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SUMMARY 

In this paper we study a certain kind of experimental designs called chemical balance 

weighing designs. We consider issues with regard to determining optimality conditions. 

We give new classes of designs in which we are able to determine an optimal design. 

Moreover, examples are given for the presented cases. 
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1. Introduction 

Let us consider the class  1,0,1  pnΦX  of pn  design matrices X  having 

entries 1,1  or 0. Such a matrix is called the design matrix of a chemical balance 

weighing design (Banerjee, 1975). The problem considered is the determination 

of unknown measurements of objects pwww ,...,, 21 , when random observations 

nyyy ,...,, 21  are come from by the model eXwy  , where   ,,...,, 21


 pwwww

  nyyy ,...,, 21y ,  1,0,1  pnΦX ,   neee ,...,, 21e  is a random vector of 

errors with   n0e E ,   nIe
2Var  , as usual n0  is a vector of zeros, nI  is the 

identity matrix and 
2 is a known scalar. The form of the variance matrix of 

errors means that the errors of measurements are uncorrelated and they have the 

same variances. If the matrix X  is of full column rank, then the estimator of the 

vector w  is given in the form ,ˆ '1
yXMw

  and its covariance matrix  

equals   ,ˆVar 12  Mw   where XXM
'  is called the information matrix for 

the design X .  
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An introduction to weighing designs and the basic problems related to them 

can be found in Jacroux et al. (1983), Sathe and Shenoy (1990) and the references 

given there. Certain kinds of weighing plans are used in spectroscopy (see Harwit 

and Sloane, 1979). Another important application of weighing designs is to n2  

fractional factorial designs (see Cheng, 2014). In a paper by Cheng and Kao 

(2015), these designs are employed in neuroimaging experiments where 

functional magnetic resonance imaging (fMRI) technology is used to obtain 

knowledge on how the brain reacts to certain mental stimuli. Another survey of 

common applications of weighing designs is given by Graczyk (2013).  

Among many problems related to weighing designs, optimality criteria are 

frequently discussed. In the present paper, we consider D-optimal designs, i.e. 

optimal designs in which the generalized variance of parameter estimates is 

minimized. The design DX  is called D-optimal in the class  1,0,1 pnΦ  if 

      1,0,1:detmaxdet '  pnDD ΦXMXX . If  Mdet  attains the upper 

bound, then the design is called regular D-optimal. In other cases, such a design 

is simply called D-optimal. Each regular D-optimal design is D-optimal, although 

the converse need not hold. For a recent account of the theory of regular  

D-optimal chemical balance weighing designs we refer the reader to Masaro and 

Wong (2008), Neubauer and Pace (2010), Katulska and Smaga (2013), and 

Smaga (2014).  

Although there is no shortage of theoretical work providing knowledge to 

guide the selection of optimal designs, we are not able to determine a regular  

D-optimal design for any combination of number of objects and number of 

measurements. Some solutions of this problem and some construction methods 

for D-optimal designs appear in the literature (see Ceranka and Graczyk, 2014b, 

2015). Here, we study classes of design matrices that have not previously been 

considered, and give a new construction method for D-optimal designs. The idea 

is to take a regular D-optimal design and add one or more measurements to obtain 

a D-optimal design in the class  1,0,1 pnΦ , a class in which a regular  

D-optimal chemical balance weighing design does not exist.  
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We recall the definition of a D-optimal design and a theorem determining the 

parameters of a regular D-optimal design, given in Ceranka and Graczyk (2014a). 
 

Definition 1. Any chemical balance weighing design  1,0,1  pnΦX  with the 

covariance matrix of errors nI
2  is regular D-optimal if   pmMdet , where m  

is the maximal number of elements equal to 1  and 1 in columns of X . 
 

Theorem 1. Any chemical balance weighing design  1,0,1 pnΦX   

with the covariance matrix of errors nI
2  is regular D-optimal if and only if 

pmIXX ' . 

2. The main result 

2.1. Admixing of one measurement 

Let    1,0,111   pnΨX  be the design matrix of a regular D-optimal chemical 

balance weighing design. Now, let us consider the design  1,0,1  pnΦX   

in the form  











'
1

1

x

X
X ,               (1) 

where 1x  is any 1p  vector of elements 1,1  or 0, 11
'
1 txx , pt  11 . 

Furthermore, we study the function  Mdet . According to Theorem 18.1.1 in 

Harville (1997), for X  in the form (1), we have 

       




 



1

1

1
'
1

'
11

'
1 1detdet xXXxXXM .  

