
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m = number of states of the process. 

T = number of periods to be examined for the transient analysis.  

P = matrix of order m of the embedded Markov process. 
T

G = square lower-triangular block matrix of order T+1 whose blocks are of order m. 
TQ = kernel of the Markov process.  

TΦ =block vector of order T+1 the blocks of which are square matrices of order m. 
T
D =block vector of order T+1 the blocks of which are diagonal square matrices of  

order m. 
T

V = square lower-triangular block matrix of order T+1 whose blocks are of order m. 
T
S = block vector of order T+1 the blocks of which are diagonal square matrices of order 

m. The diagonal element of each block at time t is given by 


m

j
ijii tQs
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(d) Return the results 
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