We are interested in determining the maximum of  Mdet  under a given matrix 

1X . We know that the function  Mdet  as a function of 1t  attains the maximum 

if and only if pt 1 . Hence, we may state the following theorem: 
 

Theorem 2. Any chemical balance weighing design X  in the form (1) is  

D-optimal in the class  1,0,1 pnΦ  if and only if p1
'
1xx . 
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Definition 2. Any chemical balance weighing design X  in the form (1) is  

D-optimal in the class  1,0,1 pnΦ  if    pmm p  1det M . 

Following Bulutoglu and Ryan (2009) we define the D-efficiency of the 

design  1,0,1  pnΦX  as  

 
 

 
 peff

pn

YY

XX
X

ΦY

'

1,0,1

'

detmax

det
D

 



. 

For a D-optimal chemical balance weighing design X  in the form (1),  

  1
1

D 



 p

eff
m

pm

m

m
X .  

 

Example 1. We determine a D-optimal design in the class  1,0,1613  ΦX . 

Let us consider the regular D-optimal chemical balance weighing design 

 1,0,16121  ΨX  in the form  









































101101101101

110110110110

011011011011

101101101101

110110110110

011011011011

'
1X .  

Then, the matrix  1,0,1613  ΦX  given as  











111111

1X
X   

is D-optimal and   9758.0D Xeff . 

2.2. Admixing of two measurements 

Let    1,0,121   pnΓX  be the design matrix of a regular D-optimal chemical 

balance weighing design. We study the design matrix  1,0,1  pnΦX   

given as  
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
















'
2

'
1

1

x

x

X

X ,              (2) 

where 21 , xx  are vectors of elements 1,1  or 0,  txx
'

, pt  1 , 

 u xxxx
'' , 2,1,  . Our goal is to determine the maximum of the 

function  Mdet  under the given matrix 1X . Applying the equality given in 

Theorem 18.1.1 in Harville (1997) to X  in the form (2.2), we obtain 

       

   2
1221

2

21

1

1
'
1'

2

'
1

21
'
1

            

detdetdet

utmtmm p 



























xxXX

x

x
IXXM

.  

The maximum of  Mdet  is attained if and only if the maximum of 1tm  , 2tm   

and the minimum of 
2
12u  are simultaneously attained. We determine the 

maximum of  Mdet  in the class  1,0,1 pnΦ , thus pt  , 2,1 , and 

consequently,     2
12

22det upmm p  
M . Let us note that 12u  is the scalar 

product of two rows of the matrix having elements 0,1,1 , and 012 u  if and 

only if p  is even. In this case,    22det pmm p  
M . When p  is odd, the 

condition 012 u  is never fulfilled. For an odd number of objects, the maximum 

of  Mdet  is attained if and only if 12u  takes the smallest value 1  or 1 . Then 

    1det
22   pmm p

M . We may thus state the following theorem: 
 

Theorem 3. Any chemical balance weighing design X  in the form (2) is  

D-optimal in the class  1,0,1 pnΦ  if and only if pxx
'

 and  








 odd is when ,1

even is when ,0
12

p

p
u , 2,1 . 

Definition 3. Any chemical balance weighing design X  in the form (2) is  

D-optimal in the class  1,0,1 pnΦ  if  

 
 

  














odd iswhen,1

even iswhen,
det

22

22

ppmm

ppmm

p

p

M . 
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It should be noted that, for the D-optimal chemical balance weighing design 

X  in the form (2),  

 
 

 
















odd is when ,1

even is when ,

2
D

2

2
2

2

ppm

ppm

m

m

p

p
p

eff X .  

 

Example 2. To determine a D-optimal design in the class  1,0,146  ΦX  we 

consider the regular D-optimal chemical balance weighing design 

 1,0,1441  ΓX  given in the form  





























1111

1111

1111

1111

1X .  

Then the matrix  1,0,146  ΦX  given as  





















1111

1111

1X

X   

is D-optimal and   9428.0D Xeff . 
 

Example 3. To determine a D-optimal design in the class  1,0,1730  ΦX , 

we take the regular D-optimal chemical balance weighing design 

 1,0,17281  ΓX  in the form  131211
'
1 XXXX  , where  













































1111111

1111111

1111111

1111111

1111111

1111111

1111111

11X , 













































1111111

1111111

1111111

1111111

1111111

1111111

1111111

12X  
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    .

11111111111111

11111111111111

11111111111111

11111111111111

11111111111111

11111111111111

11111111111111

13











































X  

Then the matrix  1,0,1730  ΦX  given as  





















1111111

1111111

1X

X   

is D-optimal and   9945.0D Xeff . 

2.3. Admixing of three measurements 

Let    1,0,131   pnΞX  be the design matrix of a regular D-optimal  

chemical balance weighing design. Now, we consider the design matrix 

 1,0,1  pnΦX  in the form  























'
3

'
2

'
1

1

x

x

x

X

X ,               (3) 

where 321 ,, xxx  are some vectors of elements 1,1  or 0,  txx
'

, 

 u xxxx
''

, pt  1 , 31   . Following the condition given in 

Theorem 18.1.1 in Harville (1997),  

       





































321

1

1
'
1

'
3

'
2

'
1

31
'
1 detdetdet xxxXX

x

x

x

IXXM ,  

for X  in the form (3) we obtain      ΩXXM detdetdet 1
'
1  , where  
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























32313

23212

13121
1

tmuu

utmu

uutm

m
Ω .  

Now, we are interested in determining the maximum of the function  Mdet . 

Because we determine the maximum in the class  1,0,1 pnΦ , it is obvious 

that pt  , 3,2,1 , and furthermore,    AAIM
'

3
3 detdet  pm , where 

 321 xxxA  . From the construction of the matrix X  in the form (3) it 

follows that the maximum of  Mdet  is attained if and only if  AA
'det  takes the 

largest value. Here we state a lemma given in Payne (1974), which provides the 

basis for many of the computations in this section.  
 

Lemma 1. Let 1c , 2c , 3c  be three 10 n  column vectors of 1 ’s. If B  is the 

3n  matrix whose columns are 1c , 2c , 3c  in some order, then  BB
'det  is 

maximal if and only if the following conditions are satisfied: 

(i)   If  4mod00 n , the dot product 0 ts cc  for 31  ts .  

(ii)  If  4mod020 n , then 2 ts cc  or 0 for 31  ts , with 0 occurring 

twice and 2  occurring once. 

(iii) If  4mod010 n , then 1 ts cc  for 31  ts , with 1  occurring an 

even number of times. 

(iv)  If  4mod030 n , then 1 ts cc  for 31  ts , with 1  occurring an 

even number of times. 

Putting pn 0  and ss xc  , 3,2,1s , we obtain that if  4mod0p , then 

the maximum of  Mdet  is attained if and only if 0u  for 31     

and then,    33det pmm p  
M . If  4mod02 p , then the maximum of 

 Mdet  is attained if and only if 2u  or 0 for 31   , with 0 occurring 

twice and 2  occurring once, and       pmpmm p   4det
33

M . If 

 4mod01p , then the maximum of  Mdet  is attained if and only if 1u  

and  for 31   . Here,       23det
33   pmpmm p

M . 

If  4mod03 p , then the maximum of  Mdet  is attained if and only if 

1u  and 1 u  for 31   .  

1 u
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Hence       23det
33   pmpmm p

M . We may thus state the following 

theorem: 
 

Theorem 4. Any chemical balance weighing design X  in the form (3) is  

D-optimal in the class  1,0,1 pnΦ  if and only if pxx
'  for 3,2,1 , and 

for   ,3,2,1,, , we have 

(i)   when  4mod0p , 0u ,  

(ii) when  4mod02 p , 2u  and 0  uu , 

(iii) when  4mod01p , 1u  and , 

(iv) when  4mod03 p , 1u  and 1 u . 
 

Definition 4. Any chemical balance weighing design X  in the form (3) is  

D-optimal in the class  1,0,1 pnΦ  if  

 

   

      

      

      





























 4mod03 when,23

 4mod01 when,23

4mod02 when,4

 4mod0 when,

det

33

33

33

33

'

ppmpmm

ppmpmm

ppmpmm

ppmm

p

p

p

p

XX . 

Let us note that for the D-optimal chemical balance weighing design X  in 

the form (2.3)  

 

   

     

     

     




























4mod03when ,23

4mod01when ,23

4mod02when ,4

4mod0when ,

3
D

3

3

3

3

3

ppmpm

ppmpm

ppmpm

ppm

m

m

p

p

p

p

p

p

eff X .  

Example 4. We determine unknown measurements of 4p  objects 

  4mod0p  in 15n  measurements according to the D-optimality criterion. 

We consider the regular D-optimal chemical balance weighing design 

 1,0,14121  ΞX  given in the form 

1 u
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



























110010111111

001111011111

001111101111

111111110001

'
1X .  

From this, the matrix  1,0,1415  ΦX  given as 

 


























1111

1111

1111

1X

X   

is D-optimal and   9882.0D Xeff . 
 

Example 5. In an attempt to determine a D-optimal design for 6p  objects 

  4mod02 p  in 9n  measurements, i.e. in the class  1,0,169  ΦX , 

we take the regular D-optimal chemical balance weighing design 

 1,0,1661  ΞX  in the form  









































110110

011011

101101

110110

011011

101101

1X .  

Then  


























111111

111111

111111

1X

X  1,0,169  Φ   

is D-optimal and   8974.0D Xeff . 
 

Example 6. To determine a D-optimal design in the class  ,1,0,137  ΦX i.e. 

for 3p  objects   4mod01p  in 7n  measurements, we consider the 
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regular D-optimal chemical balance weighing design  1,0,1341  ΞX  in the 

form  


























111

111

111

111

1X .  

Then the matrix  1,0,137  ΦX  given as  


























111

111

111

1X

X   

is D-optimal, and   9771.0D Xeff . 
 

Example 7. We are interested in determining a D-optimal design for 5p  

objects   4mod03 p  in 28n  measurements, i.e. in the class 

 1,0,1528  ΦX . Let us consider the regular D-optimal chemical balance 

weighing design  1,0,15251  ΞX  in the form  











12

11

1
X

X
X ,  where 



































1101011100

1011100110

1110010011

0011111001

0100101111

'
11X , 

.

010001010111110

101100001001111

000011100110111

110100010011011

001010101011101

'
12

































X

Then the matrix  1,0,1528  ΦX  given as  
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
























11111

11111

11111

1X

X   

is D-optimal, and   9875.0D Xeff . 

2.4. Admixing of four measurements 

Let    1,0,141   pnΘX  be the design matrix of a regular D-optimal chemical 

balance weighing design. Next, suppose that the matrix  1,0,1  pnΦX  is of 

the form  

























'
4

'
3

'
2

'
1

1

x

x

x

x

X

X ,               (4) 

where 4321 ,,, xxxx  are some vectors of elements 1,1  or 0,  u xxxx
''

, 

41   . According the equality given in Theorem 18.1.1 in Harville (1997),  

       












































4321

1

1
'
1

'
4

'
3

'
2

'
1

41
'
1 detdetdet xxxxXX

x

x

x

x

IXXM ,  

for X  in the form (4) we have      TXXM detdetdet 1
'
1  , where  





























4342414

3432313

2423212

1413121

1

tmuuu

utmuu

uutmu

uuutm

m
T .  

The question becomes how to determine the maximum of  Mdet  under a given 

matrix 1X  of a regular D-optimal design. We determine the maximum in the class 
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 1,0,1 pnΦ , thus pt  , 4,3,2,1 , and then    CCIM
'

4
4 detdet  pm , 

where  4321 xxxxC  . From the construction of the matrix X  in the form 

(4), the problem of determining the maximum of  Mdet  is now reduced to 

determining the maximum of  CC
'det . Payne (1974) proved the following 

lemma.  
 

Lemma 2. Let D  be an 40 n  matrix of 1 ’s, where 40 n . Then  DD
'det  is 

maximal if and only if each three columns of D  form 1D  for which  1
'
1det DD  is 

maximal. 

Taking pn 0  we obtain that in the case  4mod0p , the condition 

determining a D-optimal design is the same as in subsection 2.3. Furthermore, 

   44det pmm p  
M . The computations for the case  4mod02 p  

indicate that the maximum of  Mdet  is attained if and only if 2u  or 0 for 

41   , with 2  occurring twice and 0 occurring four times. In that case 

      168det
244   pmpmm p

M . Furthermore, if  4mod01p , 

exploring all possibilities of combinations of u  for 41   , we obtain that 

the maximum of  Mdet  is attained if and only if 1u  and, that’s more 

1 uuu  and 1 uuuu ,   ,4,3,2,1,,, . In that 

case         386det
244   pmpmpmm p

M . If  4mod03 p , 

then a check of all possible combinations of u , 41   , reveals that the 

maximum of  Mdet  is attained if and only if 1u  and, additionally, 

1 uuu  and 1 uuuu  for   ,4,3,2,1,,, . Hence 

        386det
244'   pmpmpmm p

XX . In summary, we may 

formulate the following theorem: 

 

Theorem 5. Any chemical balance weighing design X  in the form (4) is  

D-optimal in the class  1,0,1 pnΦ  if and only if pxx
'

 and for 

  ,4,3,2,1,,, , 

(i)   when  4mod0p , 0u ,  

(ii)  when  4mod02 p , 2  uu  and the others are 0’s, 

(iii) when  4mod01p , 1u , 1 uuu  and 1 uuuu , 

(iv) when  4mod03 p , 1u , 1 uuu  and 1 uuuu . 
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Definition 5. Any chemical balance weighing design X  in the form (4) is  

D-optimal in the class  1,0,1 pnΦ  if and only if 

 

 

   

      

        

        





























 4mod03 when,386

 4mod01 when,386

4mod02 when,168

 4mod0 when,

det

244

244

244

44

'

ppmpmpmm

ppmpmpmm

ppmpmm

ppmm

p

p

p

p

XX

 

Let us note that, for a D-optimal chemical balance weighing design X  in the form 

(4),  

 

   

     

       

       

.

4mod03when ,386

4mod01when ,386

4mod02when ,168

4mod0when ,

4
D

24

24

24

4

4

4






























ppmpmpm

ppmpmpm

ppmpm

ppm

m

m

p

p

p

p

p

eff X

 

Example 8. To determine an optimal design for 8p  objects   4mod0p  in 

16n  measurements, i.e. in the class  1,0,1816  ΦX , we consider the 

regular D-optimal chemical balance weighing design  1,0,18121  ΘX  given 

in the form 

 


















































110001111111

110010111111

001111011111

001111101111

111111111000

111111110100

111111110010

111111110001

'
1X

.  

Then the matrix  1,0,1816  ΦX  given as 
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































11111111

11111111

11111111

11111111

1X

X  

is D-optimal. Here   9515.0D Xeff . 
 

Example 9. To determine a D-optimal design for 6p  objects 

  4mod02 p  in 28n  measurements, i.e. in the class  ,1,0,1628  ΦX

we take the regular D-optimal chemical balance weighing design 

 1,0,16241  ΘX  given in the form  

,

2
'
52

2
'
52

10
*
1

10
*
1

1


























011

011

1X

1X

X   .

1011011111

0111110111

1110111110

1111101101

1101111011

  where
'*

1

































X  

Then  

































111111

111111

111111

111111

1X

X  1,0,1628  Φ  

is D-optimal and   9940.0D Xeff . 
 

Example 10. In order to determine a D-optimal design in the class 

 1,0,1718  ΦX , i.e. for 7p  objects   4mod01p  in 18n  

measurements, we consider the regular D-optimal chemical balance weighing 

design  1,0,17141  ΘX  given as 
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          .

10100110010111

11010011001011

01110101100101

10011101110010

11101000111001

01001111011100

00111010101110

'
1











































X  

Then the matrix  1,0,1718  ΦX  given as  

































1111111

1111111

1111111

1111111

1X

X  

 is D-optimal and   9508.0D Xeff . 
 

Example 11. To determine an optimal design for 5p  objects 

  4mod03 p  in 24n  measurements, i.e. in the class  ,1,0,1524  ΦX

let us consider the regular D-optimal chemical balance weighing design 

 1,0,15201  ΘX  given by  1211
'
1 XXX  , where 



































0111101111

1011110111

1101111011

1110111101

1111011110

11X ,  



































1111111110

1111111101

1111111011

1111110111

1111101111

12X .  

From the above, it follows that the matrix  1,0,1719  ΦX  given as  
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































11111

11111

11111

11111

1X

X   

is D-optimal,   9926.0D Xeff . 

3. Conclusions 

Although a regular D-optimal design is the most desirable, in some classes such 

a design does not exist. These cases are considered here, and are compared from 

the point of view of efficiency. According to the literature, the design 

 1,0,1  pnΦX  is regular D-optimal if and only if pmIXX ' . Obviously, 

nm 1  and m  is interpreted as the maximal number of non-zero elements in 

columns of the design matrix. From the practical point of view, this number 

indicates how many times each object is taken into account in measurement 

combinations. Sometimes it is difficult to include all objects in each measurement 

operation. For this reason, in many applications the case nm 1  is considered. 

Evidently, a larger value of m  results in a smaller variance of estimators on 

unknown measurements of objects. Taking into account these issues, in the 

present work, m  is not fixed. However, all objects are included in measurement 

combinations in admixed measurements in order to obtain a D-optimal design.  
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